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1 Introduction 
The Geostationary Operational Environmental Satellite R-series (GOES-R) program [1] is 

a collaborative development and acquisition effort between the National Oceanic and 
Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration 
(NASA).  There are many signals of interest transmitted on the GOES satellite 
constellation [2]. This document focuses on two signals in particular, the Emergency Managers 
Weather Information Network Signal (EMWIN) [3][4], and the Low Rate Information 
Transmission, or LRIT [and its follow-on in the GOES-R era,  High Rate Information 
Transmission (HRIT)] [5][6].   

In the current GOES I-M era, EMWIN-I (FSK modulated) and LRIT are being transmitted 
over the GOES-11 (West) and GOES-12 (East) satellites (Table 1). In the GOES N-O-P era, 
the EMWIN-N signal will be transmitted on GOES-13 through GOES-15.  The EMWIN-I and 
LRIT signals have their own carriers but share transponders, while the EMWIN-N and LRIT 
signals have their own transponders.  There are commercially available EMWIN receivers 
currently available [7].   

In the GOES-R era, the EMWIN and LRIT information bit-stream will be combined before 
signal modulation and transmission.  The new LRIT signal, with embedded EMWIN, will have 
a transmission baud rate of 927 kilo symbols-per-second (ksps).  Because the new combined 
signal will be at a higher rate, its name will be changed from LRIT (from the GOES N/O/P 
era) to HRIT1 in the GOES-R era.   

 
Table 1: Signals of Interest from NOAA’s GOES satellites 

Spacecraft 
Launch 
Year Signal Modulation Throughput 

[sps] 
GOES-I (8) 1994 WEFAX FSK 9600  
GOES-J (9) 1995 WEFAX FSK 9600  

GOES-K (10) 1997 EMWIN-N OQPSK2 17,970  

GOES-L (11) 2000 EMWIN-I / LRIT FSK / BPSK 9600 /293,000 
GOES-M (12) 2001 EMWIN-I / LRIT FSK / BPSK 9600 /293,000 
GOES-N (13) 2006 EMWIN-N / LRIT OQPSK / BPSK 17,970 / 293,000 
GOES-O (14) 2009 EMWIN-N / LRIT OQPSK / BPSK 17,970 / 293,000 
GOES-P (15) 2010 EMWIN-N / LRIT OQPSK / BPSK 17,970 / 293,000 
GOES-Q (16) Cancelled
GOES-R (17) 2014 HRIT BPSK 927,000 

                                      
1 The name HRIT implicitly refers to both the HRIT and EMWIN data-streams. 
2 The GOES-K satellite was updated to transmit the EMWIN-N (OQPSK) signal. 
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The current EMWIN and LRIT receivers will not be able to receive the transmission off of 

GOES-R when the signal goes active, thus motivating the design of a low-cost EMWIN/HRIT 
prototype receiver that maintains the spirit of the EMWIN service of maximum accessibility.  
The prototype receiver can be used now to receive the current EMWIN and LRIT signal, and 
will be capable of receiving the GOES-R HRIT transmission without any changes to the major 
components of the system, making it an ideal solution to ease the transition.  The prototype is 
not intended to be commercially available, but rather lay the groundwork for a commercial 
product lines.   

This document is primarily intended for developers and covers system, hardware, and 
software design considerations.  It is important to note how this document is organized before 
reading further.  Section 2 presents an overview of the product description. The main hardware 
and software blocks are introduced. In Section 3, a detailed explanation of the hardware 
component of the proposed solution is presented. Similar analysis is done for the software 
components in Section 4. Performance results for the integrated receiver are presented in 
Section 5. Software and hardware appendices with detailed information for future developers 
appear in Sections 6 and 7. Conclusions are presented in Section 8. 
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2 EMWIN/HRIT Prototype Solution Description 

2.1 System Overview  

The EMWIN/HRIT prototype receiver is a software-based radio that is designed around 
an open source framework called GNURadio [8][9].  (An EMWIN-I and EMWIN-N solution 
designed by Avtec is also a software based radio [10].)  Most of the receiver is implemented in 
software running on a Windows-based PC. However, there is some additional hardware 
required for the system to work. Figure 1 shows an example of the complete solution.  Every 
system requires a powered satellite dish that is at least 1 meter.  Such dishes are commercially 
available for as low as $500 [11]. All EMWIN-I/N users that currently have a dish will not be 
required to purchase a new one to receive HRIT.  The dish is followed by a Low Noise Block 
(LNB) Down-converter that amplifies the signal and down-converts from L-band (~1690 MHz) 
to an IF frequency around 140 MHz. The Gain over Temperature (G/T) Figure of Merit 
(FOM) of the combined dish and LNB/LNA3 must be at least -0.3 dB/K.   

The bandwidth of EMWIN-I/N is a narrowband signal that allows existing commercial 
receivers to utilize a PC’s sound-card to digitize the data and send it to the computer for 
further demodulation. The new HRIT signal’s bandwidth is too wide for any typical PC 
component to digitize the signal. New hardware is therefore required with the sole purpose of 
digitizing the analog signal and streaming the data to the computer for further processing.   

Currently, there exists a commercially available device called the Universal Software Radio 
Peripheral (USRP) designed by Ettus Research that is capable of digitizing the HRIT signal 
[12][13].  This general purpose board has more functionality than necessary to decode the 
signals of interest. A trimmed-down version of this device was developed by The Aerospace 
Corporation based on the USRP schematic.  This device is referred to as the Aerospace 
Intermediate frequency Digitizer (AID).    

Although not shown in Figure 1, ground systems require that the satellite dish be powered. 
The AID as designed for this prototype solution does not supply power to the satellite dish, 
therefore an alternate means of powering the dish is required. The LNB devices used by some 
ground systems may be unable to supply power to drive the AID board.  An inline amplifier will 
be required in these situations.     

