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Algorithm for Tracking, Nowcasting & Data Mining

O

e Segmentation + Motion Estimation

O Segmentation --> identifying parts (“segments”) of an image

O Here, the parts to be identified are storm cells

e segmotion consists of image processing steps for:
O ldentifying cells
O Estimating motion
O Associating cells across time
O Extracting cell properties
O Advecting grids based on motion field

e segmotion can be applied to any uniform spatial grid
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e Quantize the image into bands using K-Means

|H

O “Vector” quantization because pixel “value” could be many channels

O Like contouring based on a cost function (pixel value & discontiguity)
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Enhanced Watershed Algorithm [2]

O

e Starting at a maximum, “flood” image

O Until specific size threshold is met: resulting “basin” is a storm cell

O Multiple (typically 3) size thresholds to create a multiscale algorithm
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e Cells grow until they reach a specific size threshold
e Cells are local maxima (not based on a global threshold)
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Cluster-to-image cross correlation [1]

O

* Pixels in each cluster overlaid on previous image and
shifted

O The mean absolute error (MAE) is computed for each pixel shift

o Lowest MAE -> motion vector at cluster centroid

e Motion vectors objectively analyzed
O Forms a field of motion vectors u(x,y)
O Field smoothed over time using Kalman filters
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* Because of interpolation, motion field covers most places

O Optionally, can default to model wind field far away from storms

* The field is smooth in space and time

O Not tied too closely to storm centroids

* Storm cells do cause local perturbation_in field




No need to cluster predictand or track individual cells

O Nowcast of VIL shown




Unique matches; size-based radius; longevity; cost [4]

O

* Project cells identified at t, ; to expected location at t,

e Sort cells at t,_; by track length so that longer-lived tracks
are considered first

e For each projected centroid, find all centroids that are
within sqrt(A/pi) kms of centroid where A is area of storm
e |f unique, then associate the two storms
00 00
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e Repeat until no changes

* Resolve ties using cost

fn. based on size, intensity
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Geometric, spatial and temporal attributes [3]

O

e Geometric:

O Number of pixels -> area of cell
O Fit each cluster to an ellipse: estimate orientation and aspect ratio

o Spatial: remap other spatial grids (model, radar, etc.)
O Find pixel values on remapped grids
O Compute scalar statistics (min, max, count, etc.) within each cell

e Temporal can be done in one of two ways:
O Using association of cells: find change in spatial/geometric property
= Assumes no split/merge

O Project pixels backward using motion estimate: compute scalar statistics on
older image

= Assumes no growth/decay
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ldentify and track cells on infrared images
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Coarsest scale shown because 1-3 hr forecasts desired.
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Plot centroid locations along a track
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Associate model parameters with identified cells

O
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Create 3-hr nowcasts of precipitation
N
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Create azimuthal shear layer product

Velocity
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Tune based on duration, mismatches and jumps
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Burnett et. al, 2010

KDDC 20070505-032548 AzShearMaxBelow3km 00.00 @ KDDC_v11 20070504

3x3 median filter; 3x3 Erosion+Dilation filter;
10 km?; 0.004 s1;0.002 st 6 km?; 0.006 s*;0.001 s*
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Compare different options to track total lightning

O

e Kuhlman et. al [Southern Thunder Workshop 2009] compared tracking
cells on VILMA to tracking cells on Reflectivity at -10C and concluded:

O Both Lightning Density and Refl. @ -10 C provide consistent tracks
for storm clusters / cells (and perform better than tracks on
Composite Reflectivity )

O At smallest scales: Lightning Density provides longer, linear tracks
than Ref.

O Reverses at larger scales. Regions lightning tend to not be as
consistent across large storm complexes.
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Goal: Predict probability of C-G lightning

O

e Form training data from radar reflectivity images

O Find clusters (storms) in radar reflectivity image

O For each cluster, compute properties
= Such as reflectivity at -10C, VIL, current lightning density, etc.

O Reverse advect lightning density from 30-minutes later
= This is what an ideal algorithm will forecast
= Threshold at zero to yield yes/no CG lightning field
e Train neural network
O Inputs: radar attributes of storms,
O Target output: reverse-advected CG density
O Data: all data from CONUS for 12 days (1 day per month)
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Algorithm in Real-time

O

e Find probability that storm will produce lightning:

O Find clusters (storms) in radar reflectivity image

O For each cluster, compute properties
= Such as reflectivity at -10C, VIL, current lightning density, etc.

