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Motivation 

• Lightning causes ~62 deaths / yr 1 

• Lightning causes $1B damage /yr2 

• Convection-induced turbulence 3 

• Commercial Flight Impacts4 
– $150K per diverted flight 

– $40K per cancellation 

– Impacts on ground operations 

• Cape Canaveral Air Force 
Station/Kennedy Space Center 
impacts 5 
– Greatest lightning density in CONUS 

– 1/3 of launches delayed 

– 5% cancelled due to lightning 
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Satellite Detection 
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Time 

Radar Detection 

CI Forecast without satellite 

CI Forecast with satellite 

Conceptual Idea 

30-45 min 

to 75 min 

Up to ~60 min 

added lead 

time for LI 

using GOES 

 

Lead time 

increases with 

slower 

growing 

cumulus 

clouds (i.e. 

low CAPE 

environments

) 

What is the current LI forecast lead time? 

LI Forecast? 



 What is Lightning Initiation (LI)? 
 Defined as the first lightning flash of any type within a growing cumulus cloud 

 

 Why use satellite data? 
 Satellites provide a constant, relatively high temporal resolution observational 

system for convection 

 A novel approach… 

 

 Possible Impacts: 
 Improve severe weather nowcasting 

 Convective precipitation/flooding 

 Tornado development 

 Hail and severe wind 

 Forest fire prediction 

 Aviation and public safety 



 Guiding Questions: 
Are there any satellite signatures unique to LI within a 

convective storm? 

What do these signatures tell us physically? 

How can remote sensing of convection further improve the 
understanding of physical processes within convective 
storms? 

 

 Purpose of Project: 
Develop and test a technique to detect LI from 

geostationary satellite data 

 



Methods: Convective Nowcasts/Diagnoses 
 

: Satellites “see” cumulus before they become thunderstorms! 

: There are many available methods for diagnosing/monitoring cumulus 

motion/development in real-time (every 15-min). See the published research. 

Monitor… 8 IR fields: 

CI Time  
1st ≥35 dBZ echo 
at ground  

t=–30 min t=–15 min t=Present 

SATellite Convection AnalySis and 

Tracking (SATCAST) System 



SATCAST Algorithm: GOES IR Interest Fields 

Note: There are additional IR & reflectance fields with MSG/ABI 



Convective Cloud Mask 

• Foundation of the CI nowcast algorithm: Calculate IR fields only where cumulus 

are present (10-30% of a domain) 

• Utilizes a multispectral and textural region clustering technique for classifying all 

scene types (land, water, stratus/fog, cumulus, cirrus) in a GOES image 

• Berendes et al. (2008) statistical clustering algorithm, for GOES & MSG 

a) c) b) 

d) f) e) 

Visible Channel 
MSG Convective 

Cloud Mask 

MODIS Convective 

Cloud Mask 

Berendes et al. (2008) 



Object Tracking 

Object at Time 1 (A), Time 2 (B), and the “overlap” 

(yellow) between times.  

• The goal of object tracking is towards improving the tracking of 

growing cumulu clouds, and to better assess the degree that satellite 

nowcasts CI (i.e. validation). 

• An “object” can be defined as a “cumulus” in a masking procedure. 

Zinner et al. (2008) 
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• All cumuli are not created equal 

• Evolution of LI Forecasting 
– Qualitative “eye-ball” analysis (Pre-

historic) 

– Correlate IR cloud-top properties with 

radar signatures for CI forecasts (last 5-

10 years) 

– Correlate IR cloud-top properties with 

lightning occurrence for LI forecasts 

(current) 

– Constrain LI forecast using NWP 

instability fields (current) 

 

Introduction: Use of Satellite 
Within each field, 

which Cumuli will 

develop? 

2130 

UTC 

 

 



LI Theory 
• Storm Electrification 

– Through graupel/ice interactions in 
the presence of supercooled water 
(non-inductive charge transfer, 
Reynolds 1957) 

• Particle collisions transfer charge 

• Temperature difference between 
particles and liquid water content 
determines charge transferred 

• Particles fall through or are carried 
upward in updraft and separate 
charge 

– Conditions to be observed from 
satellite: 

• Strong updraft 

• Ice particles 

– NWP model information: 
• CAPE 

• Ice/grauple flux through -10 to -15 C 
layer 

Saunders (1993) 

Chris Siewert/UAH - 2008 



Daytime Cloud Microphysics: 3.9 m 
• Separate 3.9 reflection and emission 

– Uses methods developed by Setvak and Doswell (1991) and Lindsey et al. (2006) 

– Low 3.9 reflectance values indicate ice aloft 

– Most accurate for solar zenith angles up to 68o (morning to evening): Undefined > 90o 

– Expect 3.9 reflectance values ~ 0.05 (5%) for ice clouds 

R  =  fk1 / [ exp (fk2 / (bc1 + (bc2 * temp))) - 1 ]  

• R3.9 calculated using 3.9 brightness 

temperature and constants 

• Re3.9(T) calculated using 3.9 constants and 10.7 

 brightness temperature 

• S calculated using 3.9 constants, sun 

temperature (5800 K), average radius of sun 

(A) and Earth’s orbit (B), and solar zenith 

angle 

Chris Siewert/UAH - 2008 



Cloud-Top Microphysics 

 3.9 μm fraction reflectance 

 Ice is a very efficient absorber of radiation at wavelengths 
of 3.5 to 4.0 μm 
 Low reflectance values (< 12%; Setvak and Doswell 1991) 

Need to separate emission and reflection components from 
the observed radiance 
 Use method developed by Setvak and Doswell (1991) and Lindsey 

et al. (2006) 

