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Plan Forward 

Two part focus: 

 

1) Improved nowcast (0-1 hr) 

o UW Cloud-Top Cooling Rate & UAH-SATCAST 

Convective Initiation Strength of Signal (probabilistic) 

nowcasts as input in OU-CIMMS Probabilistic 

Hazards Information (PHI) 

 

2) Improved forecast/Data assimilation (0-6 hr) 

o UAH-SATCAST CI integrated into NOAA/ERSL 

HRRR (High Resolution Rapid Refresh) 

 



Motivation & Purpose 

Development of a fused solution to convective initiation 

nowcasting and storm intensity estimation 
 

 

• Fuse multiple relevant data sets 

o  NWP model data 

o  Satellite observations and algorithm output 

 Today:  Current GOES   Tomorrow: GOES-R 

o  NEXRAD & Dual-polarimetric radar data 

o  Lightning/GLM observations 

o  Object tracking allows for temporal trends of each dataset 

 

•Integrate with existing models/systems 

o  OU – Probabilistic Hazards Information – Co-PI Valliappa 

Lakshmanan  (OU/NSSL) 

o  RUC/HRRR – coordination with Stan Benjamin (NOAA/ESRL) 
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UW-Cloud Top Cooling Rate 



UW-Cloud Top Cooling Rate 
• Quantitatively diagnose 

vertical convective cloud 

growth using cloud-top cooling 

rate; capture more significant 

convection 

• Relate UW-CTC rate to future 

NEXRAD observations for the 

same storms  

o Allows for relationships to be 

determined between UW-

CTC rate magnitudes and 

NEXRAD observations 

o Show prognostic value of 

satellite-based measure of 

vertical cloud growth rate 

UW-CTC overlaid on GOES-visible imagery in AWIPS 



UW-CTC Inputs 

• ~11 μm brightness temperatures 

• GOES(-R) Cloud Mask (utilizes multiple spectral bands) 

o Heidinger, 2010 

• GOES(-R) Cloud Type (utilizes multiple spectral bands) 

o Pavolonis, 2010 

• GOES(-R) Cloud Optical Depth Retrievals 

o Walther et al., 2012 

 

UW-CTC utilizes operational GOES (and later GOES-R) products 



Relating UW-CTC to Max Reflectivity 

• Analysis grouped UW-CTC rates into 

three bins; weak, moderate, and strong 

for 34 convective events over the 

Central US 

 

• Red line indicates median value of 

each UW-CTC bin, blue box represents 

25th and 75th percentiles of the data, 

and whiskers correspond to 1σ values 

of each bin 

 

• Lack of overlap of notches in the blue 

boxes between each UW-CTC bin 

indicates the medians are statistically 

different to the 95% confidence level 

  Weak                    Moderate            Strong 

UW-CTC             UW-CTC           UW-CTC 

 > -10 K     -10 >= CTC > -20        <= -20 



Relating UW-CTC to Max Reflectivity 

• Stronger UW-CTC rates correlates to 

higher composite reflectivity when 

compared to weaker UW-CTC rates 
o Weak UW-CTC Median Composite : 45 dBZ 

o Mod. UW-CTC Median Composite : 50 dBZ 

o Strong UW-CTC Median Composite : 55 dBZ 

 

• Strongest UW-CTC rates have strongest 

1σ composite reflectivity (70 dBZ) 

 

• False alarm rate decreases with stronger 

UW-CTC rates (not shown) 
         Weak            Moderate              Strong 

       UW-CTC         UW-CTC          UW-CTC 

      > -10 K       -10 >= CTC > -20     <= -20 



Lead Time UW-CTC to Max Reflectivity 

• Median lead-time of maximum UW-

CTC rate versus composite 

reflectivity thresholds 
o ~10 min median lead-time for 30  

50 dBZ; then rapid increase of 

 lead-time 

o 55 dBZ: ~15 min 

o 60 dBZ: ~25 min 

o 65+ dBZ: 60+ min 

 