O Present storm attributes to neural network

e Find motion estimate from radar images
O Advect NN output forward by 30 minutes
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More skill than just plain advection

O

Skill of steady state forecast Skill of Lightning Prediction Algorithm
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Tuning vector quantization (-d)

O

e The “K” in K-means is set by the data increment

O Large increments result in fatter bands

= Size of identified clusters will jump around more (addition/removal of
bands to meet size threshold)

= Subsequent processing is faster

= Limiting case: single, global threshold axy
O Smaller increments result in thinner bands

= Size of identified clusters more consistent

= Subsequent processing is slower

. a
= Extremely local maxima /' Lxy

* The minimum value determines probability of detection
O Local maxima less intense than the minimum will not be identified

maxlevel
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Tuning watershed transform (-d,-p)

O

e The watershed transform is driven from maximum until

size threshold is reached u aximypth
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Tuning motion estimation (-O)

O

e Motion estimates are more robust if movement is on the
order of several pixels

O If time elapsed is too short, may get zero motion

O If time elapsed is too long, storm evolution may cause “flat” cross-
correlation function

= Finding peaks of flat functions is error-prone!
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Specifying attributes to extract (-X)

O

o Attributes should fall inside the cluster boundary

O C-G lightning in anvil won’t be picked up if only cores are identified
O May need to smooth/dilate spatial fields before attribute extraction

e Should consider what statistic to extract
O Average VIL?
O Maximum VIL?
O Area with VIL > 207
O Fraction of area with VIL > 207

e Should choose method of computing temporal properties
O Maximum hail? Project clusters backward
= Hail tends to be in core of storm, so storm growth/decay not problem
O Maximum shear? Use cell association
= Tends to be at extremity of core
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Preprocessing (-k) affects everything

O

e The degree of pre-smoothing has tremendous impact

O Affects scale of cells that can be found

= More smoothing -> less cells, larger cells only
= Less smoothing -> smaller cells, more time to process image
O Affects quality of cross-correlation and hence motion estimates

= More smoothing -> flatter cross-correlation function, harder to find best
match between images
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O

e Use motion estimate to project entire field forward

Evaluate advected field using motion estimate [1]

e Compare with actual observed field at the later time
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e Caveat: much of the error is due to storm evolution

O But can still ensure that speed/direction are reasonable




» Better cell tracks:
O Exhibit less variability in “consistent” properties such as VIL

O Are more linear
O Are longer

Overall: Mismatch by technique Overall: Jumps by technique Overall: Length bytechnique
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e Can use these criteria to choose best parameters for
identification and tracking algorithm
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http://www.wdssii.org/

9,

w2segmotionll Multiscale cell identification and tracking: this is the program
that much of this talk refers to.

w2advectorll Uses the motion estimates produced by w2segmotionll (or any
other motion estimate, such as that from a model) to project a
spatial field forward

w2scoreforecast The program used to evaluate a motion field. Thisis how the
MAE and CSI charts were created

w2scoretrack The program used to evaluatea cell track. Thisis how the
mismatch, jump and duration bar plots were created.
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e Each pixel is moved among every available cluster and

the cost function E(k) for cluster k for pixel (x,y) is
Weight of distance vs.

computed as discontiguity (0<A<1)
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Cluster-to-image cross correlation [1]

O

e The pixels in each cluster are overlaid on the previous image and

shifted, and the mean absolute error (MAE) is computed for each pixel
shift:

Number of pixels in

Summation over all pixels
cluster k

in cluster k

MAE, (X+ AX, y+ Ay) i (XFAX Y+ AY))
Intensity of pixel Intensity of pixel
(x,y) at current time (x,y) at previous
time

e To reduce noise, the centroid of the offsets with MAE values within
20% of the minimum is used as the basis for the motion vector.
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e After computing the motion vectors for each cluster
(which are assigned to its centroid, a field of motion
vectors u(x,y) is created via interpolation:

Motion vector for cluster k A
2 uw, (X, y)

u(x, y) =

Sum over all Number of pixels in cluster k

motion vectors

Euclidean distance between point (x,y)

and centroid of cluster k

* The motion vectors are smoothed over time using a
Kalman filter (constant-acceleration model)



Resolve “ties” using cost function

O

» Define a cost function to associate candidate cell i at t,
and cell j projected forward from t 1as

Al
/@} “u F R

Location (x,y) of centroid Area of Peak value of

Max
cluster cluster

Mag-
nitude

e For each unassociated centroid at t,,, associate the cell for
which the cost function is minimum or call it a new cell
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