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Oceanic Lightning is More Intense
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« More Intense VLF EMP, could be due to
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Sensitive Broadband ELF/VLF Radio Reception
With the AWESOME Instrument

Morris B. Cohen, Member, IEEE, Umran S. Inan, Fellow, IEEE, and Evans W. Paschal

Abstract—A new instrument has been developed and deployed
for sensitive reception of broadband extremely low frequency
(ELF) (defined in this paper as 300-3000 Hz) and very low fre-
quency (VLF) (defined in this paper as 3-30 kHz) radio signals
from natural and man-made sources, based on designs used for
decades at Stanford University. We describe the performance
characteristics of the Atmospheric Weather Electromagnetic Sys-
tem for Observation, Modeling, and Education (AWESOME) in-
strument, including sensitivity, frequency and phase response,
timing accuracy, and cross modulation. We also describe a broad
range of scientific applications that use AWESOME ELF/VLF
data involving measurements of both subionospherically and mag-
netospherically propagating signals.

Index Terms—Amplifiers, analog circuits, broadband ampli-
fiers, ionosphere, lightning, low-frequency (LF) radio, magne-
tosphere, radio receivers, remote sensing, waveguide antennas.

1. INTRODUCTION

HE ANALYSIS of radio waves of extremely low frequen-
T cies (ELF) (defined in this paper as 300 Hz-3 kHz) and
very low frequencies (VLF) (defined in this paper as 3-30 kHz)
is useful for studying the dynamics of the Earth’s ionosphere
and magnetosphere as well as subterranean imaging and global
communications and navigation. For instance, lightning radi-
ates the bulk of its electromagnetic energy in the ELF/VLF
frequency range [1, p. 118], launching signals known as radio
atmospherics (or sferics) which are almost entirely reflected
at the D region (70-90 km altitude) of the ionosphere. These
signals (like others in this frequency range) are efficiently
guided to global distances in the so-called Earth-ionosphere
waveguide. Attenuation rates are typically only a few decibels
ner meeameter [2 n 3R4T after the first ~S00 km for waveenide

mode structure to be established. Propagation characteristics in
the Earth-ionosphere waveguide are in general a strong function
of the ionospheric conditions, which leads to dramatically
different propagation characteristics between daytime and
nightime. In addition, some of the ELF/VLF energy leaks
upward in the plasma whistler mode to the magnetosphere.
where it can strongly impact the electron dynamics of the Van
Allen radiation belts and can be received in the geomagnetic
conjugate region [3]. Natural ELF/VLF signals known as cho-
rus and hiss can also be generated in situ in the magnetosphere,
particularly at mid and high geomagnetic latitudes, as a result of
the interaction between energetic electrons in the radiation belts
and ELF/VLF whistler-mode waves (see [4], and references
therein). Due to the long-distance propagation of ELF/VLF
waves, as well as the relatively deep (10 s of meters skin depth)
penetration of ELF/VLF waves into seawater, a number of VLF
transmitters operate at frequencies between 10 and 60 kHz for
naval communication with surface ships and submerged sub-
marines. A global collection of such transmitters has also been
used for accurate navigation via phase-coherent triangulation.
such as the so-called “Omega”™ system [5]. Because ELF/VLF
propagation is strongly influenced by D-region ionospheric
conditions, these VLF transmitter signals are also used to re-
motely sense ionospheric disturbances resulting from different
physical processes. Moreover, because of the relatively high
(hundreds of meters, due to the skin effect) penetration into
the Earth, ELF/VLF waves are a useful tool for subterranean
prospecting and imaging [6].

The first observations of natural signals at ELF and VLF
frequencies were made serendipitously in the late 19th and

Cohen et al. 2010

“AWESOME” VLF Receiver Design

VLF Version

100 kHz sampling
0.3 -47 kHz band

Two orthogonal wire loop
channels

96 dB dynamic range

Sensitivity in the fT/rt-Hz
range

New LF Version

1 MHz sampling
0.3 -450 kHz band

Developed to study
oceanic lightning

Better extract the shape
of lightning waveforms
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New LF (1 MHz) - 2,500 km Lightning
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Ship-Borne Oceanic Lightning Study C(\j%d
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Stanford land and oceanic arrays

« Oklahoma array (6 LF receivers)

« Hawaii (2 LF) and Puerto Rico (1 LF) arrays
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Evolution of the neg-CG Flash, NLDN @I

Distribution of the First Subsequent Strokes (Level 1)
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Total Number of Occurrences

Oceanic and Land Radiance
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Ron Brown Results
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Figure 4.1: Process for measuring an averaged waveform. (a) Storm cluster with
a specific propagation path profile to the receiver. (b) Ground conductivity profile
between the storm cluster and the receiver. (c¢) The locus of received waveforms
defines a canonical waveform. The shown sferics are from a 100% nighttime path.
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