 

                                      
3 LNA stands for Low-Noise Amplifier 
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2.2 Hardware Overview 

The AID is a mixed signal hardware board with components that are typical of any 
communication system.  The general characteristics of the board are summarized in Table 2.  
The input signal power must be between -70 and -5 dBm.  The hardware can process signals 
that have a baud-rate of 10 mega-symbols per second, with bandwidths as large as 20 MHz. 
However, the software components of the receiver limit the achievable system throughput to 
much lower values. The current board design is meant to handle downconverted-signals 
between 130 and 150 MHz.  The cost of printing the board and purchasing all of the 

components is under U$S 100.  A summary of the major components is shown in Table 3.   
 

Figure 1: EMWIN/HRIT System Diagram 
 
 
 



Interim Report Provided for the NOAA GOES-R Program by The Aerospace Corporation 

5 

Table 2: AID Specifications 

Part Cost Approximately $100   
Sensitivity -70 dBm to -5 dBm   
IF Range 130-150 MHz   
Power 1.5 Watts, USB Powered 
Maximum Signal Bandwidth Up to 20 MHz   
Maximum Signal Baud Rate Up to 10 Msps 

 
 

Table 3:  AID List of Major Components 

Anti-Aliasing Filter 
20 MHz Bandwidth, fc=140 MHz, 
Insertion loss 11 dB 

AGC Maximum Output (13 dBm)   
ADC ( Analog to Digital Conv.) 64 Mega-samples /second 
FPGA 5980 Logic Elements   
USB Controller 24 MHz Input Clock   

 

 

2.2.1 AID Front End 

The front-end analog portion of the AID performs filtering and amplification, while the 
digital portion samples the analog waveform, down converts it from IF to baseband, and finally 
streams the digital samples to the computer via the USB controller.  The data is sampled with 
the Analog-to-Digital Converter (ADC) while the down-conversion and down-sampling of the 
digital samples are performed by a Field Programmable Gate Array (FPGA). 

The signal at the AID’s SMA4 input is assumed to have been received by a satellite dish 
down-converted from RF to IF in the range of 140 ± 6 MHz.  The input signal is also assumed 
to be DC blocked.  The board was specifically designed to operate at 140 MHz to be 
compatible with legacy EMWIN solutions such as EMWIN-N and EMWIN-I.   

To suppress out-of-band thermal noise and non-HRIT signals, a 20-MHz wide Surface 
Acoustic Wave (SAW) filter, with a center frequency of fc = 140 MHz, was used as a first 
element in the receiver chain.  The bandwidth of the filter was chosen to be larger than the 
bandwidth of the signal to accommodate an array of different weather satellite signals.  
Typically, the large insertion loss (11 dB) introduced by the SAW filter would affect the 
overall power; however, the board was designed to receive a signal that has already been 

                                      
4 SMA is a SubMinature version A connector 
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boosted.  The only amplification capability on the board is the Automatic Gain Controller 
(AGC) that is driven by the output of the SAW filter.  The output of the AGC goes to the 
ADC for conversion. 

The ADC used in the design has 12-bit resolution and is sampled at 64 MHz5. Because the 
sampling frequency of the ADC is less than twice the bandwidth of the IF-signal, the hardware 
is performing IF-sampling (sub-sampling) instead of direct sampling.  The principles of IF-
sampling will be detailed further in Section 1.1.   

Although the FPGA and ADC are efficient enough to down-convert a communication 
signal with very high baud rates, the USB device presents a communication bottleneck of 
256 Mega bits per second (Mbps) for transferring output bits to a PC.  This bottleneck 
restricts the maximum input signal baud rate to just over 10 Mega-symbols per second (Msps).  
Since the HRIT will have a symbol rate of less than 1 Mbps, the USB interface provides 
sufficient throughput for this application.   

2.2.2 AID Power Meter 

The AID has an LED power meter that indicates the power of the input signal as shown in 
Figure 2.  The LED is driven by the output of the AGC.  Below is a photo of the AID board, 
with enclosure and LED power meter.  The power meter is intended to provide a visual aid for 
users while aligning the satellite dish to maximize signal strength. 

 

 
Figure 2: LED Example 

 

2.2.3 Power Consumption 

The AID can be powered completely by the USB port, requiring no additional AC power 
sources.  The board takes in 5 Volts from USB port and uses 270mA, thus consuming under 
1.5 Watts of power. 

                                      
5 The original design of the AID box had an ADC running at 48 MHz. 
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2.3 Software Overview 

The EMWIN/HRIT software radio continuously grabs data off of the USB port and 
demodulates it in real time.  As stated earlier, most of the signal processing is done in 
software, maximizing flexibility and minimizing the amount of additional hardware necessary to 
process the desired signals.  A simplified block diagram of the software is shown in the bottom 
portion of Figure 3.  Although not shown, the first operation by the software is to acquire the 
carrier frequency.  The operation only happens occasionally, thus the first persistent processing 
block of the software radio is a filter to isolate the exact signal of interest and reject all other 
signals.  After that, the software performs the core functions of digital demodulation: phase 
tracking, matched filtering, and timing tracking.  In the case of EMWIN-N, LRIT, and HRIT, 
the tracked digital data is sent to a Viterbi decoder for decoding.  After that, the data has 
finally been converted from an IF analog signal, at the output of the LNB, into binary data.  
From there, additional processing, like Reed-Solomon (RS) decoding, is done to convert the 
bit-stream into text and images to be viewed using a visualization graphical user interface 
(GUI).   

 summarizes the EMWIN/HRIT software.  The software requires a computer system 
equipped with a dual-core Intel Processor with Streaming SIMD Extensions version 3 (SSE3)6 
and approximately 1 GB of RAM.  The computer also needs at least one free USB 2.0 port.  
The software was built around multiple libraries including: GNU Radio 3.1.2, the FFTW library 
“Fastest Fourier Transform in the West”, Intel Performance Primitives, and USB libraries.  
These libraries are of interest to designers, but are completely irrelevant to the end-user.  The 
software currently achieves a maximum speed of over 1.5 Msps, resulting in plenty of computer 
processing margin.  

