A cloud-scale lightning data assimilation technique and the explicit forecast of lightning with full
charging/discharge physics within the WRF-ARW model
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Abstract c) Results (i) 24 May case

To improve forecast of convection, two new assimilation techniques of total lightning data at cloud-resolving ENTLNIZZZT‘Z"'S‘”E"“"'“Q‘* °”"°2t:3edWRF ocal km g”dz .
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scales have been developed. The first Is a direct forcing technigue (Implemented the WRF-ARW) for initiating - " 2030z "B T

LIGHT Simulation-D02- Radar reflectivity (in dBZ) at Z=2km
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and maintaining convection. The second uses the Ensemble Kalman Filter (EnKF) method, which can modulate | _ §
convection and help suppress spurious convection. The first method was used In the case of the 24 May 2011 w | o 1 |
Oklahoma tornado outbreak. This case was selected because of the availablility of high fidelity data collected by T - -‘ . |
the dense network of the Oklahoma Mesonet. Lightning data assimilation forced deep, moist precipitating " IR VIV i B SN I 2 | “QMMVMJ
convection to occur in the model at roughly the locations and intensities of the observed storms depicted in the i I | ol NP )| ey IS 51 | 3 (@)= LS
NSSL NMQ radar reflectivity mosaic product. The nudging function for the total lightning data locally increases nterpolated NSSL Mosaic Radar Reflectivity {in dB2) onto D03 at Z-2km T CIRL Simulation-D02- Radar reflectivity (in d62) atZ2km
the water vapor mixing ratio (virtual potential temperature) via a computationally inexpensive smooth continuous 19307 || 50307/ | dtr 13071 § ~ Dozozll-] z|=-k 5 2307
function using gridded pseudo-GOES-R resolution (9 km) flash rate and simulated graupel mixing ratio as input e (5, & ke N IR .
variables. R B ) | B
To demonstrate its utility, the second part of this talk will present preliminary results of the recent | e TR | . :
Implementation of the lightning assimilation scheme within the operational WRF-NSSL daily 4 km forecast runs. | Ky 2 |
The EnKF method uses relationships between lightning flash rate and graupel mass or storm volume as an (d)}»] A4 & I (a)im %;fi.r 3\ (c)
observation operator for total flash rate. Tests have been carried out using Observation System Simulation GV A WA S T WA G W (S e e o O TN oW N O S TN 0w 10N oW s oW S W 0w 0N oo s o oo o
Experiments (OSSEs) and real-data (pseudo-GLM derived from LMA), particularly the 8 May 2003 Moore, OK, (ii) WRF-NSSL 4-km CONUS (iii) WRF |ightning model

supercell storm. | — Test Date: 2012-04-15 | . Composite reflectivity (dBZ)-NSSL 2 moments || Max non-inductive charging rate (C / m2)

Lightning threats are currently diagnosed from model variables known to be well correlated with the 0E Max Lhining e, | [P PR Max LERtOE s R Y e N
occurrence of lightning (e.g., graupel mixing ratio, ice water content). To alleviate this need and provide a more R \ ol L] T SAer | NG .
physically sound approach to this problem, a full charging/discharge model is currently being implemented into £ | YN -

the NSSL two-moment microphysics scheme within the WRF-ARW model. VN W R - - B\
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charging rate (C/m2)
. flash rate = 9.3e-9*(graupel mass ¥ a7 Lo S P ,
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-D01, D02, DO3 started at 12, 14, 16Z, respectively. i - | Rl

a) Model setup In a flash

*Triple nested grid with D01/D02/D03=9/3/1-km and 35 vertical
levels. l.e., from GEOS-R (CPS scale) to ‘convection-resolving’
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*No feedbacks between grids allowing independent comparisons
of the model output on the 3 grids.
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Lightning assimilation carried out using a smooth continuous : Vg~ Ry :
function for water vapor. Total lightning data obtained from the : N ([ b o RENSNSS) WY - e

Earth Networks® Total Lightning Network (ENTLN). - SRR e O ai b T . - R e
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*Assimilation of 9-km gridded lightning simultaneously on all grids V'Y 7, %
between 1930-2130Z in 10-min bins. 103102 101 100 99 98 97 96 95 94 93 92 91
Longitude (W) 20 | PseydO-CfLM

-40 -20 0 20

b) Assimilation function d) Summarv/Future work

*Because lightning flashes are generally associated with the *The assimilation of the total lightning data for only a few hours prior to the analysis time significantly improved the
presence of updrafts, whenever flashes are present at a given |I,J representation of the convection at analysis time and at the 1-hour forecast within the convective
:ocation, the water(\j/apor r];nixing ratifo (Qv) Withi(?dthdef(l)"cht() -20°C ‘ permitting/resolving grids (i.e., 3/1 km). Computationally inexpensive and impose minimum constraints on model
ayer was increased as a function of 10-min gridded flash count physics.
(X) and simulated graupel mixing ratio (Qg) and water saturation *Real time implementation into the WRF-NSSL CONUS 4-km testbed also showed promising results.
mixing ratio (Qsat). A physically sound non-inductive charging scheme was implemented into WRF within NSSL 2 moment
‘Omylspp”ed whenever modeled RH = A*Qsat and simulated Qg microphysics. Space charges on all hydrometeor are also tracked. Ongoing work: implementing a 1D discharge
< 3 g/kg. model with polarization charging.
*A controls minimum RH threshold (here 81%). B and C the slope -EnKF assimilation of pseudo-GLM data can effectively reproduce the basic supercellular reflectivity structure of
(how fast to saturate) and D how much Qv Is added at a given the storm and maximum updraft speeds. Since the GLM will produce observations over a much larger area than
Qg value. radar observations are available, these results show promise that EnKF assimilation of GLM data can be an
e e———— effective substitute for assimilation of radar data in data-sparse areas.
Q, =AQ. . +BQ. . tanh(CX) [1 — tanh(DQg)] Flash rate per 10 min per grid cell -Future work will examine ways to further improve the pseudo-GLM based analyses by exploring additional
observation operators. Also, the effects of assimilating both radial velocity data and pseudo-GLM data will be
tested.

water saturation (%)