• Distribution of 35 and 60 dBZ shows 

the spread (negative lead-times are 

largely due to larger temporal gaps of 

satellite data compared to NEXRAD; 

e.g.-satellite scans at 1902 and 1915 

UTC, NEXRAD might observe at 

1900, 1905, 1910, 1915 UTC) 



Relating UW-CTC to Max Hail Size 

• Stronger UW-CTC rates correlates to 

higher MESH (maximum expected hail 

size) when compared to weaker UW-

CTC rates 
• Weak UW-CTC Median MESH : 0.63” 

• Mod. UW-CTC Median MESH : 0.75” 

• Strong UW-CTC Median MESH : 1.00” 

 

• Strongest UW-CTC rates have largest 

1σ MESH (2.00”) (weak 1.25” and 

moderate 1.5”) 

 

• POD of storms with severe hail MESH 

(1.00”) is 0.71 (0.72 for 2.00” MESH) 

  

         Weak             Moderate            Strong 

     UW-CTC            UW-CTC           UW-CTC 

       > -10      -10 >= CTC > -20        <= -20 



• Median lead-time of maximum UW-

CTC rate to various MESH 

thresholds : 
~28 min to 0.25” MESH 

~33 min to 0.5” MESH 

~45 min to 1.0” MESH 

~60+ min to 1.25+” MESH 

 
• Distribution lead-times for 0.25” and 

1.00” MESH show significant 

increase of lead-time due for severe 

hail versus small hail.  The lead-time 

is attributed to the time necessary for 

organization of convective updrafts to 

produce severe hail 

  

Lead Time: UW-CTC to Max Hail Size 



UAH-SATCAST 0-1 hr Convective 

Initiation 



SATCAST-Convective Initiation Flowchart 

Make Cloud Mask 

Track “Cloud Objects” 

from ‘T1’ to ‘T2’ (Similar 

to “Cb-TRAM” 

Zinner et al. 2008) 

Determine CI forecast for each 

tracked Cloud Object using 6 

spectral/temporal differencing 

tests (aka: “Interest Fields”) 

Produce MAMVs 

CI Definition: 1st  ≥35 dBZ echo at ground, or at –10 ºC altitude 
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 Satellite 

Detection 

 Time 

 Radar 

Detection 

Forecast without satellite 

Forecast with satellite 

Download latest satellite imagery…              Monitor Cumulus Cloud Development 

16 Feb 2012, 1915 UTC 

Per-Object CI forecast 

16 Feb 2012, 1945 UTC 



Data Fusion: Current Indicators being 

sampled in SATCAST-CI 

• SATCAST:    

o 10.7 µm TB 

o 15 min 10.7 µm Trends 

o 6.7–10.7 µm TB difference & 15-

min trend 

o 13.3–10.7 µm TB difference & 

15-min trend 

• Environmental (NWP) 

o Surface and most unstable 

convective available potential 

energy (CAPE) 



Logistical Regression:  Strength of Signal 

Null (No) 

Forecasts 

Positive (Yes) 

Forecasts 

 0.0                                                                               1.0 



Lower Likelihood of CI Higher Likelihood 



Alternative Approaches – SATCAST 

CI False Alarm Reduction  

Probabilistic Method 

 

•  Increased POD to ≥80% 

•  False Alarms reduced to 

 25-35%  

•  Results have no regional bias 

 

Logistic Regression Method 
 

•  Produced PODs of 63-73% 

•  False Alarms at 40-50% 

•  Results have no strong regional  

   bias  



Indicators being sampled in SATCAST-CI  

for 2012 
• SATCAST:    

o 10.7 µm TB 

o 15 min 10.7 µm Trends 

o 6.7–10.7 µm TB difference & 15-min 

trend 

o 13.3–10.7 µm TB difference & 15-min 

trend 

o Convective cloud mask at t1 and t2 

o Convective cloud mask change (i.e., 

cumulus to towering cumulus, 

cumulus staying cumulus, etc.) 