 
Table 4: Software Specifications 

Operating System Windows XP    
Interface USB 2.0   
Max Throughput (as of today ) 1.5 Msps   

EMWIN/HRIT Requirements 
Intel Dual Core Processor. 1GB 
RAM 

Software Libraries Used 
 

GNU Radio 3.1.2, FFTW, Win-
libUSB32, Intel Performance 
Primitives 

  

                                      
6 In 2009, all dual-core Intel processors had SSE3 extensions.  
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Figure 3: Detailed EMWIN/HRIT System Diagram 
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3 Hardware Description and Performance 

3.1 Hardware Design 

Section 2.2 provided a brief overview of the AID hardware board.  This section will go into 
much greater detail about the hardware board.  For a detailed description of how the hardware 
interfaces with the software, and a detailed look at the schematics, please see Section 7.   

The AID design was intended to be as identical to the USRP board as possible, but 
stripped down of excess functionality that was not needed to receive the signals of interest.  
Design diversions between the AID and USRP were motivated by reducing size, weight, power 
and cost.  For convenience, the AID diagram is shown in Figure 4, where three distinct circuits 
are highlighted: clock, signal, and power. 

 

 
Figure 4: AID Diagram 

 

3.1.1 AID: Power Circuit 

The AGC, ADC, and FPGA all operate at 3.3 V, while the USB device runs at 5V.  A 
Low-dropout regulator (LDO) is used to produce two voltage levels across the board.    

3.1.2 AID: Clocking Circuit 

To minimize cost, the phased-lock loop (PLL) used in the original USRP clocking network 
was removed.  A 64 MHz crystal is currently used to drive the FPGA and the ADC, while a 24 
MHz crystal is used to drive the USB controller.   
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3.1.3 AID: Signal Circuit 

The signal line starts at the SMA connector input and ends at the USB output connector.  
The signal path represents a typical flow for A/D sampling. The following subsections will 
analyze in detail the methods used for digitizing and processing the received signals. 

3.1.3.1 AID: IF Sub-sampling  

The new HRIT signal will have a baud rate of less than 1 Mbps, resulting in a Nyquist 
sampling rate of 2 Mega-samples/second (Msamps/s).  If the signal was sampled at baseband, 
we would only need an ADC operating at above 2 MHz.  As shown in Figure 4, the AID 
samples directly at IF (~140 MHz), instead of shifting the signal down to baseband first.  This 
form of sampling is referred to direct IF-sampling, or sub-sampling, since the ADC sampling 
frequency is less than twice the highest frequency (280 MHz). 

The bandwidth of interest spans from 134 to 146 MHz, which results in a Nyquist rate of 
24 Msamps/s  The reason the bandwidth of interest is so large is because signals of interest 
for GOES-R users might be at several distinct IF frequencies across the frequency span.  The 
input bandwidth is restricted by the SAW bandpass filter (BPF).  The exact frequency 
response of the filter is shown in Figure 5. 

 

 
Figure 5: SAW Filter Frequency Response 

 
Sub-sampling uses the general principle of sampling theory [14].  Figure 6 shows a block 

diagram of the signal processing done by the AID board. The first block is the SAW BPF, 
followed by signal processing blocks implemented by the FPGA, which include: the mixer, the 



Interim Report Provided for the NOAA GOES-R Program by The Aerospace Corporation 

11 

decimator, and the low-pass filter. The AGC has no implicit role in sub-sampling and is thus 
omitted from the figure. 

 

 
Figure 6: IF-Sampling Block Diagram 

 
There are two signals of interest shown in Figure 6, the output of the BPF and the output 

of the ADC.  To illustrate the theory behind IF-sampling, the following example illustrates how 
sub-sampling works for two signals in our band of interest. 

 
 

Example: Sub-sampling 
Let the input signal be a real waveform with a bandwidth of 400 kHz and a center 

frequency of 137.5 MHz (these are actually similar characteristics to the LRIT signal).  Figure 
7 shows the spectrum of Signal-1.  The full spectral representation shows spectral content at 
±137.5 MHz. The positive spectral image is colored red, while the negative content is colored 
gray. The SAW-filter filters this spectrum such that the bandwidth of the signal being sampled 
does not exceed 20 MHz. In this example, the signal is much less than 20 MHz so the input 
and output of the BPF are equivalent. 

The spectrum of the sampled waveform, Signal-2, is shown in Figure 8.  This spectrum 
follows the standard laws of sampling.  Copies of the “negative” and “positive” peaks are 
spaced every 64 MHz, which is the assumed sampling frequency.  The negative copies of the 
spectrum have aliases at {…, -137.5, -73.5, -9.5, 54.5, 118.5, 182.5, …} MHz, while the 
positive copies fall at {…, 137.5, 73.5, 9.5, -54.5, -118.5, -182.5,…} MHz.  The figure shows 
that the negative and positive images are separated by 19 MHz, thus there is no aliasing 
between the negative and positive images, despite the fact that the signal was not sampled at 
the direct Nyquist rate of 280 MHz.   

As illustrated in Figure 8, the closest signals to baseband are images centered around 
9.5 MHz.  The mixer, shown in Figure 6, with frequency Fc = 9.5 MHz, brings the images 
down to baseband.  If the IF frequency of interest, f, is between 136 and 144 MHz, the mixer 
frequency needs to be set to Fc = f – 2*64 MHz, to bring the IF signal to baseband. 
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Figure 7: IF Sampling Signal 1 

 

 
Figure 8: IF Sampling Signal 2 

 
 

3.1.3.2  Choosing the sampling frequency for the AID 

The USB controller has the capability of producing a 48 MHz clock output by multiplying 
a local 24 MHz reference clock by a factor of two, and by using a phase-locked loop. When 
the AID box was originally designed, in order to minimize component costs, the same 48-MHz 
signal was initially used to control the ADC. 

The sampling approach described in the example above worked great for EMWIN/LRIT 
legacy signals, running either at 48 or 64MHz. However, the final GOES-R frequency plan, 
with the HRIT signal at 1697.4 MHz generated some aliasing problems when using a 48-MHz 
clock. 

