
GOES-R Ground System and Algorithm Implementation Design 
  

 Alexander Werbos*, John Baldwin*, Adam Copeland*, Jared Donboch†, Joshua Downer, Robert 
Kaiser†, Elizabeth Lundgren*, Andy Tarpley† and T. Scott Zaccheo*  

*AER, Inc, Lexington,  MA USA 
†Harris Corporation GCSD, Melbourne, FL USA 

The next generation of NOAA's Geostationary Operational 
Environmental Satellite system, Series R (GOES-R) provides 
continuity of the GOES mission and improvement of its 
remotely-sensed environmental data. The GOES-R system 
consists of the Space and Ground Segments. The Space 
Segment consists of spacecraft bus, its remote-sensing 
instruments, and communications payloads; while the 
Ground Segment consists of all Earth-based functions, 
provides satellite operations and instrument product 
generation and distribution. The GOES-R Ground Segment 
operates from three sites:  the NOAA Satellite Operations 
Facility (NSOF) in Suitland, MD; the Wallops Command and 
Data Acquisition Station (WCDAS), located in Wallops, VA; 
and a geographically diverse remote backup facility (RBU) 
located at Fairmont, WV. The architecture has been 
developed to allow integrated operation within a 
geographically distributed information systems framework.  
GOES-R will provide advanced products, based on 
government-supplied algorithms, that describe the state of 
the atmosphere, land, and oceans over the Western 
Hemisphere as well as products for monitoring the local 
space environment and the solar state. The Harris GOES-R 
Core Ground Segment (GS) Team will provide the software 
and engineering infrastructures to produce and distribute 
these next-generation data products both directly to users 
and to the archival systems.  Within the Ground Segment, 
the Product Generation Element (PG) is responsible for the 
software implementations of scientific algorithms. In this 
presentation we provide an overview of how Product 
Generation software works with the other elements of the 
Ground Segment to produce Level 2+ end-products. We 
discuss the specific software structures used to implement 
Level 2+ algorithms, and how those structures interface with 
other components in a way that meets the needs of a 
distributed, high-performance computational environment.  

Introduction 
Pluggable Algorithms 

• GOES-R scientific algorithm software and operational infrastructure are developed in 
separate environments with different needs 

• Algorithms need to be transitioned between these two environments without altering 
their internal functionality 

• Infrastructure must provide algorithms with a common Data Model Interface (DMI) 
that abstracts data I/O from the environment-specific infrastructure 

 
 

 
 

 
 
 
 

Algorithm Execution Parameterization 
• We developed the general notion of an Algorithm Execution Context, a data structure 

describing the spatial and/or temporal region on which an algorithm is to be run 
• The Algorithm Executor generates contexts, and runs the algorithms on them 
• Algorithms read in the necessary data to generate output for the entire context 
• Statistical metadata, such as mean product values, are calculated on a per-block basis 

by the algorithms 

Design Objectives Design Decisions 
• Algorithms are passive components 
• An environment-specific Algorithm Executor creates 

contexts, and schedules and runs algorithm on those 
contexts. 

• The Algorithm Executor provides a concrete implementation 
of the DMI Generic interface to algorithms to read and write 
all of their data 

• Data written to the DMI Generic is sent to the Data Fabric, 
where images are automatically put together 

• Block-Level metadata are assembled by the OMAS into 
product-level summaries 

• Algorithm data and metadata are combined and formatted 
by Product Distribution 
 
 
 
 
 
 
 
 
 

 
 

 
 

Future Work 

Summary 

Variable Algorithm Execution Area 
• Scientific algorithms run on a particular area. For grid algorithms, this is  a pixel 

rectangle. For time-series algorithms, it can be a range of times to be processed. 
• The size of algorithm execution area greatly impacts its performance. Larger areas may 

have less overhead, while smaller areas may be parallelized to more processing units. 
• The processing hardware configuration is the key factor in determining the best 

processing block size. This size is generally independent from the scientific 
functionality of the algorithm. 