o Object size at t1 and t2 

o Change in object size for t1 and t2 

o Geographical locations 

(latitude/longitude) 

o Solar time 

• Environmental (NWP) 

o Surface and most unstable 

convective available potential 

energy (CAPE) 

o Surface and most stable convective 

inhibition (CIN) 

o Surface and best lifted index (LI) 

o Lifted Condensation Level (LCL) 

o Level of Free Convection (LFC) 

o Convective Condensation Level 

(CCL) 

o Bulk Wind Shear and Low Level 

Wind Shear 

o Height of Freezing Level  



SATCAST-CI Activities & Onward to GOES–R 

Courtesy EUMETSAT: Marianne König, Zsofia Kocsis 



• WFO-MLB on 29 September 2011 

•From MLB/SPoRT training module for warning decision-making with 

experimental products: “You Make the Call” 

•Used to determine if all or part of Brevard County needed to be under Severe 

Thunderstorm and Marine Warnings 

•Courtesy NASA SPoRT; J. Guseman, and D. Sharp, NWS-MLB  

UAH SATCAST-CI Product in Operational Use 

•WFO-HUN on 22 September 2011 

•Used for threat of CI, lightning, and impacts to aviation and 

outdoor activities in Madison and Jackson Counties 

•Courtesy Christina Crowe and Kris White, NWS-HUN  

 

2040 UTC 2032 UTC 

2043 

UTC 

2038 UTC 

  

0915 

UTC 

 

0932 UTC 

 

0945 UTC 

 

•WFO-MLB on 07 September 2011 

•Nocturnal thunderstorm event in rapid scan mode: would 

CI occur ahead of a system moving toward Orlando metro 

and impact Brevard County? 

•Courtesy Jonathan Guseman and David Sharp, NWS-MLB 

•WFO-MIA on 18 August 2011 

•Evaluating CI and 5-min lightning coincidence 

•Courtesy Jeral Estupinan, NWS-MIA  



2040 UTC 

2032 UTC 

A downward trend in projected 

CI (e.g., additional 35+ dBZ 

cells) over south Brevard during 

the term of the warning. 

2043 UTC 2038 UTC 

Severe 

Thunderstorm 

Warning 
(50+ knot gusts & 

1.0 inch hail) 

Special 

Marine 

Warning 
(34+ knot 

gusts) 

Forecaster 

Question: How 

large should the 

warning polygon 

be?   

 

Less projected CI 

at 2040 UTC in S. 

Brevard helps 

forecasters 

decide. 

Courtesy NASA SPoRT, J. Guseman and D. Sharp at NWS-MLB 



Proposal 

 

• Combine UAH-SATCAST/UW-CTC Rate (and 

relationships with NEXRAD) into OU-Probabilistic 

Hazards Information (PHI) for improving 0-1 hr Nowcasts 

 

• OU-Probabilistic Hazards Information System will fuse a 

variety of meteorological data to produce Probabilistic 

Nowcasts for hail, tornado, and lightning 
 

 



OU-Probabilistic Hazards Information Goals 

Provide probabilities of hail, tornadoes and lightning, etc. 

from pre-initiation through decay 

 

Multi-sensor data fusion: 
• Satellite cloud-top cooling objects (UW-CTC; UAH-SATCAST) 

• Radar echoes (NEXRAD: including dual-pol variables) 

• Data assimilation into WRF for vorticity, etc. 

• Nowcast of trends from NWP + statistics 

o Statistics being created from long-term analysis of radar archives 

 (“MYRRORS” project at NSSL) 

o Also from relationship between satellite pre-CI objects and 

 MESH, etc.  (UW-CTC) 
 



Integrating Satellite Observations into  

the OU-PHI System 

Example: OU-PHI (WDSS-II based) application of radar reflectivity features.  In this 

case, strong radar reflectivity features are first identified at 2036 UTC – 30-60 

minutes after the initial identification of the storm objects in the satellite data.   

