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Algorithm for Tracking, Nowcasting & Data Mining 

 Segmentation + Motion Estimation 
 Segmentation --> identifying parts (“segments”) of an image 

 Here, the parts to be identified are storm cells 

 segmotion consists of image processing steps for: 
 Identifying cells 

 Estimating motion 

 Associating cells across time 

 Extracting cell properties 

 Advecting grids based on motion field 

 segmotion can be applied to any uniform spatial grid 

3 
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Vector quantization via K-Means clustering [1] 
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 Quantize the image into bands using K-Means 
 “Vector” quantization because pixel “value” could be many channels 

 Like contouring based on a cost function (pixel value & discontiguity) 



lakshman@ou.edu 

Enhanced Watershed Algorithm [2] 

5 

 Starting at a maximum, “flood” image 
 Until specific size threshold is met:  resulting “basin” is a storm cell 

 Multiple (typically 3) size thresholds to create a multiscale algorithm 



lakshman@ou.edu 

Storm Cell Identification: Characteristics 
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 Cells grow until they reach a specific size threshold 

 Cells are local maxima (not based on a global threshold) 

 Optional: cells combined to reach size threshold 
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Cluster-to-image cross correlation [1] 

7 

 Pixels in each cluster overlaid on previous image and 
shifted 
 The mean absolute error (MAE) is computed for each pixel shift 

 Lowest MAE -> motion vector at cluster centroid 

 Motion vectors objectively analyzed 
 Forms a field of motion vectors u(x,y) 

 Field smoothed over time using Kalman filters 
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Motion Estimation: Characteristics 
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 Because of interpolation, motion field covers most places 
 Optionally, can default to model wind field far away from storms 

 The field is smooth in space and time 
 Not tied too closely to storm centroids 

 Storm cells do cause local perturbation in field 
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Nowcasting Uses Only the Motion Vectors 
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 No need to cluster predictand or track individual cells 
 Nowcast of VIL shown 



lakshman@ou.edu 

Unique matches; size-based radius; longevity; cost [4] 
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 Project cells identified at tn-1 to expected location at tn 

 Sort cells at tn-1 by track length so that longer-lived tracks 
are considered first 

 For each projected centroid, find all centroids that are 
within sqrt(A/pi) kms of centroid where A is area of storm 

 If unique, then associate the two storms 

 Repeat until no changes 

 Resolve ties using cost 

fn. based on size, intensity 
or 
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Geometric, spatial and temporal attributes [3] 
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 Geometric: 
 Number of pixels -> area of cell 

 Fit each cluster to an ellipse: estimate orientation and aspect ratio 

 Spatial: remap other spatial grids (model, radar, etc.) 
 Find pixel values on remapped grids 

 Compute scalar statistics (min, max, count, etc.) within each cell 

 Temporal can be done in one of two ways: 
 Using association of cells: find change in spatial/geometric property 

 Assumes no split/merge 

 Project pixels backward using motion estimate: compute scalar statistics on 
older image 

 Assumes no growth/decay 
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Identify and track cells on infrared images 
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Coarsest scale shown because 1-3 hr forecasts desired. 

Not just a simple thresholding scheme 
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Plot centroid locations along a track 
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Rabin and Whitaker, 2009 
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Associate model parameters with identified cells 
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Rabin and Whitaker, 2009 
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Create 3-hr nowcasts of precipitation 
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NIMROD 3-hr precip 
accumulation 

Rainfall Potential using 
Hydroestimator and 
advection on SEVIRI 

data 

Kuligowski et. al, 2009 
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Create azimuthal shear layer product 
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Velocity 

Azimuthal Shear 

Maximum Azimuthal 
Shear Below 3 km 
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Tune based on duration, mismatches and jumps 
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3x3 median filter; 
10 km2; 0.004 s-1 ; 0.002 s-1 

3x3 Erosion+Dilation filter; 
6 km2; 0.006 s-1 ; 0.001 s-1 

Burnett et. al, 2010 
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Compare different options to track total lightning 
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 Kuhlman et. al [Southern Thunder Workshop 2009] compared tracking 
cells on VILMA to tracking cells on Reflectivity at -10C and concluded: 

 Both Lightning Density and Refl. @ -10 C provide consistent tracks 
for storm clusters / cells (and perform better than tracks on 
Composite Reflectivity ) 

 At smallest scales:  Lightning Density provides longer, linear tracks 
than Ref.  

 Reverses at larger scales.  Regions lightning tend to not be as 
consistent across large storm complexes. 
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Case 2:  Multicell storms / MCS 
4 March 2004 

VILMA Reflectivity @ -10 C 

Kuhlman et. al, 2009 
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Goal: Predict probability of C-G lightning 

 Form training data from radar reflectivity images 
 Find clusters (storms) in radar reflectivity image 

 For each cluster, compute properties 

 Such as reflectivity at -10C, VIL, current lightning density, etc. 

 Reverse advect lightning density from 30-minutes later 

 This is what an ideal algorithm will forecast 

 Threshold at zero to yield yes/no CG lightning field 

 Train neural network 
 Inputs: radar attributes of storms, 

 Target output: reverse-advected CG density 

 Data:  all data from CONUS for 12 days (1 day per month) 

24 
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Algorithm in Real-time 
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 Find probability that storm will produce lightning: 
 Find clusters (storms) in radar reflectivity image 

 For each cluster, compute properties 

 Such as reflectivity at -10C, VIL, current lightning density, etc. 

