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1. Introduction and Objectives EIRA

@ This study demonstrates the utility of lightning data assimilation from the
Geostationary Lightning Mapper (GLM) instrument onboard the future GOES-R satellite.

€ Why lightning data? The potential benefit of the link between the intensity of deep
convection and total lightning flash rates was found (Carey and Rutledge, 2000,
Rickenbach et al., 2011).

@ Several efforts to incorporate lightning data (Papadopulus et al., 2005, Mansell et al,
2007, Pessi and Bussinger, 2009, Fierro et al., 2012), the majority utilizing nudging
techniques.

@ All those studies, stressed the importance of utilizing real-time measurements of
lightning data to improve the representation of deep convection in numerical weather
prediction models.

@ One of the goals of this study is to correct the location and intensity of severe
thunderstorms during the analysis and short rage (6-hr) forecasts steps.

@ To asses how the future GOES-R Geostationary Lightning Maper (GLM) data can assist
in correcting the intensity and location of severe weather.



2. Case Study €IRA

The April 27-28, 2011 tornado outbreak in the Southeastern United States with special
emphasis on the Tuscaloosa tornado
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@ Atmospheric conditions created a perfect scenario for severe weather development.

@ Cold easterly flow generated atmospheric instability.

@ Surface moist air arrived from the Gulf of Mexico.

@ Strong vertical wind shear helped create highly organized storms, which developed strong
rotation at lower and mid levels.

@ In the evening of April 27t a line of severe thunderstorms exploded.

@ These exceptionally favorable ingredients ensured a large number and long-lived super-cell
thunderstorms capable of producing violent tornadoes ~388) (Hayes, 2011).



3. Data Assimilation and Model Set-up

€ The Maximum Likelihood Ensemble Filter (MLEF) is used as a hybrid

(variational-ensemble) DA system.

€ World Wide Lightning Location Network
(WWLLN) data is used as a proxy for future
GOES-R GLM data.

€ WRF-NMM, resolution --- Two domains
at 27 and 9km.

® 32-ensembles at 6-hr assimilation
interval.

€ WWLLN has a 10km location accuracy
for lightning strokes.

@ Control variables: T, Q, PD (P - Pyop),
U, V, CWM.
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€ Two experiments: with assimilation of lightning data (LIGHT) and without it (NODA).



3.1. Lightning Observation Operator Development

€IRA
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@ Starts with the calculation of maximum

vertical velocity from WRF-NMM (W, )
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@ The algorithm calculates w,,, at grid points
and surrounding points along a vertical column
where clouds are present.

@ Total cloud condensate (cloud water, rain
and snow) above a threshold used to detect
clouds.

€ An empirical relationship between lightning
flash rate and vertical velocity is used (Price
and Rind, 1992)
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3.2. Lightning Observation Operator Correction
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@ Necessary correction as the PDF Innovation
histograms from previous experiments
showed positive bias and skeweness

@ Assume a multiplicative correction to the
lightning observation operator h(x) =2 ah(x),
where a is the unknown multiplication
parameter

@ The cost function will include an adjustable
parameter a <0

1
J(@) = llog(a) - log(a,)I" W ~'[log(a) - log(ct,)]

1
+- llog(y) - log(ah(x)]" R; Tlog(y) - log(ah(x))]

@ Where R = observation error covariance, o, = guess value and W = guess uncertainty matrix

@ Search for the optimal parameter a,,,, > 0 that minimizes the cost function

@ With a typical guess value of a,= 1, the solution becomes (1), where _ bzl (h(x))
@ N, = # of observations, diagonal (R,) = r, and diagonal(W) = w, Fops = CXP 14 fo
Wy




4 Results ~- Smgleobs test
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@ Analysis increments — SPECIFIC HUMIDITY, TEMPERATURE, WIND at 700mb.
@ Location of the single observation (35.01°N, 87.60°W).

@ Dipoles of positive and negative analysis increments at either end of the single
observation in SPECIFIC HUMIDITY and TEMPERATURE, but with opposite signs.

€ 700mb WINDS: positive analysis increment, maximum values coincide with the region
of positive temperature increment and cyclonic circulation around the location of the
singleobs




4. Results --- Synoptic Analyses €IRA

€ The following contour plots, correspond to the LIGHT experiment at 0000UTC on
April, 28, the touch-down time of the Tuscaloosa, Alabama tornado.

@ The region of strongest winds in the 6-hr forecast (left) coincides with the area
where the lightning observations are located (midle) during the same assimilation

cycle.

€ Strong values of absolute vorticity in the background (6-hr forecast), are located
to the west of the core of strong winds where cyclonic circulation is observed.
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Winds, Vorticity and CAPE €IRA

€ Wind differences between the analysis and forecast, show that assimilating
lightning data increased 850mb winds.

€ Similarly, absolute vorticity at 850mb increased.

€ The wind difference, suggests that stronger vorticity is being advected into the
region of high CAPE gradient (dry-line).

€ Not a tornado resolving scale, but impact is noticeable
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Statistics --- RMS Errors CIRA

€ Qualitative comparison may be subjective, statistics can provide useful
diagnostics when morphological comparisons fall short.

€ RMS errors are calculated from a subset domain containing all the lightning
observations at 10km resolution to match WRF-NMM 9km resolution.

€ From Figures below for each 6-hr assimilation window, LIGHT achieves a
better fit in the assimilation, only partially kept in the forecast.

€ Improving dynamical balances in the model could positively impact forecast
RMS errors.
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Results --- Shannon Information Content €IRA
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(ENTROPY) as a PDF-based
measure of the use of
observations in the system.

@ The exact flow-dependent

M change in entropy is computed
A" 1 TTEE I R in ensemble subspace and

WWLLN Lightning Observations WWLLN Lightning Observations WWLLN Lightning Observations Ultimately time-flow-dependent

T~ ] forecast error covariances (Rodgers,

2000, L'Ecuyer et al. 2006, Zupanki et al. 2007,
Zupanski, 2012).
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implying that time-flow dependent forecast error covariance has a
direct relationship to observations throughout the assimilation period.



Summary and Future Work €IRA

® The assimilation of lightning is capable of spreading new
information into a NWP model

€ Lightning DA impacts updrafts, moisture content, temperature,
winds, advection and absolute vorticity leading to strengthening of
deep convection

€ Time-dependent forecast error covariance (Pf) follows the
observations throughout the assimilation period

€ Even though we aren’t using a tornado resolving scale, results are
promising

€ This methodology can be applied for other lightning measurements,
NWP models and case studies

€ Wil include operational observations to constrain the fit in the
analysis and to test combined GLM and ABI observations from the

future GOES-R
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