Note the continuity of object ids between radar and satellite – this indicates 

temporal trends of satellite gets carried over to radar-based signals. 



OU-PHI Composite Severity Trend 
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 P(Svr) > 10 

 P(Svr) > 50 

 P(Svr) > 90 

Low P(CI) 
P(CI) > .5 

dBZ > 30 

VIL > 10 

Synthetic parameter based on (e.g.): 
• Sat CI / Cooling 

• Sat IR temp 

• Radar reflectivity 

• Radar shear 

• Observed lightning 

• SATCAST LI 

Individual trends are available as well. 

P(Hail) > 50% 

decaying 

1st CG Ltg 

1st IC Ltg 

Moderate 

Mesocyclone 

Strong 

Mesocyclone 

Multi-sensor-based trend of storm 

severity. 

Improved nowcast by including satellite growth 

(UW-CTC rates; UAH-SATCAST nowcasts) 
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RUC/HRRR SATCAST Field 

Assimilation 



• Created an algorithm that links 0-1 hour lightning initiation to forecast of a short-term 

lightning threat (density), or potential amounts per storm. 

• Explore distance-weighted method to account for expected differences in 

lightning/storm initiation location and WRF-based lightning threat forecasted storms. 

• Validate using LMA for truth flash density. 

• Refine GOES lightning initiation method. 

• Preparing for GLM 

• Integrate into OU-PHI system 

  

WRF/SATCAST Lightning Initiation & Threat Forecast  
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-1 Hour 
Lightning 

Initiation 
+1 Hour +2 Hour 

SATCAST 

0-1 hour LI 

Nowcast Storm evolution   

Lightning Initiation/Potential Forecast 

Key 

Forecast 

time and 

density 

Observed 

Lightning 



SATCAST data on RUC grid for 1600 UTC  

5 April 2012 

Courtesy: 

Tracy Smith 

Stan Benjamin 

Steve Weygandt 



SATCAST data on RUC grid for 1700 UTC 

5 April 2012 

SATCAST data 

assimilation led 

to higher 

reflectivities in 

RUC: 

 

Positive impact 

on the forecast 



Developmental RUC reflectivity field for 

1700 UTC 5 April 2012 (+SATCAST) 



Backup RUC reflectivity field for 

1700 UTC 5 April 2012 (no SATCAST) 



Q2 radar reflectivity for 1700 UTC  

5 April 2012 



Q2 radar reflectivity for 1800 UTC  

5 April 2012 



Fuse satellite-based convective initiation and growth algorithms to: 

• Improve storm nowcasts (0-1 hr) 
• Integrate UW-CTCR/UAH-SATCAST cooling intensity into OU-Probabilistic Hazards 

Information 

• OU-PHI already fuses radar, NWP, and lightning data to make probabilistic nowcasts of 

hail, tornadoes, and lightning from pre-initiation through decay 

• Leverage on UW-CTC rate vs NEXRAD (reflectivity, hail size, etc.) study and UAH-

SATCAST probabilistic forecasting techniques 

 

• Improve storm forecasts (0-6 hr) 
• Integrate SATCAST CI into RUC/HRRR model 

• Assimilating SATCAST CI into the RUC to improve the forecast of radar reflectivity 

compared to the control RUC radar reflectivity 

Satellite-based ingredients are an essential piece in the data 

fusion solution of the convective nowcast/forecasting problem: 

• UAH-SATCAST-CI and UW-CTC rates are being used in NWS operations 

• Both satellite-based methodologies have been improved based on forecaster feedback 
o Adding the capability to operate in areas of non-opaque cirrus clouds 

o Increased lead times for both convective initiation and  

 

 

Conclusions 
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