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Goals

• To reduce risk of the GOES-R mission:
Develop and test data assimilation techniques,
which can extract maximum information from
the future GOES-R observations.
• Examine advantages and disadvantages of
different data assimilation approaches
(variational, Kalman filter, ensemble-based
approaches).
• Focus on information content analysis of
satellite observations similar to future GOES-R
data (e.g., 10.35 µm brightness temperature).
• Experimental results employing CSU-RAMS
atmospheric model and a single column version
of the GEOS-5 AGCM are presented.
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Results summary
• The MLEF and KF diagnose dynamically dependent
information measures because of the update of the
forecast error covariance. DOF for signal captures
changes in the model state (T and q).
• Small ensemble size (10 ens), even though it does not
produce perfect analysis, it captures well main data
signals.
• DOF for signal obtained employing the 3d-var method is
insensitive to the actual changes in the model state,
because the forecast error covariance is kept constant in
all data assimilation cycles.
• Forecast error covariance update is crucially
important for information content analysis ⇒
Ensemble-based methods are desirable for
evaluation of information measures of GOES-R
data.

 CSU-RAMS with 2-moment microphysics
 Nstate=3564000 (includes CCNs), Nens=50
 Δx=50km, 60 vertical levels
 1-h data assimilation interval
 Hurricane Lili case
 Preliminary results from first data assimilation cycle

Matrix C is of relatively small dimensions  (Nens x
Nens), even for complex atmospheric models and
numerous observations.

Experiment 2: Employ the MLEF to
assimilate simulated 10.35 µm brightness
temperature data

Zupanski@cira.colostate.edu

Experiment 1: Evaluate different data assimilation
methods (MLEF, KF, and 3d-var) for the purposes
of information content analysis of future GOES-R
data.

Why ensemble data assimilation?

Three main reasons :
 Need for optimal estimate of the atmospheric
state + verifiable uncertainty of this estimate;
 Need for flow-dependent forecast error
covariance matrix; and
 The above requirements should be
applicable to most complex atmospheric
models (e.g., non-hydrostatic, cloud-resolving,
LES).

Are there alternatives?

Two good candidates:
 4d-var method: It employs flow-dependent
forecast error covariance, but it does not
propagate it in time.
 Kalman Filter (KF): It does propagate
flow-dependent forecast error covariance in
time, but it is too expensive for applications to
complex atmospheric models.

EnKF is a practical alternative to KF,
applicable to most complex atmospheric
models.

⇓

⇓
A bonus benefit: EnKF does not use adjoint
models!
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Methodology
Maximum Likelihood Ensemble Filter (MLEF)

(M. Zupanski 2005, MWR; D. Zupanski and M. Zupanski 2006, MWR)

MLEF can be used to calculate Degrees of freedom
(DOF) for signal (ds), as in Rodgers (2000), in
ensemble subspace:

⇓
It is practical  to calculate information content of
millions of satellite observations (channels).

Useful properties of the MLEF
  For Nens = Nstate (full-rank problem), and linear
M and H, MLEF = classical Kalman filter.
 For Nens = Nstate, non-linear M and H, constant
Pf, and assuming ideal Hessian preconditioning in
3d-var, MLEF = 3d-var.

⇓

Consistent and easy comparisons of different
data assimilation methods (within the same
program codes)!

;

 Single column version of the GEOS-5 AGCM
  (includes full physics package)
 40 level model, two control variables: T and q
 10 and 80 ensembles, 40 obs of T and q per data
assimilation cycle (partly observed system)
 6-h data assimilation interval
 ARM observations used as forcing
 Model simulated “observations” with random noise
 H=I (identity operator), R=const in all cycles

Results summary
• The MLEF corrects the background field to eliminate
incorrectly positions clouds.
• Creating new clouds is more difficult: it requires a spin-
up time (more data assimilation cycles).
• As in GEOS SCM experiment the DOF for signal is
approximately equal to the ensemble size in first data
assimilation cycle. Nevertheless, using more
observations results in an increase of DOF for signal.
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More information in later
cycles due to dynamics

First cycle always
indicates high
information measures

Future
Evaluate information measures of brightness temperature
observations in consecutive data assimilation cycles, and
examine the impact of forecast error covariance update.


