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Summary of Radiance Data Assimilated In
NCEP global model

GOES-15 Sounder

SEVIRI (Meteosat-10)

AMSU-A (N-15, N-18, N-19, Aqua, MetOp-A,MetOp-B)
MHS (N-18, N-19, MetOp-A, MetOp-B)

HIRS (Metop-A)

ATMS (SNPP)

CrIS (SNPP)

AIRS (Aqua)

IASI (MetOp-A, MetOp-B)

SSMIS (F17, F18)
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Green was added in August 2013 Upgrade
Blue is part of next upgrade (aim is August 2014)
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Radiative Transfer Upgrades
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Original radiance bias correction scheme

Air-mass dependent in GSI
A two-step procedure{ Separate scan-angle dependent

h =h(x) + b (x, §) + b

where  b®" (x, B) = Zﬁ[a p, (X)]

h(x) is radlatlve transfer model
P; is predictor term with predictor coeff. £;
a; 1S pre-specified parameter

The control variables X and IB are estimated by minimizing (Derber et al.,
1991, Derber and Wu, 1998)

I(x, ﬂ)——(x ) B (x=%,)+ L (B-5,) B B-5)
+§[y—h(x,ﬁ>YR—l[y—h(x,ﬁ)]



What we expect to achieve with the
enhanced radiance bias correction
scheme

»Combine the scan angle and air-mass bias
components inside the GSI variational

framework.

" Eliminate the duplications and potential risk of opposite
drifting between the two components

»Remove the pre-specified parameter for
each predictor, so avoid the trial-and-error
procedure for any new bias predictors

» Apply a new pre-conditioning to the predictor
coefficients taking into account of observation
contribution, speeding up the convergence
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Original scheme: a two-step procedure
- pandle Is computed outside GSI, a running average of OMF

* The predictors of air-mass are computed inside the GSI

Enhanced scheme: a one-step
proceKdure

angle K
b o ZﬂN +k¢
k=1
« Variational angle bias correction, p2"9!¢ is computed inside
the GSI along with other predictor terms
 satang file no longer needed

e Special attention to the initialization of bias coefficients:
using quality-controlled data from previous run; or mode of all
data H



Change of the Preconditioning

Current preconditioner Modified preconditioner
0
5 _ B, O | _ B By
0 By 0 M,

¢ Hessian w.r.t. predictor coeff. of the cost
function
o°J -1 Tp -1
aﬁzr =B, +H;R'H,, H

B=B

_oh
L=
aB B=B

Modified block -diagonal preconditioning M, is set to be the
inverse of 9°J (Dee 2004

op?
For simplicity, only diagonal elements of M, are considered
at each analysis cycle



Convergence comparison

1st outer loop 2nd outer loop

Normalized Gradient Norm
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SSMIS F18 Bias Characteristics

O-B (no bc) O-B (no bc) vs. Latitudes
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* Ascending and descending biases are significant (summer season is worse)
* Ascending pass is warmer than the descending pass
e Latitudinal biases are significant; locations of max/min biases change with season 16



Variational Bias Correction Scheme

* Variational bias correction provides an automatic inter-calibration of the observing
system in the context of the forecast model, producing bias corrections that
improve the consistency of the information entering the analysis

* For instruments other than SSMIS the bias correction is calculated using five air-
mass predictors and four scan angle predictors

* For SSMIS a variety of different additional predictors were tried based on
experience at the Met Office, NRL and ECMWF

* The Met Office scheme was found to give the best results

Bias correction predictors used are:

SSMIS specific

const  zenith qlogd lapse e

> i 3 2
offset  angle liquid e rate | node X cos(lat)  sin(lat) ] 0 6
water square

*node is +1 if ascending, -1 if descending
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Application of NWP
Bias Correction for SSMIS F18

O-B Before Bias Correction
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Application of NWP Noise
Reduction for SSMIS