On Figure 9, we show a plot of the spectrum for the GOES-R signals Global Re-Broadcast 
signal (GRB) and HRIT after converting from L-band to an IF frequency. The GRB signal is 
centered at 136.5 MHz and is 12-MHz wide, while HRIT is centered around 143.9 MHz and is 
around 1.35-MHz wide.  When this signal is sampled at 48 MHz with the approach described 
above, the HRIT images will interfere with each other causing a significant degradation on the 
overall performance. 
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Figure 9: Spectrum of GOES-R Image Using 48 MHz Sampling. The HRIT Signals are Interfering 
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Figure 10: Spectrum of GOES-R Image Using 64 MHz Sampling. The HRIT Signals are not Interfering 
 
The GOES-R signals do not interfere when driving the ADC with a 64 MHz clock.  This 

was done by simply replacing the clock that feeds the ADC on the AID board.  The FPGA and 
serial firmware did not have to change as the original Ettus USRP and GNU Radio firmware 
account for a 64-MHz clock.  

3.1.3.3 AID: Filtering and Decimation 

In traditional digital communication systems, the only step left after sampling a signal 
would be to digitally low-pass filter (LPF) the baseband signal and send the digital data out 
for further processing.  Because we are performing IF-sampling, there is one additional step to 
consider before sending the data out, and that is decimation. 

Without decimation, the output digital signal would have a rate of 64 Msamps/s and with 
an ADC resolution of 12 bits, the resultant USB output sample rate would be 576 Msamps/s.  
Streaming 576 Msamps/s over a USB interface is not possible.  Even if the USB interface 
could sustain that data rate, the software demodulator would not be able to keep up (using a 
typical consumer grade PC).  The purpose of decimation is to reduce the data rate as much as 
possible before sending it to the PC.   
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In general, let R be the symbol rate of the signal under study. Let Fs be the sampling 
frequency of the ADC, and M be the decimation rate as shown Figure 6. The number of 
samples per symbol is simply Fs/R/M.   

For the AID device, Fs is fixed at 64x106.  The symbol rate of the signal of interest is 
usually known, so the decimation rate can be chosen accordingly to achieve a desired number 
of samples/symbol.  A demodulator should have at least 2 samples/symbol to be able to 
correctly recover the transmitted signal. At the same time, processing a higher number of 
samples per symbol reduces the overall throughput, measured in symbols per second (sps). If 
decoding speed is not a critical issue, as a rule of thumb for a BPSK transmission, we set the 
samples/symbol to four. When trying to maximize the possible throughput, we set the 
samples/symbol to two.  

The HRIT software demodulator can work with any number of samples/symbol greater 
than two, but there is no reason to overburden the software with more samples per symbol if it 
won’t increase the quality of the received data.  The samples/symbol must be as close to an 
integer value as possible in order for the software to work properly.   

The decimation range of the AID is any even integer between 2 and 256.  When 
demodulating the LRIT or EMWIN/HRIT signal, the software chooses a decimation rate that 
results in 2 samples/symbol by default.  

The following example illustrates how decimation works.  Let the input signal be 
293,883 sps. Without down-sampling, there would be 64x106/293,883 = 
217.78 samples/symbol.  Decimating by 108 would result in 2.01 samples per symbol, and is 
the default decimation rate used by the prototype receiver to digitize the current LRIT signal. 
Table 5 shows the parameters for receiving LRIT, EMWIN-N, and EMWIN-I.   
 

Table 5: EMWIN /LRIT Configuration 

 
 

Product HRIT LRIT EMWIN EMWIN
Modulation BPSK BPSK OQPSK FSK
RF Frequency [MHz] 1697.4 1691 1692.7 1690.725
IF Frequency [MHz] 143.9 137.5 139.2 137.225
Data Rate ( R ) [sps] 927,000 293,883 17,970 9,600
ADC Sampling Frequency (Fs) [MHz] 64 64 64 64
Mixer Frequency (Fc) [MHz] 15.9 9.5 11.2 9.225
Decim. Rate (M) / Samples.per Symb. 1 / 69.04 1 / 217.77 1 / 3561.5 1 / 6666.6

16 / 4.3 54 / 4.03 88 / 40.47 74 / 90.09
22 / 3.13 72 / 3.02 178 / 20 98 / 68.02
34 / 2.04 108 / 2.01 222 / 16 136 / 49.01
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Now that the principles of sub-sampling have been covered, the real FPGA implementation 
will be treated. 

3.1.3.4 Implementation of a Digital Down-Converter on an FPGA 

The FPGA digital down converter is shown in Figure 11. 
 

 
Figure 11: FPGA Digital Down-converter Implementation 

 
Recall that the mixer, down-sampling and low-pass filtering are all implemented on the 

FPGA chip on the AID. The user can control the mixer frequency, cf , and the decimation rate 
M.  The low pass filter coefficients are automatically computed given the user choice of M, 
such that the cutoff frequency is (64x106/M/2). 

The mixer is implemented via the CORDIC algorithm which multiplies incoming IF 
waveforms by a complex valued exponential [15].  Decimation, which includes down-sampling 
(dropping samples) and filtering, are done together in practical digital systems.  One of the 
more efficient low-pass and down-sampling filtering algorithms is the Cascaded Integrator 
Comb (CIC) filter [16] which is implemented on the AID board.  Lastly, there is a First-Input-
First-Output (FIFO) buffer between the USB controller and FPGA to manage the data 
transfer.  The FIFO depth is not programmable by the user.  

The FPGA firmware was completely based on Ettus Research’s USRP design.  The 
original FGPA code was designed to operate in multichannel mode with two transmit and two 

( ) cos sin  ,   SSB signalI c Q c
s s s

t t tg i g t i g iT T T              
     

  I
S

tg M i T
    
 

2cos c
s

ti T  
 

c

Q
s

tg M i T
    
 

2sin c
s

ti T   
 

  
S

tg i T
  
 

M



Interim Report Provided for the NOAA GOES-R Program by The Aerospace Corporation 

17 

receive channels.  The AID only needed to operate one receive channel.  This allowed us to 
implement a single channel version of the original FGPA code.  Our single channel design is 
much smaller, and fits on an FPGA that is cheaper and consumes less power than the original 
FPGA.  The FPGA used is a Cyclone EP1C6, which contains 5980 logical elements.  

 

3.2 Hardware Performance  

There are number of factors that influence the performance of the device, e.g., the 
sampling frequency of the ADC, the noise figure of the system, the noise introduced into the 
system due to clock jitter, the anti-aliasing filter, and other aspects. The best measure of 
board performance is the overall noise figure.  The noise figure of the AID was estimated to be 
around 18 dB.  The single best way to improve performance would be to get a better clock to 
drive the FPGA and ADC, however, the clock that was chosen was adequate to meet system 
specifications.  