 Most accurate for solar zenith angles up to 68o (morning to 
evening) 

 Undefined > 90o 

 



3.9 – 10.7 μm Channel Difference 

 Commonly used for nighttime fog detection (Ellrod 1995) and 
nighttime cloud microphysics (Key and Intrieri 2000) 

 

 Threshold value during daytime difficult to use 
 Rapid changes in 3.9 μm TB from emitted and reflected sources 

 

 Examine the temporal trend for signals of cloud-top phase 
change 
 Combining the two channels may information on the microphysical 

phase as well as the updraft strength in one field 

 Provides additional information than just the reflectance alone 
 First occurrence of rapid glaciation detected without meeting a certain ice 

“yes” or “no” reflectance threshold 



Development of LI Interest Fields 

 Co-location of satellite and LMA data 
 Satellite data re-sampled to 1 km2 grid 

 LMA has slightly smaller grid (~ 0.9 km2) 
 Match the satellite data to an LMA pixel using nearest neighbor technique with 

latitude and longitude values 

 

 Time-series plot analysis 
 Examine multiple cells from various case days 

 Allows for visual representation of interest fields with time in comparison to 
first flash within the cell 

 Isolate cell by drawing box around its movement area prior to and after the first 
flash. 
 Follow coldest pixel(s) in this box (assumed updraft region) 

 Average the brightness temperature values of these coldest pixels for all channels 
and perform channel differences 

 Plot values 2 hours prior and 1 hour after the first flash within the cell 

 Compare to expected results and define appropriate initial threshold values for 
LI interest fields 



Chris Siewert/UAH - 2008 



Lightning Initiation Interest Fields 

LI Interest Field Threshold Value 

10.7 m TB  260 K 

10.7 m 15 minute trend  –10 K 

10.7 m 30 minute trend  –15 K 

6.5 – 10.7 m channel difference  –17 K 

6.5 – 10.7 m 15 minute trend  5 K 

13.3 – 10.7 m channel difference  –7 K 

13.3 – 10.7 m 15 minute trend  5 K 

3.9 m fraction reflectance  0.05 

3.9 – 10.7 m trend t – (t-1)  –5 K and t – (t+1)  –5 K 

These indicators 

for LI are a subset 

of those for CI. 

 

They identify the 

wider updrafts that 

possess stronger 

velocities/mass flux. 

 

In doing so, they 

highlight convective 

cores that loft large 

amounts of hydro- 

meters across the 

-10 to -15 °C level, 

where the charging 

process tends to be 

significant. 

 

 

Chris Siewert/UAH - 2008 



Findings 

 It is possible to detect signals of LI 30 minutes prior to the first 
flash using satellite IR data alone 
 On occasion it was possible to detect signals 45-minutes to 1 hour prior 

 

 Thirty minutes prior to the first flash within an area of interest, 
most of the LI interest fields met their threshold values  

 

 The LI interest fields occurred very near and were spatially 
distributed similarly to the first lightning flashes 

 

 The LI interest fields become contaminated when cirrus is 
overhead 

 

Chris Siewert/UAH - 2008 



Lightning Initiation 30-60 min Nowcasts 

How well are we doing?  Onto validation… 

2045 UTC 17 June 2009 

CI Nowcasts LI Nowcasts 
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• SATCAST Algorithm 

– ~10 GOES-based 
Interest Fields  

– Found via IR and 
Channel-differencing 
techniques 

– Developed by MB06 

• LMA* (2 Regions) 

• 4DLSS* (Florida) 

• NLDN* 

• 13-km RUC* Model 

• Radar? 

LMA Validation: Data 

Ryan Harris/NPS - 2009 
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Study Regions 

• Oklahoma City, OK 

– Total-cloud 
lightning 

– Developed by 
New Mexico 
Tech 

• North Alabama 
(Huntsville) 

– Total-cloud 
lightning 

– Developed 
by New 

Mexico Tech 

• Cape Canaveral AFS, FL 

– Total-cloud 
lightning (LDAR-II) 

– Cloud-to-Ground 
lightning (CGLSS) 

– Developed by 
Vaisala 



2 June 2009: Visible 

1701 UTC 1731 UTC 

Ryan Harris/NPS - 2009 
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1701 UTC 1731 UTC 

10.7 μm 10.7 μm 

3.9 - 10.7 μm 3.9 - 10.7 μm 

CCAFS CCAFS 

CCAFS 
CCAFS 

Cloud tops have cooled 

~30°C in 30 minutes to -

35°C 

Is there quantitative 

reasoning behind a more 

organized microphysics 

field? TBD 



Outstanding Questions: New Avenues 
• How many interest fields are important when performing 0-1 hour 

nowcasting of lightning? What fields are more important, and which fields are 

most important in: (a) particular environments, and (b) across environments? 

Understanding how satellite IR data relate to the physics of cumulus 

convection, and then, appropriately use the satellite data. NASA ROSES is a 

path towards answering these questions. 

 

• How can satellite-based LI nowcasts be integrated into other lightning 

“warning” or “potential” algorithms? Satellite fields could “trigger” lightning 

onset, and hence lightning warnings (once the potential is known). 

 

• How to constrain satellite CI and LI nowcasts (NWP data)? 

• Minimizing errors: Better tracking & detection of cumuli. 

 

• Integration with GLM? 
(a) Correlation studies to relate LI nowcasts to GLM observations (bias, R2) 

(b) Development of an integrated IR-GLM Storm Intensity product 

(c) Integration with QPE estimates (from SATCAST—new), GLM and ABI (SCaMPR 

estimates). 
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