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What is it? 

What is the ABI Fire Detection and Characterization Algorithm?: 

• The FDCA is a dynamic, multi-spectral, thresholding contextual 

algorithm that uses the visible (when available) and the 3.9 and 11.2 

µm bands to locate fires and characterize sub-pixel fire 

characteristics.  The 12 µm band is used along with the other bands 

to help identify opaque clouds. 

• 5 minute CONUS, 15 minute full disk refresh; 2 km resolution 

• ABI version of the current GOES Wildfire Automated Biomass 

Burning Algorithm (WF_ABBA), an Operational product since 2002 

• Product outputs: 

– Fire location 

– Fire instantaneous size, temperature, and radiative power 

– Metadata mask including information about opaque clouds, solar 

reflection block-out zones, unusable ecosystem types. 
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What is it? 

WF_ABBA Example: 

• 22 August 2000, 

18:15 to 23:45 UTC 

• Fire complex had 

started on 14 August 

• Loop shows 

intensification in the 

afternoon as the 

winds pick up 

• Valley smoke can be 

seen, as well as a fire 

induced cloud with a 

glaciated top  
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Why? 

Why do we care about geostationary fire detection and 

characterization? 

• 24/7 monitoring of a hemisphere allows for tracking trends and 

detecting fires earlier than allowed by polar platforms 

• The fire’s radiative power (FRP), size, and temperature can be used 

to estimate emissions and intensity 

– FRP is related to the mass consumed 

– FRP is proportional to temperature to the fourth power times size 

• Knowing what we cannot see is as important and knowing what we 

do see – the metadata mask is invaluable information 

• The large footprint makes early detection of wildfires difficult, but is 

still useful where human observers are few and far between 
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How? 

How do we detect and characterize fires? (aka “Is it more than a 

difference image?”): 

• The FDCA uses the visible, 3.9, 11.2, and 12 µm bands. 

• It identifies and records block-out zones due to sunglint and 

ecosystem type and does an initial pass at identifying and 

characterizing all remotely possible fire pixels. 

• It then proceeds through a multi-layer decision tree to determine if a 

pixel is a possible fire pixel by comparing the pixel to thresholds. 

• Once a hot pixel is located the algorithm incorporates ancillary data 

to screen for false alarms, correct for water vapor attenuation, 

surface emissivity, solar reflectivity, and semi-transparent clouds.  

Pixels that fail certain tests are given a second chance later in the 

decision tree to become a possible fire pixel. 
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How? 

How do we detect and characterize fires? (aka “Is it more than a 

difference image?”): 

• The algorithm utilizes the Dozier technique to calculate sub-pixel 

estimates of instantaneous fire size and temperature.  Fire Radiative 

Power (FRP) is also calculated. 

• At the end of the FDCA, additional thresholds are applied, high 

temporal resolution data is used to filter out false alarms, and 

appropriate confidence levels are assigned to the fire product. 

• Delivered code is around 5300 lines of Fortran 90, not counting the 

framework. 

• Development started in the 1990s, the archive starts with GOES-8 in 

1995. The WF_ABBA works with all current GOES, Meteosat 

Second Generation, and MTSAT with support for COMS and 

INSAT-3D in the near future. 
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The Science 

What is the science?: 

• The change of radiance with respect to temperature is greater at 4 
μm than 11 μm, as illustrated below. 
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• This allows fires to be 

differentiated from other pixels. 

• Knowledge of the background 

temperature is very important 

to proper characterization. 

• The same initial general 

approach is used for fire 

detection from AVHRR, 

MODIS, and JPSS. 

Implementation details vary 

with platform. 



Typically, the difference in brightness temperatures between the two infrared 

windows at 3.9 µm and 11.2 µm is due to reflected solar radiation, surface 

emissivity differences, and water vapor attenuation.  This normally results in 

brightness temperature differences of 2-4 K. 