In order to characterize the performance of our IF-sampler, we measured the amount of 
folded noise in the band of interest that occurred as a result of sampling.  To conduct this 
experiment, a live signal from GOES-12 was used.  Figure 12 illustrates a plot of the captured 
signal.  The blue line shows the frequency response of the LNB, which has a bandwidth of 
50 MHz, while the green line shows the frequency response of the signal after being filtered 
with a SAW filter.  The performance degradation due to folding was minimal.  

 
Figure 12: Spectrum of Live GOES-12 Signal 
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4 Software Description 
In this section, we describe the signal processing blocks designed to demodulate LRIT, 

EMWIN-I, and EMWIN-N.  Throughout this section, we will reference the different file names 
of the source code used to implement the different processing blocks.  For example, when a 
finite impulse response (FIR) filter-block is shown, it will referred to as gr_fir_filter, because 
that block is implemented using the file gr_fir_filter.cpp. 

We begin this section by describing the general software framework used to design the 
EMWIN/HRIT software receiver in Section 4.1. We then describe in Section 4.2., a carrier 
acquisition algorithm that is performed before demodulating any communication signal  After 
that we investigate the LRIT transmission specification and the LRIT software receiver 
architecture in Sections 4.3 and 4.4 respectively.  The EMWIN-N and EMWIN-I are likewise 
treated in the subsequent sections.  A brief description of the Soft-decision Viterbi decoder 
appears in Section 4.7 

4.1 Software Frame Work 

As stated earlier, the software was developed with a free open source software 
development suite called GNU Radio [8].  The GNU Radio framework provides an environment 
that allows a simple interconnection of different C-written subroutines. The GNU Radio 
paradigm allows different programmers to write custom digital-communication blocks that can 
be easily configured and connected using basic C++ syntax.  Once all the blocks are 
configured and connected, GNU Radio automatically streams data from beginning to end 
without the need for explicit user control.   The user-controlled initial state of the software 
blocks can be found on Table 6. 

The environment of connecting the blocks and streaming data in GNU Radio is resource-
efficient, making GNU Radio a good framework for designing real-world radio applications.  
The main bottlenecks in GNU Radio come from the implementation of the actual 
communication blocks, for example, filtering, error correcting decoding, etc.  In order to take 
advantage of the powerful GNU Radio framework but also produce an application with high 
performance, it is best for users to write their own communication blocks, or simply optimize 
the blocks that already exist in the GNU Radio library.  In order to develop the EMWIN/HRIT 
solution, several GNU Radio-blocks were optimized and many new blocks were created in order 
to build a system that works according to the specifications.   In many cases, blocks were 
written using the Intel® Performance Suite 5.1 [17]. This library allows many mathematical 
operations to be performed in parallel, using specific low-level Intel-processor instructions.  
Vector multiplications and matrix operations can be efficiently pipelined in order to increase 
the overall system throughput. The system diagram in Figure 13 shows the logic behind the 
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software radio components of the EMWIN / HRIT solution. Each of the software-blocks that 
are part of this solution are described in the following sections. 

 

 
Figure 13: Overall EMWIN / HRIT System Block Diagram 
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Table 6: AID User-Defined Input Parameters 

Parameter 
Comm

and 
Flag 

Default Value Description 

Enable File Sink -wr 0 
Write raw USB samples directly to disk. 
Output file will be located in 
c:\temp\usrp_log\  

Decimation Rate -dr 
Depends on Signal 

range: [2-256] 
Sets the decimation rate on the FPGA. 
See Table 5 

Center IF-Frequency -fc 
 

For the LRIT Signal, default values is 
137.5 MHZ, for EMWIN-I, 137.225 MHz, 
and for EMWIN-N is 137.9 MHz. 143.9 
MHz for HRIT 

Enable Software Filter -lfilter 1  Enable software rejection filter 

Repeat Incoming 
Waveform 

-repeat 0 

If the radio is run using a recorded user-
file, this flag enables the receiver to 
repeat the incoming waveform once it 
reaches the end of file This is a useful 
feature for bit error rate testing 

Roll off Factor -roll 
0.5 

Range: [.1 - .9] 
Roll-off factor for square root-raised 
cosine pulse shaping 

Bit Rate -br Depends on Signal
293,883 for LRIT, 17970 for EMWIN-N, 
9600 for EMWIN-I, 927,000 for HRIT. 

Buffer Size -buff 64 [kbytes] 
For multi-threaded applications, this 
parameter defines the size of the buffer 
between threads 

Use Recorded Data? -rec 0 

Allows software radio to run reading a 
pre-recorded file stored on a network drive 
instead of using data from the USB port 
of the AID box. 

Timing Bandwidth -tbw 
3000[LRIT] 

1000[EMWIN-N] 

Indicates the factor that divides the 
symbol rate of the desired signal to 
determine the timing-loop bandwidth for 
LRIT or HRIT and EMWIN-N only 

Phase Bandwidth -pbw 
100[LRIT] 

200[EMWIN-N] 

Indicates the factor that divides the 
symbol rate of the desired signal to 
determine the phased-locked-loop 
bandwidth for LRIT or HRIT and 
EMWIN-N only 
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4.2 Frequency Acquisition 

The purpose of the block is to estimate the center frequency of a sampled communication 
waveform.  The constituent blocks of the acquisition engine are shown in Figure 14. The core 
of this software engine is based on averaging the successive Fast Fourier Transforms (FFT) of 
the incoming signal. The frequency-search window (that depends on the initial frequency 
uncertainty), the bin-resolution, and the amount of bin-averaging are all runtime 
programmable. The command-line frequency acquisition options and default values are 
described in Table 7.  A fourth-law detector has been provided to lock onto the BPSK 
subcarrier. For the offset quadrature phase-shift keying (OQPSK) case a square-power 
detector is used. The search window size and bin resolution values determine the FFT size. 

