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1. Introduction and Objectives 

 To demonstrate the utility of assimilation of lightning data from the GLM 
instrument onboard the future GOES-R  

 
 Why lightning data? Benefit of the link between the intensity of deep 
convection and total lightning flash rates 
 
 Past efforts to incorporate lightning data  through NUDGING stressed the 
importance of real-time measurements of lightning data to improve the 
representation of deep convection in NWP models. 
 
 One of the goals of this study is to correct the location  and intensity of 
severe thunderstorms during the analysis and short rage (6-hr) forecasts steps 
using a hybrid DA system.  

 
 To asses how the future GOES-R GLM lightning data can assist in correcting 
the intensity and location of severe weather.  



2. Data Assimilation and Model Set-up 
 CASE Study: April 27-28, 2011tornado outbreak in the southeastern U. S.  
 
 MLEF is used as a hybrid (variational-ensemble) DA system.  

 
 WWLLN data is used as a proxy for future  
      GOES-R GLM data with 10km location  
      accuracy. 

 
 WRF-NMM --- Two domains 
     at 27km and 9km. 

 
 32-ensembles at 6-hr assimilation  
     interval. 

 
 

 Control variables: T, Q, PD (Psurf - Ptop), 
    U, V, CWM. 

 
 

 Two experiments: with assimilation of lightning data (LIGHT) and without it (NODA). 
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3. Lightning Observation Operator Development 

 Starts with the calculation of maximum vertical velocity from WRF-NMM (Wmax) 
 
 
 
 

 
 The algorithm calculates wmax at grid points and surrounding points along a vertical 
column where clouds are present. 

 
 Total cloud condensate (cloud water, rain and snow) above a threshold used to detect 
clouds. 

 
 An empirical relationship between lightning flash rate and vertical velocity is used (Price 
and Rind, 1992) 
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c=5e-6, αopt=correction parameter, β=4.5 



3.1. Lightning Observation Operator Correction 

Current version:  
 - maximum vertical velocity 
 - works with any microphysics, but less accurate  
Next version: 
 - cloud hydrometeor based (graupel flux, cloud ice – McCaul et al. 2009  
 - requires more advanced microphysics, but more realistic 

Original formulation 

Corrected formulation 

PDF Innovation – Histograms 

Original Corrected 



4. Results --- Singleobs test, Impact on the Analysis  

        xa – xf – SPECIFIC HUMIDITY, TEMPERATURE, WIND at 700mb. 
 

 

   
 

  Lightning DA impacts the initial conditions of dynamical variables from the model   

Singleobs Singleobs Singleobs 

700mb Specific Humidity 700 mb Temperature 700mb Winds 



 Analysis increments (xa – xf) at 0000UTC, April 28, 2011 
 

 Lightning DA increases the advection of low-level vorticity into the region of strong 
CAPE gradient  
 

 Not at a tornado resolving scale, yet, but impact is noticeable 

Impacts on Storm Environment 

Wind increment at 850 hPa Vort. increment at 850 hPa Background CAPE 



 RMS errors are calculated from a subset domain containing all the lightning 
observations at 10km resolution to match WRF 9km resolution. 

 
 From Figures below for each 6-hr assimilation window, LIGHT achieves a 
better fit in the assimilation, only partially kept in the forecast. 

 
 Improving dynamical balances in the model could positively impact forecast 
RMS errors. 

Statistics --- RMS Errors 



Shannon Information Content, degrees of freedom 
for signal 

          

 Lightning DA is quantified through information theory (ENTROPY) 
 

 Shows the actual use of observations in each DA cycle 

 Each pixel  Error covariance 
localization used in each DA 
cycle 

 
 Time-flow dependent forecast 
error covariance is directly 
related to the observations 

2011_04_27-00:00:00 
Cycle 1 

2011_04_27-12:00:00 
Cycle 3 

2011_04_28-00:00:00 
Cycle 5 

WWLLN Observations WWLLN Observations WWLLN Observations 

Bottom plots credit: Mark DeMaria, Gregory DeMaria and Jack Dostalek 



Summary  
 Lightning DA can spread new information into a NWP model  
 
 Lightning leads to strengthening of deep convection, in this 
case 

 
 Even though we are not using a tornado resolving scale, 
results are promising 
 
 This methodology can be applied to other lightning 
measurements, NWP models and case studies 

 Use a more advanced lightning obs. operator (McCoul et al. 
2009) 
 
 Test the combined assimilation of lightning and NCEP 
observations (e.g., GSI+CRTM) 

 
 Test the combined assimilation of GLM and ABI observations 

Future Work  
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