  

Larger differences occur when one part of a pixel (p) is substantially warmer than 

the rest of the pixel (1-p).  The hotter portion will contribute more radiance in 

shorter wavelengths than in the longer wavelengths.  

p 

1-p 

Pixel 

Possible fires 

NE Brazil along the transition zone between forest 

and savanna Brightness temperatures along a scan line in NE Brazil 

The Science 



Lx(Tx) is the radiance calculated by integrating the 

product of the Planck function and the response function 

for each spectral band x  

L4 4 µm observed radiance 

L11 11 µm observed radiance 

L4s 4 µm reflected solar radiance term 

p proportion of pixel on fire 

1-p proportion of pixel not on fire 

T4 4 µm observed brightness temperature 

T11 11 µm observed brightness temperature 

Tb Background/non-fire brightness temperature 

Tt 

Average instantaneous target temperature of 

sub-pixel fire 

τ4s Transmittance of the 4 µm solar term 

ε4 4 µm emissivity 

For a given suspected fire pixel the following simultaneous equations 

are solved for p and Tt.  The solution is exact with respect to the input 

data, however the input data is not itself perfect, and the solution is 

sensitive to the bias and error of the input data. 

The Dozier Method 
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- Relies on the same 4 and 11 μm data as the Dozier method 

- FRPDEF is the definition of FRP 

- Can be estimated by applying Dozier solution to FRPDEF or from radiances using 

FRPMIR.  In the range of temperatures and sizes that the Dozier is known to perform 

well in, the two methods agree well. 

LMIR 4 µm observed radiance 

LB,MIR 4 µm calculated background radiance 

Asample Area of pixel 

a A constant (function of instrument SRF) 

pk Instantaneous proportion of pixel on fire 

Tk 

Instantaneous target temperature of sub-pixel 

fire 

ε Emissivity of fire (typ. assumed to be 1) 

σ Stefan-Boltzmann constant 

Why do we care about FRP?  The FRP is the time 

derivative of the fire radiative energy, which is proportional 

to the biomass consumed by the fire.  This value can be 

directly applied when calculating emissions. 

FRP 



ABI Proxy Examples 
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Example case: 

• Model-derived 

courtesy CIRA 

• 5 minute, 2 km imagery 

• Fires initialized from 

GOES-12 WF_ABBA 

fire product 

• “Alphablended” 

imagery – ecosystem 

map used to represent 

surface, clouds appear 

in shades of white, 

fires are predominantly 

red (processed) in this 

case 



ABI Proxy Examples 
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Example case: 

• Model-derived 

courtesy CIRA 

• 5 minute, 2 km imagery 

• Fires arranged in a 

grid: coolest & smallest 

in bottom left, hottest & 

largest in upper right 

• Yellow fires are 

saturated pixels; in this 

case, unrealistically hot 

and large fires burn 

through cumulonimbus 

clouds; this has not 

been observed in the 

real world. 



ABI Proxy Examples 
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Example case: 

• Model-derived 

courtesy CIRA 

• 5 minute, 2 km imagery 

• Fires initialized from 

GOES-12 WF_ABBA 

fire product 

• Fires are red 

(processed) and yellow 

(saturated) 

• Gray region is the solar 

blockout zone, 

consisting of two 

regions of high solar 

reflection 



Validation Strategies 
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FDCA Routine Validation 
 

Current practice for GOES WF_ABBA: 

No automated realtime method is available.  Ground-
based fire reports are incomplete and typically not 
available in realtime.  At the Hazard Mapping System 
Human operators look at fire detections from various 
satellites and at satellite imagery to remove potential 
false alarms. This method is labor intensive and actual 
fire pixels are often removed. 



Validation Strategies 
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FDCA Validation 
 

ABI near realtime “validation”: 

• Co-locate ABI fire pixels with other satellite data 

• Ground-based datasets tend to be incomplete and not available in realtime 

• Fire detections from other satellites (polar orbiting) can be used in near 
realtime 

• Perfect agreement is not expected.  Due to resolution, viewing angle, and 
sensor property differences a substantial number of valid fires will be seen 
by only one platform 

• Satellite to satellite comparison in this case is not truly “validation”, it is 
more like a sanity check 

• Other fire properties (instantaneous fire size, temperature, and radiative power) 
have no available near realtime validation source (see Deep-Dive tools) 

 

What we can say about algorithm accuracy: 

• The table on the following slide shows example of statistics from model- 
generated proxy data cases. 75 MW of fire radiative power is the estimated 
threshold for fire detectability for ABI based on proxy data studies. 