* By design SSMIS oversamples the brightness temperature field at relatively high noise
* Must apply spatial averaging before assimilating the data to reduce the noise
* A spatial averaging scheme was implemented inside of analysis(GSI) for SSMIS
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Impact of Assimilating SSMIS into
Current Operational System (1)

15 Jan to 30 Mar 2012 (00Z cycles only)

Northern Hemisphere 500 hPa
Geopotential Height Anomaly Correlation
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* |Impact is not significant in northern hemisphere
Marginally significant positive impact in southern hemisphere



Impact of Assimilating SSMIS into
Current Operational System (2)

Tropical (20°N-20°S) 0 to 5 Day Wind Forecast RMS Errors
15 Jan to 30 Mar 2012 (00Z cycles only)
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3DVar — EnKF 3DVar Hybrid — 4DEnsVar
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GSI Hybrid [3D] EnVar

(ignoring preconditioning for simplicity)
* Incorporate ensemble perturbations directly into variational
cost function through extended control variable
— Lorenc (2003), Buehner (2005), Wang et. al. (2007), etc.

X, VB () s ,B%Z (@ L) +

J (X:‘ ’a):ﬂf i(

L, -y R (hx )

N
n n
X! :x;+TZ(u o X, )
n=1

S & [.: weighting coefficients for fixed and ensemble covariance respectively
x,’: (total increment) sum of increment from fixed/static B (x;’) and ensemble B
a,: extended control variable; X: :ensemble perturbations

- analogous to the weights in the LETKF formulation
L: correlation matrix [effectively the localization of ensemble perturbations]

T: operator mapping from ensemble grid to analysis grid )3



4D Data Assimilation

t-3 t=0

Observations are not necessarily taken at the analysis time, so what can
we do?
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Hybrid 4D-Ensemble-Var
[H-4DENSV]

If we explicitly take account of the time component of the ensembles we have
Hybrid 4D Ensemble Var (the extra k indices indicate time sub-windows)

J(xt,a)= B, ( () B (xi) + B, Z( ) ( )+
oot

1

Where the 4D increment is prescribed exclusively through linear
combinations of the 4D ensemble perturbations plus static contribution

N
X, =X +TZ; (a”o (xe)E)

Here, the static contribution is considered time-invariant (i.e. from 3DVAR-
FGAT). Weighting parameters exist just as in the other hybrid variants.
Again, no TLM or ADJ! 25



4D EnVar: Way Forward

Natural extension to operational EnVar

@ Uses variational approach in combination with already available 4D
ensemble perturbations (covariance estimates)

No need for development of maintenance of TLM and ADJ
models
® Makes use of 4D ensemble to perform 4D analysis

& Very attractive, modular, usable across a wide variety of
applications and models

Highly scalable
# And can be improved even further
# Aligns with technological/computing advances
Computationally inexpensive relative to 4ADVAR (with TL/AD)

# Estimates of improved efficiency by 10x or more, e.g. at Env.
Canada (6x faster than 4DVAR on half as many cpus)

Compromises to gain best aspects of (4D) variational and
ensemble DA algorithms

Other centers pursuing similar path forward for deterministic
NWP

# Canada (replace 4DVAR), UMKO? (ensemble of 4D Ensemble Var)
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Move from 3D Hybrid (current operations) to Hybrid 4D-EnVar yields

improvement that is about 75% in amplitude in comparison from going to

3D Hybrid from 3DVAR.
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Other on-going and future projects

¢ Cloudy radiance assimilation:

# Mutli-pronged attack on the problem for both infrared and
microwave observations.

¢ GOES-R readiness:

# Preparing to switch to new processing for GOES AMVSs in
preparation for GOES-R

# Developed clear-sky radiance generation capability in
preparation for GOES-R radiances.

# Starting work on assimilating cloudy GOES-R radiances using
SEVIRI as a proxy

® Improved sea-surface temperature analysis will aid assimilation
of geo radiances through better simulation of the diurnal cycle.
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