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where g, is the mass mixing ratio and g, is the mass specific extinction of aerosol
species i at the vertical level k. dz is the thickness of the layer. The mass specific
extinction is a function of the local relative humidity.



Aeronet

Comparison with Level 2.0 Aeronet Measurements

May-June 2010 550nm AQOD Histogram
May-June 2010 RAQMS vs Aernnet 55[]r1m ACD Aeronet (Black) RAQMS (Re
[ r=0.0953751 I | .

2500
1000 mod-obs=-0.0724951 . | I
ms-0.143434: 2000, No MODIS Assimilation
0.100 s 1500
I =]
I o
LE]
- _/
mnn——
0.010+
' 500 |
0,001 0L e e
0.001 0.010 0.100 1.000 0.01 0.10 1.00 May-June 2010 550nm AOD Bias (RAQMS -Asronet)
RACGNMS ACD

e

RAQMS (no assim) is not correlated with Aeronet o wf M&)
AOD (r=.09) and underestimates clear-sky AOD by ey ) ° hm
- - } A o
0137. ﬁ # kaH" K \ .
RAQMS (no assim) significantly overestimates the | L{ ‘ . 5
frequency of low AOD (<0.1) and significantly i PN
underestimates the frequency of high AOD (>0.1). T a

-0.4 -0.3 -0.2 -0.1 0.0 01 0.2



Aeronet

Comparison with Level 2.0 Aeronet Measurements

May-June 2010 550nm AOD Histt[:aj%;ram

May-June 2010 RAQMS vs Aeronet 55[]r1m AOD Aeronet (Black) RAQMS (Re
- r=0.555928 _r ,
: . 2500
1.000| madabs:—ﬂ.nﬂfﬁnm_5_.-"_" .
| ms=0.115536 " g8 20001 MODIS Assimilation
0.100 51500' -
. = 1000-— / \
0.010+ __
: 5005 \
0.001 0 T e ol Y \\;v“‘“ﬂ:"“:%,_.
0.001 0.010 0.100 1.000 0.01 010 1.00 May-June 2010 550nm AQD Bias (RAQMS -Aeronet)
RACMS AQD
e r A G S
- W%Rﬁ:\ -~ & e
b ;“; f_ﬁ%ﬁ. %{j
o ] -
® . \ U% r( %?; ajé
MODIS assimilation significantly improves \jﬁ\ t\ﬂ AV
correlation with Aeronet AOD (r=.56) and reduces e ) X %@E\ﬂ
the overestimates the frequency of low AOD (<0.1) | \ fﬁ '\\j { C‘ A
and underestimates the frequency of high AOD | {j )
(>0.1). - |
T
11111 1S i

-0.4 -0.3 -0.2 -01 0.0 01 0.2



Assessment of Global 850mb Aerosol Extinction
Forecast Skill — May-June 2010

Anomaly Correlations (AC)

«Correlation between forecast and analysis
*May-June mean removed

«Spectrally truncated to wavenumber 20
*Averaged from 20N-80N
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http://www.emc.ncep.noaa.gov/gmb/STATS/html/monarch.htmi



Northern Hemisphere 850mb May-June 2010 Anomaly Correlations (AC)
(No Assimilation)

May-June 2010 B50mb NH RACQMS (2x2 NO ASSIM) AC Scores
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*Only 850mb SO4 extinction forecasts useful skill past 1 day
*Black and organic carbon (BC+OC) and dust extinctions are both poorly initialized and

forecasted




Northern Hemisphere 850mb May-June 2010 Anomaly Correlations (AC)
(With MODIS Assimilation)

May-June 2010 850mb NH RAQMS (2x2 ASSIM) AC Scores
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*MODIS AOD assimilation results in small changes in 850mb SO4 extinction forecasts
*MODIS AOD assimilation results in significant improvements in black and organic
carbon (BC+OC) and dust forecast skill (dust prediction useful at 2 days)