 



Validation Strategies 
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CIRA Model Simulated Case Studies^ 

CIRA Truth ABI WF_ABBA 

Total 

# of 

fire 

clust

ers* 

Total # 

of ABI 

fire 

pixels* 

Total # of 

ABI fire 

pixels > 

FRP of 75 

MW* 

Total # 

of 

detected 

clusters 

% Fire 

clusters 

detected* 

Total # of fire 

pixels detected > 

FRP of 75 MW* 

% Fire pixels 

detected > FRP 

of 75 MW* 

% False postives 

(compared to model truth, 

will not be available for 

routine validation) 

Kansas 

CFNOCLD 
9720 63288 52234 9648 99.3% 47482 90.9% <1% 

Kansas 

VFNOCLD 
5723 36919 26600 5695 99.5% 551 80.6% <1% 

Kansas 

CFCLD 
9140 56553 46446 8768 95.9% 39380 84.8% <1% 

Cent. Amer. 

VFCLD 
849 2859 1669 808 95.2% 1424 85.3% <1% 

Oct 23, 2007 

California 

VFCLD 

990 4710 2388 989 99.9% 2090 87.5% <1% 

Oct, 26 2007 

California 

VFCLD 

120 522 252 120 100% 211 83.7% <1% 

CFNOCLD Constant Fire No Cloud 
^  Limit to ~ 400K minimum fire temperature 

VFNOCLD Variable Fire No Cloud 

CFCLD Constant Fire with Cloud 
*  In clear sky regions, eliminating  block-out zones 

VFCLD Variable Fire with Cloud 



• Deep-dive fire detection and characterization validation tool builds on 
methods originally developed for MODIS and GOES Imager 

– Use of near-coincident (<15min) Landsat-class and airborne data to generate 
sub-pixel summary statistics of fire activity 

• Landsat-class data are used to assess fire detection performance  
– History of successful applications using ASTER, Landsat TM and ETM+ to estimate MODIS 

and GOES fire detection probabilities and commission error rates (false alarms). Methods 
published in seven peer reviewed journal articles 

– Limited fire characterization assessment (approximate fire size only). Frequent pixel saturation 
and lack of middle infrared band prevent assessment of ABI’s fire characterization parameters 

• Airborne sensors are used to assess fire characterization accuracy 
– High quality middle-infrared bands provide fine resolution data (<10m) with minimum saturation 

allowing full assessment of ABI’s fire characterization parameters (size, temperature, Fire 
Radiative Power) 

– Sampling is limited compared to Landsat-class data  
» Regional × hemispheric/global coverage 

» Targeting case-study analyses 

 

• These same techniques can be used with fires 
detected by any platform, such as VIIRS on JPSS 
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Deep-Dive 

Validation Tools 



• Several national and international assets will be used to support ABI 
fire validation 

– USGS Landsat Data Continuity Mission (2013) 

– ESA Sentinel-2 (2013) 

– DLR BIROS (2013) 

– NASA HysPIRI (TBD ~2020) 

– Airborne platforms as available 

• Will perform continuous assimilation, processing and archival of 
reference fire data sets 

– Daily alerts targeting false alarms, omission of large fires 

• Main output: Quick looks (PNG) for visual inspection of problem areas 
showing ABI pixels overlaid on high resolution reference imagery 

– Probability of detection curves and commission error rates derived from 
several weeks/months of accumulated validation data 

• Main output: Tabular (ASCII) data containing pixel-based validation 
summary (graphic output optional) 
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Deep-Dive  

Validation Tools 
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Deep-Dive 

Validation Tools 

Sample visual output of simulated ABI fire 

product (grid  2km ABI pixel footprints) 

overlaid on ASTER 30m resolution RGB (bands 

8-3-1). Red grid cells indicate ABI fire detection 

pixels; green on background image corresponds 

to vegetation; bright red is indicative of surface 

fire 

ASTER binary (fire – no fire) active fire mask 

indicating 494 (30m resolution) active fire pixels 

coincident with GOES-R ABI simulated fire 

product 

Using Landsat-class imagery to validate ABI fire detection data 
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Summary 

• Fire detection and characterization is a baseline product 
derived from a current Operational fire algorithm, the 
WF_ABBA 

 

• Routine validation consists of co-locating ABI detected 
fires with those from polar orbiting platforms (JPSS, for 
example). 

