
Formation of a tropical cyclone eye is often 
associated with intensification [1]. Currently, 
determination of eye formation from satellite 
imagery is generally performed subjectively.   
Thus, not all available imagery is utilized.  An 
automated method of performing eye detection 
would be highly desirable to improve forecasts 
sensitive to this information.  This development 
would also assist with automated tropical 
cyclone center fixing algorithms using ATMS 
data. Additionally, the eye detection algorithm 
may be improved by using VIIRS data. 
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Eye Detection Data

Figure 1. Example IR images from Hurricane Katrina. Boxes show the 
selection of pixels used with the algorithm. Image classified as “eye 
absent” (top). Image classified as “eye present”  (bottom)

A dataset of 2677 IR images [2] containing 
tropical cyclones with wind speeds >50kt has 
been assembled for use with this project. 

Within each of these images, a small selection 
of pixels near the storm center were included 
for use with the algorithm.  Produced as part of 
the Dvorak method [3] applied by the National 
Hurricane Center, each image has a subjective 
classification of whether an eye is present at 
the time of the image.  These subjective 
classifications are considered truth in this 
project.  To evaluate the quality of the eye 
detection, these data were randomly shuffled 
and partitioned so 70% of the data would be 
used for training and 30% would be used for 
testing.  

Figure 2. Eigenvectors produced from the IR dataset.  Eigenvector 0 
(top), eigenvector 1 (left), eigenvector 3 (right)

Principle Component Analysis/Class 

Separability

Using Principle Component Analysis (PCA) [4] on 
the training dataset, 11 eigenvectors were 
found that account for 90% of the variance of 
the data. By projecting the training and testing 
data onto these eigenvectors, the dimension of 
the data is reduced.  This allows for the 
separability of the two classes to be inspected 
(Figures 2 and 3).  Additionally, this allows 
machine learning algorithms to more easily 
perform classification.

Figure 3. Mean principle components for the “Eye-Absent” and “Eye 
Present” classes.  Eigenvectors 0, 1 and 3 seem to separate the two 
classes the best.
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Work will be performed to determine which 
cases the algorithm performs poorly on.  A 
confidence measure will be added to the 
output.  Additional data may be added to the 
input.  The estimated classifications may be 
used as input to a forecast and evaluated to 
determine if it improves the accuracy of the 
forecast.  The eye detection estimates may also 
be used as input to an automated center-fixing 
routine and statistical intensity forecast models. 
Since the eye may be a small feature, the 
algorithm may be improved by using high 
resolution VIIRS imagery.  

Future Plans
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Figure 5.  Average probability an image will be correctly classified.

Figure 6.  Average probability an image will be incorrectly classified

Images with eyes in them were correctly 
classified approximately 78% of the time and 
images without eyes were correctly classified 
about 72% of the time.  Figure 6 illustrates that, 
on average, 28% of the images without eyes 
were incorrectly classified (False Positive).  
Additionally, roughly 22% of the images with 
eyes were incorrectly classified (False Negative).

In order to gain an accurate view of how well 
the eye-detection algorithm performs, the 
algorithm was run 1200 times.  Each time, 
the input data was shuffled and then 
partitioned into different training and testing 
sets.  Figures 5 and 6 show the 
accuracy/error statistics averaged over all of 
these runs. Figure 5 shows that, on average, 
roughly 75% of the images were correctly 
classified. 

Preliminary Results

The training set with reduced dimension was 
used to train a Quadratic Discriminant Analysis 
(QDA) implementation [4].  Estimated 
classifications were then generated for each of 
the images in the testing set. These estimated 
classifications were then compared to the 
subjective classifications to measure the error. 

Figure 4: Once trained, the QDA implementation can be used to 
perform classification on new images not belonging to the training 
set.

Quadratic Discriminant Analysis
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