 

 
Figure 14: Block diagram of software-based frequency acquisition 

 
A peak-search algorithm is run once the desired number of averaged FFTs have been 

computed. The acquisition engine will return a set of bins whose integration-value determine 
the likelihood of the signal of interest having frequency contents on that particular bin. Each 
detected peak will therefore have an associated power metric. Let )(0 NP


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vector of measured power levels. The acquisition engine creates a vector of sorted metrics 
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detector, the output is ideally an impulse function. This implies that in order to measure the 
signal power one would ideally require summing over only a single bin on the numerator. 
However, due to the imperfect size of the FFT-bins, our experiments show that considering 
eight adjacent bins is a better indicator of the true signal level. At low SNRs, squaring or 
quadrupling the value of a particular bin can have severe squaring-losses. Therefore the SNR 
operating point must be considered before choosing a specific frequency-acquisition method. 

 
Table 7: Configuration for Frequency-acquisition Subroutine 

Parameter 
Command 

Flag 
Default 
Value Description 

Enable / Disable 
Freq.Acq -acq 1 Frequency acquisition is enabled by default.  
Bin resolution -fa_res 50 Hz Frequency bin-resolution 
Freq. Range -fa_range 50 kHz Initial frequency uncertainty to search for 
Detection Rule       

Square-Law
 

-fa_2 
 

0 or 1 
 

Depends on signal of interest and SNR. Default 
method for OQPSK. 

4th order Law -fa_4 0 or 1 Depends on signal of interest and SNR. Default 
method for BPSK. 

Absolute Power
  

f Square and 4th Power are disabled, then this 
method is enabled. Used in some low SNR 
scenarios. Default for FSK. 

FFT Averages -fa_numfft 16 
Number of times FFT algorithm is run to measure 
the frequency content of a specific bin 

Forced Frequency 
Offset 

-foff 0 

User can set a desired frequency offset that adds 
to the value that the frequency algorithm obtains. 
Or one can turn acquisition off, and enter in a 
known offset manually.  

 

4.3 LRIT Transmitter Specifications 

The digital LRIT is an international standard for data transmission that was developed by 
the Coordination Group for Meteorological Satellites (CGMS) in response to the 
recommendation for digital meteorological satellite broadcasts. The CGMS Global Specification 
provides the standard that is supported by all operational geostationary meteorological 
satellites to be flown by the United States, European agencies, Japan, China, and Russia. The 
NOAA and other world meteorological agencies have developed subsequent system 
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specifications, designs, and implementations of their specific LRIT systems. The origin of the 
name LRIT is due to its initial low data rate of 293 ksps.  

The full LRIT specification can be found at [5][6].  The packetization process of LRIT 
data follows a standard developed by the Consultative Committee on Space Data Systems 
(CCSDS).  Below is a summary of steps for converting image data into an LRIT waveform.   

LRIT Transmission Process  
 Compress image data with Rice coding [18] 
 Add CRC (Cyclic Redundancy Check)   
 Create Virtual Channel Data Unit (VCDU) data payload out of compressed image data 
 Assemble Coded Virtual Channel Data Unit  (CVCDU) packet 

o Reed Solomon encode VCDU data payload 
o Add VCDU deader 

 Assemble the Channel Access Data Unit  (CADU) packet  
o Randomize CVCDU packet 
o Add synchronization header 

 Viterbi encode CADU packets continuously without termination 
 Modulate Viterbi encoded data using BPSK modulation 
For a more detailed description of the transmission process, please see the specification. 

[5][6].  In Table 8, key LRIT signal parameters are presented. 
 

4.4 LRIT Software Receiver Architecture 

The steps required to process an LRIT file from the transmitted data are shown in Figure 
15.  As stated earlier, the first step to demodulate LRIT is carrier acquisition.  After carrier 
acquisition, the signal is low-pass filtered to reject all adjacent signals.  The signal rejection 
filter can be turned on and off using the flag specified in Table 6.  After bringing the signal 
down to baseband and filtering out interference, phase tracking, matched filtering, timing 
recovery, and convolution decoding via the Viterbi algorithm are performed. The data link 
layer takes the output of the Viterbi decoder consisting of blocks of 8160 bits, with each block 
being preceded by a 32 bit header for synchronization. These 8160 data bits have been 
randomized to assure sufficient bit transitions using the polynomial 87531)( xxxxxh  . 
The de-randomized bits form a Coded Virtual Channel Data Unit (CVCDU) as shown in Figure 
15.  The first 892 octets of the 1020 octets in the CVCDU correspond to the header and data 
bits of a systematic (255,223) RS code [20].  By using a systematic code, the 892 octets are 
not modified by the RS channel code. This implies that under high SNR values the VCDU data 
could be used without RS decoding. The network layer forwards the RS decoded packets to 
the transport layer that takes care of reassembling the LRIT files that were subdivided before 
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transmission. The session layer is next, where the CRC field checks for packet integrity using 
the polynomial 161251)( xxxxg  .  The presentation layer will finally convert the 
decompressed LRIT files into user data files. The type of files that will be received include: 
image data files, service messages, alphanumeric files and Global Telecommunication System 
(GTS) messages.  
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Table 8: Key LRIT Transmission Parameters 

Parameter Value 
Satellite Service GOES-11 (West), GOES-12 (East), GOES-13, GOES-14 
Modulation BPSK 
Center Frequency 1691 MHz 
Typical (140 MHz) IF 
Frequency 

137.5 MHz 

Measured Symbol Rate 293,883 symbols/second 
Pulse Shape Root Raised Cosine (α= 0.5) 
Forward Error 
Correction Encoder 

 Type:  Convolutional (Soft-Decision Decoder) 
 Rate:   ½ 
 Constraint Length:   7 bits 
 Generator:      
           G1 = 1111001;  G2 = 1011011 
 Symbol Inversion:   none 
 Puncturing:           none  

Synchronization Header 1ACFFC1D 
Randomizer Polynomial 87531)( xxxxxh 

Reed Solomon (255, 223) code symbol interleaving I = 4 
CRC Check Polynomial 161251)( xxxxg 

 
The BPSK signal of interest is defined by the bit rate, bf , and the subcarrier frequency, 

cf : 
))()(2cos(),()( 0 ttffftmtX cb    

 
where 0f  is a frequency offset introduced by the channel,   is the difference between the 
transmitter and receiver frequencies, )(t  is a phase offset and ),( bftm  is the information 
message to be recovered. A conventional BPSK demodulator circuit with separate phase and 
symbol tracking loops is used for demodulation, as shown in Figure 16. The signal at the input 
of the software radio has already been frequency-shifted from cf  to baseband and decimated 
in the digitizer to reduce the computational requirements: 

 
 

 
 

))()(2cos(),()( 0 ttfftmtY b  
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Figure 15: The LRIT and EMWIN-OQPSK Packet Structure 

 
An optional software-decimator can be added to further reduce the bit rate. For this 

particular implementation, we only use the decimator at the digitizer and use the data rates 
shown in Table 5.  An additional low-pass software filtering stage is added to the input of the 
radio to remove undesired neighbor frequency contents. 