Nested RAQMS/WRF-CHEM
May-June 2010 aerosol analysis

GOCART aerosol module, MODIS AOD assimilation, Two nests: 36km and 12km

12km WRF-CHEM
00Z-24Z May 31%t, 2010




Severe Storm Intensification due to smoke
MODIS AOD/COT April 27, 20112

Tornado rotation tracks on April 27-28, 2011
(NSSL On Demand Severe Weather Verification S
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IPart of NSSL’s Warning Decision Support System —
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http://www.star.nesdis.noaa.gov/smcd/spb/ag/

The indirect aerosol mechanisms pertinent to smoke

particles include?;

(1) the first indirect effect, where the size of water
cloud droplets decreases

(2) the semi-direct (choking) effect, where absorption
of solar radiation by smoke particles increases
atmospheric stability

(3) the second indirect effect, where the smaller cloud
droplets result in longer cloud lifetimes

(4) the invigoration effect, where warm rain process is
delayed through first and second indirect effects,

3From Wang et al, Environ. Res. Lett. 4 (2009)




Case Study: Severe weather April
27t 2011 (Huntsville tornado)

« MODIS aerosol optical depth (AOD) shows
significant aerosol loading over Gulf within
warm sector of storm

« RAQMS surface Black and Organic Carbon
(BCOC) analysis shows highly elevated aerosols

« RAQMS used to initialize and provide lateral
boundary conditions for 4km WRF-CHEM with
explicit (MOSAIC) aerosol/cloud interaction
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Case Study: Severe weather April

27t 2011 (Huntsville tornado)
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Inclusion of aerosol cloud interactions
significantly impacts the predicted

precipitation distribution and
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Pablo Saide in collaboration with Greg
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Precip. Obs vs WRF & WRF-Chem

Skill for 3h accum precip. vs different precip. thresholds
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Volcanic Ash Prediction

2010 Eyjafjallajokull volcanic eruption

False Color Imagery (12-11um, 11-8.5um, 11zm) Ash Loading
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Ash Detection product (left) and Ash Loading (right) using the GOES-R Volcanic Ash Algorithm applied to
Meteosat-9/SEVIRI data! (From Mike Pavolonis, NESDIS/STAR, and Justin Sieglaff, CIMSS)

thttp://www.goes-r.gov/products/baseline-volcanic-ash.htmi



WRF-CHEM Volcanic Ash Module

"A 4-bin WRF-CHEM volcanic ash module developed by George Grell at Earth
System Research Laboratory (ESRL) and Martin Stuefer at the University of
Alaska, Fairbanks (UAF) is used in forecasting volcanic ash.

Volcanic Ash Forecast Uncertainties

*The mass estimates are estimated from the height of the erupted ash. For the
Eyjafjatjalla case, eruption heights are constrained with radar data (~150 km from

the volcano).

=There is high uncertainty with the erupted mass: A 500 meter offset in the height
changes the total mass estimate by almost 60% for injection heights <5km.

»There is also high uncertainty in the assumed size distribution of the ash particles,
which determines the plume lifetime.



WRF-CHEM Volcanic Ash Forecast (contours) and SEVIRI 11 micron AOD (colored)
during the 2010 Eyjafjoll eruption in southern Iceland.



GSI Volcanic Ash Assimilation

»SEVIRI volcanic ash retrievals are assimilated into WRF-CHEM using the
Gridpoint Statistical Interpolation (GSI)

=SEVIRI 11 micron volcanic ash extinction is assimilated

=11 micron AOD first guess is computed within WRF-CHEM (updated with
Andesite optical properties)

Modified NMC method for Background Errors

2 forecasts:
1) emission heights 1.2 times larger than control experiment
2) emission heights 0.8 times higher than control

Used differences between 00z April 14 to 00z April 19, 2010 hourly forecast (valid at
same time) to build the statistics



Results

WRF-CHEM Baseline GSI/SEVIRI assimilation
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Significant increase in 11 micron AOD for older plume with GSI/SEVIRI assimilation



Verification

Comparisons with RAMAN lidar
measurements at Maisach, Germany
show that maximum volcanic ash mass
concentrations near the vicinity of the
observed plume reached 3,226 mgm=3in
the GSI/SEVIRI assimilation experiment
and only 155 mgm™ in the baseline
experiment. Gasteiger et al. [2011]
estimated maximum volcanic ash mass
concentrations of 1,100 mgm=3 (650 to
1,800 mgm3) at an altitude of 2.2km at
08Z on April 17, 2010.