 Present storm attributes to neural network 

  Find motion estimate from radar images 
 Advect NN output forward by 30 minutes 
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Algorithm Inputs, Output & Verification 
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Actual CG 
at t0 

Reflectivity 
Composite  

Reflectivity 
at -10C 

Clusters in 
Reflectivity 
Composite 

Predicted  
CG for t+30 
RED => 90% 
GRN =>70% 

Actual 
CG at t+30 

Predicted 
Initiation 
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More skill than just plain advection 
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Tuning vector quantization (-d) 
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 The “K” in K-means is set by the data increment 
 Large increments result in fatter bands 

 Size of identified clusters will jump around more (addition/removal of 
bands to meet size threshold) 

 Subsequent processing is faster 

 Limiting case: single, global threshold 

 Smaller increments result in thinner bands 
 Size of identified clusters more consistent 

 Subsequent processing is slower 

 Extremely local maxima 

 The minimum value determines probability of detection 
 Local maxima less intense than the minimum will not be identified 
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Tuning watershed transform (-d,-p) 
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 The watershed transform is driven from maximum until 
size threshold is reached up to a maximum depth 
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Tuning motion estimation (-O) 
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 Motion estimates are more robust if movement is on the 
order of several pixels 
 If time elapsed is too short, may get zero motion 

 If time elapsed is too long, storm evolution may cause “flat” cross-
correlation function 

 Finding peaks of flat functions is error-prone! 
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Specifying attributes to extract (-X) 
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 Attributes should fall inside the cluster boundary 
 C-G lightning in anvil won’t be picked up if only cores are identified 
 May need to smooth/dilate spatial fields before attribute extraction 

 Should consider what statistic to extract 
 Average VIL? 
  Maximum VIL? 
 Area with VIL > 20? 
 Fraction of area with VIL > 20? 

 Should choose method of computing temporal properties 
 Maximum hail?  Project clusters backward 

 Hail tends to be in core of storm, so storm growth/decay not problem 

 Maximum shear? Use cell association 
 Tends to be at extremity of core 
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Preprocessing (-k) affects everything 
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 The degree of pre-smoothing has tremendous impact 
 Affects scale of cells that can be found 

 More smoothing -> less cells, larger cells only 

 Less smoothing -> smaller cells, more time to process image 

 Affects quality of cross-correlation and hence motion estimates 

 More smoothing -> flatter cross-correlation function, harder to find best 
match between images 
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Evaluate advected field using motion estimate [1] 
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 Use motion estimate to project entire field forward 

 Compare with actual observed field at the later time 

 

 

 

 

 

 Caveat: much of the error is due to storm evolution 
 But can still ensure that speed/direction are reasonable 
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Evaluate tracks on mismatches, jumps & duration 
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 Better cell tracks: 
 Exhibit less variability in “consistent” properties such as VIL 

 Are more linear 

 Are longer 

 

 

 

 

 

 

 Can use these criteria to choose best parameters for 
identification and tracking algorithm 
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http://www.wdssii.org/ 
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 w2segmotionll Multiscale cell identification and tracking: this is the program 
that much of this talk refers to. 

w2advectorll Uses the motion estimates produced by w2segmotionll (or any 
other motion estimate, such as that from a model) to project a 
spatial field forward 

w2scoreforecast The program used to evaluate a motion field. This is how the 
MAE and CSI charts were created 

w2scoretrack The program used to evaluate a cell track. This is how the 
mismatch, jump and duration bar plots were created. 



lakshman@ou.edu 

Clustering, nowcasting and data mining spatial grids  

39 

 The “segmotion” algorithm 

 Example applications of algorithm 
 Infrared Imagery 

 Azimuthal Shear 

 Total Lightning 

 Cloud-to-ground lightning 

 Extra information [website?] 
 Tuneable parameters 

 Objective evaluation of parameters 

 How to download software 

 Mathematical details 

 References 

 

 

 

 



lakshman@ou.edu 

 Each pixel is moved among every available cluster and 
the cost function E(k) for cluster k for pixel (x,y) is 
computed as 

 

Mathematical Description: Clustering 
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Courtesy: Bob Kuligowski, NESDIS 
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Cluster-to-image cross correlation [1] 
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 The pixels in each cluster are overlaid on the previous image and 
shifted, and the mean absolute error (MAE) is computed for each pixel 
shift: 
 
 
 
 
 

 
 
 
 
 

 To reduce noise, the centroid of the offsets with MAE values within 
20% of the minimum is used as the basis for the motion vector. 
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Interpolate spatially and temporally 
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 After computing the motion vectors for each cluster 
(which are assigned to its centroid, a field of motion 
vectors u(x,y) is created via interpolation: 

 

 

 

 

 

 The motion vectors are smoothed over time using a 
Kalman filter (constant-acceleration model) 
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Resolve “ties” using cost function 
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 Define a cost function to associate candidate cell i at tn 

and cell j projected forward from tn-1 as: 

 

 

 

 

 For each unassociated centroid at tn , associate the cell for 
which the cost function is minimum or call it a new cell 

Location (x,y) of centroid Area of 
cluster 

Peak value of 
cluster 

Max 

Mag-
nitude 
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