The LNB from the hardware interface translates the incoming frequency of the LRIT 
signal, from 1691 MHz down to cf 137.5 MHz. However, due to the sub-sampling method 
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used, the effective center frequency is cf 9.5 MHz, giving 6 6
max (9.5 10 )(200 10 )    1.9 

kHz, assuming a 200 ppm frequency tolerance on both the transmitter and receiver oscillator 
references.  Phase tracking by means of a Costas loop [19], can be applied to remove the 
dynamic frequency offset, 0f , introduced by the channel and the offset due to unmatched 
reference clocks. Following this stage, a filter matched to the root raised cosine pulse shape is 
used for maximizing the SNR in the presence of additive stochastic noise. A Mueller-Müller 
timing error detector [26] is used to recover the symbol timing of the signal. 

Once the timing properties of the signal have been recovered, a convolutional Viterbi 
decoder is used for error correction. Building a software Viterbi decoder that was able to 
handle the projected data rates of 900 ksps was one of the greatest challenges in this project. 
Since one of the ideas of GNU Radio is to be able to reuse signal processing blocks, we chose 
to build a flexible decoder that could handle any constraint length, rate and polynomial choice. 
Since the full specifications of the future GOES broadcast signal are not completely defined, 
we decided that the practical advantages of having a flexible decoder were better than 
designing a specific decoder for a particular channel code rate that could perhaps attain a 
higher throughput. Our initial design was able to maintain a throughput of around 300 ksps. 
Since this was not sufficient to handle the desired rates, we carefully vectorized the algorithm 
using Intel IPP functions [17]. This redesign allowed us to increase our throughput to 
1.89 Mbps when running the decoder on a dual processor Intel Xeon CPU at 3.7 GHz. In 
Figure 16, the signal flow in the receiver is shown, together with the name of GNU Radio 
blocks that are used in the implementation. Note that, for the case of the Viterbi decoder, the 
block has been labeled ar_viterbi to indicate that this block was never a member of the GNU 
Radio library.  The remaining blocks use the prefix gr, to indicate that they have been derived 
from the original GNU Radio library. This does not imply that these blocks remain unchanged 
from their original versions. In fact, all of them have been optimized using the Intel IPP 
libraries to enhance their throughput. The final signal-processing stage is a threshold slicer that 
generates output bits that are fed to the data link layer for image extraction. 
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Figure 16: Block Diagram Showing the Different Signal Processing Blocks in an LRIT BPSK Receiver 
 

Table 9: Soft Decision Viterbi Decoding Parameters 

Parameter 
Command 

Flag 
Default 
Value Description 

Minimum Threshold -vthresh 0.1 
Minimum bit error rate at the output of the 
Viterbi block, to declare that the decoder has 
solved its phase ambiguity 

Test for Cycle Slip -vperiod 10 

Indicates number of blocks before the Viterbi 
subroutine verifies that it is locked to the 
correct phase. For BPSK there are 2 possible 
states only. For OQPSK there are four. 

 

4.5 EMWIN-N Transmission Specifications 

The full EMWIN specification can be found at [3][4].  Below is a summary of steps for 
converting EMWIN products into an EMWIN waveform.   

 
EMWIN-N Transmission Process  
 Generate gif, jpg, zip, and txt products  
 Create VCDU data payload out of EMWIN products 
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 Assemble CVCDU packet 
o Reed Solomon encode VCDU data payload 
o Add VCDU header 

 Assemble CADU packet 
o Randomize CVCDU packet 
o Add synchronization header 

 Viterbi encode CADU packets continuously without termination 
 Apply binary differential encoding on the Viterbi encoded data 
 Modulation data using Offset Quadrature Phase Shift Keying (O-QPSK) 
 
Table 8 summarizes the key EMWIN-N signal parameters. 
 
 

Table 10: EMWIN-N Key Parameters 

Parameter Value 
Satellite Services GOES-13, GOES-14 
Modulation OQPSK 
Center Frequency 1692.7 MHz 
Typical (140 MHz) IF 
Frequency 

139.2 MHz 

Measured Symbol Rate 17970 symbols/second 
Pulse Shape Root Raised Cosine (= 0.5) 
Forward Error 
Correction Encoder 

Type:   Convolutional  (Soft-Decision Decoder) 
Rate:    ½ 
Constraint Length:  7 bits 
Generator:  
     G1 = 1111001;  G2 = 1011011 
Symbol Inversion:   none 
Puncturing:   none  

Binary Encoding Differential Encoding  
Synchronization Header 1ACFFC1D 
Randomizer Polynomial 87531)( xxxxxh 

Reed Solomon (255, 223) code symbol interleaving I = 4 
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4.6 EMWIN-N Software Receiver Architecture 

The EMWIN software receiver described herein was developed to satisfy GOES-N 
broadcast requirements. The user data format is shown in Figure 15.   OQPSK modulation is a 
variant of phase-shift keying modulation using four different values of the phase to transmit 
information across a channel [19][21].  Taking four values of the phase (two bits) at a time to 
construct a QPSK symbol can allow the phase of the signal to jump by as much as 180 at a 
time. When the signal is low-pass filtered (as is typical in a transmitter), these phase-shifts 
result in large amplitude fluctuations which has an undesirable effect in communication 
systems. By offsetting the timing of the odd and even bits by half a symbol-period, 2T , the 
in-phase and quadrature components will never change at the same time. This will limit the 
phase-shift to no more than 90 at a time which yields much lower amplitude fluctuations than 
non-offset QPSK.  The demodulation chain is shown in Figure 17.   