Both experiments show an additional
plume at 10km which is not observed.

Maisach 1064 nm aerosol backscatter
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TEMPO/GOES-R Synergies

‘ Tropospheric Emissions:
I | Nasa Monitoring of Pollution

Pl: Kelly Chance
(Smithsonian Astrophysical
Observatory)

O TEMPO is NASA's first Earth Venture
Instrument award under the agency's Earth
System Science Pathfinder program.

0 TEMPO spectroscopic measurements in the
ultraviolet and visible provide a tropospheric
measurement suite that includes the key
elements of tropospheric air pollution
chemistry

O TEMPO will be launched on a commercial
satellite as a hosted payload with a target
launch in 2019

0 TEMPO will be a component of a global GEO
constellation for pollution monitoring along
with Europe (Sentinel-4) and Asia
(Geostationary Environment Monitoring
Spectrometer)
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Field of Regard Mexico City to Canada tar sands & Atlantic o Pacific TEMPO moves high heritage LEO hardware to GEO following
a low-risk build philosophy. The high design maturity of the
TEMPO spectrometer is leveraged from LEO-proven heritage
from GOME, SCIAMACHY, OMI, and OMPS, as well as from
GEO studies and risk reduction activiites. This, coupled with
substantial performance margins, results in a low-risk,
Achieved by spectrometer design compact configuration ideally matched to deliver a high
value science product.

Imaging Time 1250 scan positions with 2.8 sec integration

{0 km Native pixel achieved by 44 cm
Footprint E/W 4.5 km telescope effective focal length

Spectral Range 280-690 nm 1,024 spectral channels matched to 2k focal plane

Spectral Resolution 0.6 nm

Spectral Sampling 0.2 nm

Heritage-based grating spectrometer efficiently achieves the
requirements derived directly from the Science Traceability Matrix.
Requirements TEMPO
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ratios are the foundation for a low-risk program.




TEMPO measurements will capture the

diurnal cycle of NO, that is missed by

current LEO observations — Will

complement GOES-R fire detection and

GOES-R GLM for improved emission

inventories
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TEMPO UV-Vis observations significantly
Improve sensitivity to O3 near the surface

over the use of UV only — Will complement
GOES-R Total Column Ozone retrieval




TEMPO measurements will retrieve Absorbing
Aerosol Optical Depth (AAQOD) to detect elevated
layers of absorbing aerosols. — Will complement

GOES-R ABI AOD retrieval and allow

determination of altitude of smoke, dust and ash

plumes

MODIS AQOD retrieval from Agqua

OMPS AAQOD retrieval from Suom| NPP
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Credit: NASA image by Jesse Allen, using OMPS data provided
courtesy of Colin Seftor (SSAI)
Source: http://earthobservatory.nasa.gov/IOTD/view.php?id=78389




sSummary

O Assimilation of MODIS AOD retrievals from polar orbit improves global
forecast skill

= Assimilation of GOES-R ABI AOD and TEMPO AAOD retrievals will
improve regional forecast skill

O Aerosol/cloud interactions during significant smoke events have been shown to
iImprove the prediction of precipitation during the April 2011 Tornado outbreak

= Neglected microphysical process in current model guidance for severe
storm prediction

O Assimilation of SEVIRI 11 micron AOD improves volcanic ash forecast skill
over Europe

= Assimilation of GOES-R ABI volcanic ash and TEMPO AAQOD retrievals
will improve volcanic ash and SO2 forecast skill over North America
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