 

• Deep-dive tools utilize high resolution data from satellite 
instruments similar to ASTER and could conceivably be 
automated if a reliable source of high resolution data is 
secured 
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Bonus Slides 
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Deep-Dive 

Validation Tools 

• Landsat-class data are NOT suited for the validation of ABI fire 
characterization parameters (Fire Radiative Power (FRP), size and 
temperature) 

– Frequent fire pixel saturation 

– Lack of middle-infrared band 

• Cross-validation of pixel-level fire characterization data using other 
similar satellite products proven impractical [Schroeder et al., 2010] 

– No single product has been sufficiently validated to date therefore 
cross-validation analyses provide little useful information 

– Differences in resolution and observation geometry are problematic 
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Deep-Dive 

Validation Tools 

MODIS = 344MW 
GOES    = 518MW 

MODIS = 360MW 
GOES    = 509MW 

MODIS = 1965MW 
GOES   =   112MW 

Credit: Schroeder et al, 2010 

MODIS×GOES Imager FRP data intercomparison 
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Deep-Dive 

Validation Tools 

           ABI Lon,         ABI Lat,     30m Fires,    30m Clusters,     WF_ABBA,           Sfc_01,           Sfc_02,   Adj_Fires,   Ajd_Cluster,        Distance,         Azimuth 

    -54.9388123,    -12.3929567,                  11,                         2,                 100,      0.0000000,      0.0000000,                 0,                     0,      0.0000000,      0.0000000 

    -54.9003563,    -12.3929567,                    3,                         2,                 100,      0.0000000,      0.0000000,                 0,                     0,      0.0000000,      0.0000000 

    -54.9992371,    -12.4121828,                  15,                         1,                   10,      0.0000000,      0.0000000,                 0,                     0,      0.0000000,      0.0000000 

    -54.9992371,    -12.4314098,                479,                         1,                   10,      0.0000000,      0.0000000,                 0,                     0,      0.0000000,      0.0000000 

    -55.1969986,    -12.4451427,                  19,                         1,                 100,      0.0000000,      0.0000000,                 0,                     0,      0.0000000,      0.0000000 

    -55.1805153,    -12.4478893,                  10,                         2,                 100,      0.0000000,      0.0000000,                 0,                     0,      0.0000000,      0.0000000 
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depicting ABI pixel-level fire 

activity derived from one 30m 

ASTER reference scene 

Probability of fire omission 

calculated for ABI using 161 

ASTER scenes acquired over 

South America 
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Deep-Dive 

Validation Tools 

 

• Data simulation is prone to misrepresent sub-pixel features in fire-
affected pixels 

– Lack of quality reference data lead to overly simplistic (unrealistic) fire 
pixel representation 

• Airborne sensors provide fine resolution quality fire reference data 

– Support detailed analyses of fire characterization retrievals (test-
case) 

– Airborne data can help us better constrain data simulation 
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Deep-Dive 

Validation Tools 

Airborne (AMS) data 

collected over Southern 

CA fire in 2007.  Fire 

radiative power (FRP), 

fire size and temperature 

are derived for use in the 

validation of GOES-R ABI 

fire characterization 

parameters. 

Airborne fire reference data acquisition plan will benefit/leverage 

MODIS and JPSS/VIIRS fire algorithm development/funding 



 Most fires will only occupy a very 
small portion of an ABI pixel. 
 

• A fire cluster is a group of adjacent pixels 
affected by a single or multi-front fire or 
complex (e.g. Clusters A, B, and C) 
 

• ABI fire pixel refers to each ABI pixel within a 
cluster that is impacted by any fire activity.  
(e.g. A1-A4, B1-B4, C1) 
 

• In clear sky detectability and characterization 
of a fire is dependent on size/temperature and 
location within a pixel.  
  

• Fire A is slightly larger than Fire C, but signal 
is divided among multiple pixels and may not 
provide a strong enough signal to be 
accurately characterized, while Fire C is 
detected and well characterized. 
 

• Fires in B2 and B3 may be difficult to 
distinguish from each other, since they are 
located on the edge of a pixel impacting 
surrounding pixels due to diffraction. 

 

 

A1 A2 

A3 A4 

B1 B2 

B3 B4 C1 

GOES-R ABI 3.9 µm pixels 

Subpixel Issues 



 Note:  Brightness temperatures are 
simulated here.  Assume all fires are the 
same size and temperature, and that the 
PSF described above has been applied.  
Darker represents hotter pixels. 

 

• Fire C1 is a saturated pixel, the fire lines 
up with the peak of the PSF. 

 

• The 2 fires in pixels B2 and B4 impacts 4 
pixels. 

 

• The one fire between pixels A1-A4 
impacts all four pixels, but to a small 
degree 

 

• This sub-pixel behavior of fires must be 
included in the proxy data in order to 
accurately estimate algorithm 
performance. 

A1 A2 

A3 A4 

B1 B2 

B3 B4 C1 

GOES-R ABI 3.9 µm pixels 

Subpixel Issues 


