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Motivation: Afmospheric rivers (ARs) generate devastating floods, and also
replenish snowpacks and reservoirs, across the semi-arid West. Hence, it
is crucial to understand this key phenomenon, both as a major weather

producer and as one that contributes significantly to climate-scale impacts.
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4. AR observatories
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A few acronym definitions:

AR(O) = atmospheric river LLJ = Low-level jet (airstream)
(observatory) HMT = NOAA’s Hydrometeorology Testbed
APDF = annual peak daily flow IWV = integrated water vapor

GPS-Met = Global Positioning System  NARR = North American Regional Reanalysis
Meteorology SSM/I = Special Sensor Microwave Imager




Zhu & Newell (1998) concluded in a 3-year ECMWF model diagnostic study:

1) 95% of meridional water vapor flux occurs in narrow plumes in <10% of zonal circumference.,
2) There are typically 3-5 of these narrow plumes within a hemisphere at any one moment.
3) They coined the term “atmospheric river’ (AR) to reflect the narrow character of plumes.
4) ARs constitute the moisture component of an extratropical cyclone’s warm conveyor belt.
5) ARs are very important from a global water cycle perspective.
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Observational studies by Ralph et al. (2004, 2005, 2006) extend model results:
1) Long, narrow plumes of IWV >2 cm measured by SSM/| satellites considered proxies for ARs.
2) These plumes (darker green) are typically situated near the leading edge of polar cold fronts.

3) P-3 aircraft documented strong water vapor flux in a narrow (400 km-wide) AR; See section AA’.
4) Airborne data also showed 75% of the vapor flux was below 2.5 km MSL in vicinity of LLJ.

5) Moist-neutral stratification <2.8 km MSL, conducive to orographic precip. boost & floods.
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Now let’s turn the problem on its head: WWhat causes the largest annual
runoffs on major watersheds in western Washington? (Neiman et al. 2010)
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APDFs on four key WA watersheds and AR events for WY 1998-2009
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46 of 48 annual peak daily flows in last 12 years at the 4 sites due to AR landfalls

Results consistent with Dettinger (2004) in CA: ARs yield daily increases in
streamflow that are an order of magnitude larger than those from non-AR storms



Elevation (km, MSL)

Basin altitude attributes above gauges, and mean melting-level altitudes

(300 m below 0°C altitude) for NARR (30 yr inventory) top-10 flood events
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The snow level radar prototype (ca. 2007). A 12-ft trailer is used for the deployments
instead of the 10-ft trailer shown here. The 4-ft radar parabolic dish antennas sit down
inside the two corrugated aluminum shrouds (culvert piping). The 45-degree angled
shroud tops are wrapped with marine and industrial shrink wrap to help shed precipitation.
The radar electronics and data communications equipment are rack mounted in the
environmentally controlled locker located in the center.
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GPS-Met in NOAA
GPS-Met supports NOAA’s Mission by

NOAA Mission: providing reliable and accurate

To understand and predict changes refractivity & moisture observations
in Earth’s environment and

conserve and manage coastal and at low cost under all weather

marine resources to meet our conditions.
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Cal/Vval

Systematic differences between operational GOES East IWV products &
GPS were detected in 2002.
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IWV products were detected in 2005,
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Systematic differences between operational GOES East & GOES West
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Significant improvements in experimental GOES East IWV products
were demonstrated in 2008.
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HMT- 2004 Mlcrophy3|cs Array
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Hourly GPS IWV from BBY (cm)

4 What constitutes an AR at landfall?
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Hourly GPS IWV from BBY (cm)
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Westport, WA Mobile Atmospheric River Observatory
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ESRL Physical Sciences Division

Coastal Atmospheric River Monitering and Early Warning System
Model forecast provided by the ESRL Global Syslems Division

AROQ flux tool measures
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New GPS-Met networks across Pacific Basin (NOAA Coastal Storms
Program) and in California (CA Dept. of Water Resources) will help with
satellite cal/val and AR monitoring. . .
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... although wind profilers strategically located across the Pacific Basin
to measure the lower tropospheric winds (low-level jets) responsible for
transporting the water vapor poleward would be extremely beneficial.




HMT Legacy Project with CA Dept. of Water Resources will
install four coastal AROs with these horizontal spacings (km),
l.e., sufficient to monitor landfalling ARs across much of the
State. = R '




Concluding Remarks

Atmospheric rivers (ARs) are long, narrow corridors of enhanced water vapor
transport responsible for most of the poleward vapor transport at midlatitudes.

Lower-tropospheric conditions during the landfall of ARs are anomalously
warm and moist with weak static stability and strong onshore flow, resulting in
orographically enhanced precipitation, high melting levels, and flooding.

Because ARs contribute significantly to precipitation, reservoir and snowpack
replenishment, and flooding in western North America and elsewhere, they
represent a key phenomenon linking weather and climate.

New GPS-Met networks in CA and across the Pacific will aid with cal/val of

satellite water vapor retrievals and will monitor atmospheric moisture in the AR

breeding grounds. Four ARO’s will be installed along the CA coastline to

detect and monitor AR conditions at landfall. It would be worthwhile to have a

%imi_lar wind profile measurement capability at selected sites across the Pacific
asin.

Next steps include quantifying the role of ARs in the global climate system and
estimating the modulation of AR frequency and amplitude (and associated
extreme precipitation and flooding upon landfall) due to projected climate
change. Mike Dettinger is delving into this research (Dettinger et al. 2009).