• To give maximum flexibility in operational hardware configurations, infrastructure must 
allow algorithms to have variably sized execution areas, known as Contexts 

 
 
 
 
 
 

 

 
0 

1 

2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 N
um

be
r o

f L
1b

 E
ve

nt
s 

Frame Number Offset 

Number of Events Per Frame 

Time-series Algorithm Execution Context Grid Algorithm Execution Context 

Narrow Infrastructure Interface 
• A single common DMI, termed DMI Generic, must exist between algorithms and 

Infrastructure that is capable of handling all the diverse types of algorithm data 
• This DMI Generic interface is implemented by all environments that will run algorithms 
• DMI Generic works with two types of data: Imagery and Atomic Blobs 

• Imagery are gridded data that can be retrieved in smaller sections, 
allowing large images to be processed in smaller chunks 

• Atomic Blobs are data that must be retrieved in one piece, such as 
algorithm configuration parameters or lookup tables 

• Algorithms can retrieve Imagery and Atomic Blobs in several ways, such as all images 
falling in a certain time range, the most recent set of configuration parameters, etc. 

• This simple interface means that new algorithms with new data do not require changes 
to the DMI 

• Data are translated from generic formats on read and write using DMI Specifics 
• DMI Specifics provide/accept data in their most convenient form (strongly-typed blocks 

of floating point numbers, parameter data structures, etc) 

Algorithms as Passive Components 
• Algorithms are conceived of as objects that must be run by a set of  other components 

that collectively fulfill the role of Algorithm Executor 
• The Algorithm Executor instantiates algorithm objects, schedules and runs them 
• The Algorithm Executor will provide the necessary concrete DMI objects to algorithms 

so they can run in its environment 

Algorithm Operationalization 
• Algorithms are currently being developed and tested in the 

Algorithm Development Infrastructure 
• Future work will involve integrating the algorithms into the 

Operational Infrastructure, including the Data Fabric and 
OMAS 

• Operationalized algorithms will be optimized for high-
performance operation 

• Algorithms will be wrapped in services designed to run in a 
distributed computational environment 

DMI
Algorithm

Development
Infrastructure

Science
Algorithm

Input Data

Output Data

DMIOperational
Infrastructure

Input Data

Output Data

Science
Algorithm

Shared Product Generation Responsibilities 
• Algorithm software is narrowly focused on generating output data, not concerned with 

final output product format or encoding. This decouples the scientific logic involved in 
generating products from end-user requirements, allowing both to change more easily. 

• The Data Fabric, a high-performance data access and storage layer, fills the role of 
operational infrastructure. It automatically assembles image pieces like a jigsaw puzzle 
as they are processed in blocks. 

• The Operational Metadata Assembly Service (OMAS) builds block-level metadata into 
scene metadata 

• Product Distribution assembles raw image data, scene metadata, and supporting semi-
static data into final product files 
 

 
 
 

 
 
 
 

 

Ground Segment

Product Generation Element

Science
Algorithm

Data Fabric

Operational 
Metadata 

Assembly Service

Product Distribution 
Element

Block
Metadata Scene

Metadata

Input
Data

Product
Blocks

Product
Scenes

Scene
Metadata

End
Products

Block
Metadata

DMI

Algorithm Execution Model 
• Algorithms are instantiated with an instance of the DMI Generic, which will be used to 

read and write all data 
• All data can be preloaded into the DMI before algorithm execution begins, instead of 

waiting for sequential access-and-retrieve 
• Algorithms use DMI Specifics to retrieve data in immediately-usable formats 
• Computations are performed 
• All data that must be persisted, including temporary state to be used subsequent runs, 

must be written to the DMI 
• When execution terminates, algorithm and DMI instances can be destroyed 

 
 
 
 
 
 
 
 
 
 

 
 

Algorithm
Executor

Algorithm

Context

Data Fabric

Science
Data

Context

Context

Context

Algorithm

Algorithm

Algorithm

Operational Metadata 
Assembler Service

Block
Metadata

Product Distribution

Image
Metadata

Image Data

Algorithm Executor / Infrastructure          

<Repeat>

Context Predecessor Data

Output Data

DMI

Algorithm

Product data
Intermediate data
Scratch Data

Temporary Data


	GOES-R Ground System and Algorithm Implementation Design� � Alexander Werbos*, John Baldwin*, Adam Copeland*, Jared Donboch†, Joshua Downer, Robert Kaiser†, Elizabeth Lundgren*, Andy Tarpley† and T. Scott Zaccheo* �*AER, Inc, Lexington,  MA USA�†Harris Corporation GCSD, Melbourne, FL USA