The 2T  fixed symbol timing offset is removed after the frequency/phase has been 
completely recovered by the Costas loop.  As shown in Figure 17, the phase/frequency 
corrected signal gets split into a parallel I-Q data stream.  The I-data is then delayed by 2T , 
and then recombined with the Q-data to form an offset free phase tracked QPSK signal.  
Because the data has been recombined, the timing tracking and match filtering blocks operate 
on complex I-Q data, instead of working on I-data and Q-data independently.  

Another difference with Figure 16 is that the in-phase and quadrature signals require a de-
interleaving block prior to their Viterbi decoding. This de-interleaving works by taking the in-
phase vector },,,{ 210 


IIII  , and the quadrature vector },,,{ 210 


QQQQ  and combining 

them into a single vector, },,,,,{ 221100 


QIQIQIR  .  Finally, since the EMWIN-N bits are 
differentially encoded, a differential decoding stage is added before the hard-decision detection 
at the binary slicer.  After slicing, the binary data goes to the data link layer processor for 
header synchronization and Reed-Solomon decoding.  

4.7 Soft-Decision Viterbi Decoder 

A convolutional code is a type of error-correcting code in which each an m-bit information 
symbol is encoded into an n-bit symbol, where m/n is the code rate. The transformation is a 
function of the last k information symbols, where k is the constraint length of the code. 
Several algorithms exist for decoding convolutional codes. For relatively small values of k, the 
Viterbi algorithm is universally used as it provides maximum likelihood performance and is 
highly parallelizable. Viterbi decoders are thus easy to implement in digital integrated circuits 
and in software. 

Low complexity high-throughput Viterbi decoders utilize hard-decisions to recover the 
information bits. However, the decoder performance suffers 3 dB loss when using hard 
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decisions.  In order to recover the 3 dB performance loss while maintaining high throughput, 
quantized soft-decisions are used instead of full 32-bit precision floating point numbers.  Our 
soft-decision Viterbi decoder quantizes the 32 bit soft-decisions into 3-bit numbers (8-levels).  
This quantization technique allows the decoder to avoid using floating point multiplications, 
which significantly improves speed while still maintaining a high coding gain. Vectorized 
manipulation of data using the Intel Performance Primitives library also contributed to 
increasing the overall throughput. 

The EMWIN-N, LRIT and HRIT protocols all use a rate ½ (where for each transmitted 
bit, an additional parity bit is transmitted) convolutional code whose parameters are described 
in both Table 8 and Table 10. 

Viterbi decoding is more computationally intensive than all other processing blocks 
combined.  In order to maintain a high throughput, the Viterbi decoder had to be implemented 
on one thread while the BPSK demodulation was implemented on a second thread. By doing 
this, one can take advantage of dual core CPUs, and the total system throughput is equivalent 
to the throughput of the slowest thread alone.  Splitting the Viterbi decoder onto a separate 
thread is not necessary for the EMWIN-N signal due to its slow data rate.  

 

 
Figure 17: Block Diagram Showing the Different Signal Processing Blocks in an EMWIN OQPSK 

Receiver. 
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4.8 EMWIN-I Signal Specifications 

The EMWIN software receiver described in this section corresponds to a legacy FSK signal 
developed to satisfy GOES-I broadcast requirements in [22]. This data stream consists of 
National Weather Service (NWS) weather products and other data files. Each product or file, 
whether ASCII text or binary data, is divided into 1 Kbyte packets and sent as a series of 
asynchronous 8-bits, with no parity bits, one start and one stop bit:(8,N,1)[23].  The 
asynchronous bit-stream follows the RS-232 standard.  This standard specifies that an 8-bit 
data byte is preceded by one start bit (0), and is ended with an idle sequence, which is 
represented by sequence of stop bits (1).   As an example, consider the representation of 3 
bytes of data.   

A synchronous binary representation of 0 base 10, 255 base 10, and 170 base 10, is  
 

000000001111111110101010. 
 
An example of an asynchronous binary representation of the same three bytes is 
 

0000000001111110111111111010101010111. 
 
For easy readability, the start bits and stop bits (idle sequences) are in bold red.   
There is always one start bit before every byte, however the length of the stop bit 

sequence (idle sequence) is indeterminate.  The byte representing 0 base 10 begins with a start 
bit, but continues with an idle sequence of length 6, instead of just a single stop bit.  After 
that idle time, there is a start bit, then the byte representing 255 base 10, and then a single 
stop bit.  After that there is another start bit, the byte representing 170 base 10, and finally 
another idle sequence of length 3.  When parsing the data for text files, the asynchronous 
nature of the bit-stream must be accounted for.   

The EMWIN-I satellite broadcasts are transmitted as asynchronous )1,,8,9600( N . The 
FSK signal has no formal CCSDS packet structure and no error correction codes.  The signal 
has a rudimentary packet structure that has a header marker of 6 bytes of zeros.  The header 
follows the same asynchronous principles as the actual data, so there is a start bit followed by 
an indeterminate idle sequence after each byte of zeros.  Further details on the specification of 
this signal can be found [24].   

Sometimes EMWIN-I is described as Direct FSK or DFSK, not to be confused with 
differential FSK.  The term DFSK is obsolete and the type of modulation used by EMWIN-I is 
simply referred to as FSK by today’s standards. 
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Table 11: EMWIN-I Key Parameters 

Parameter Value 
Satellite Service GOES-11 (West), GOES-11 (East) 
Modulation FSK  
Center Frequency 1690.725 MHz 
Typical (140 MHz) IF 
Frequency 

137.225 MHz 

Measured Symbol Rate 9600 symbols/second 
Frequency Separation  3600 Hz 
FEC none  
Synchronization Header 0x000000000000 (hexadecimal) 
Randomizer Polynomial 2031)( xxxh   (V.36)  
 

4.9 EMWIN-I Software Receiver Architecture 

Frequency-shift keying (FSK) is a modulation scheme that transmits information through 
discrete frequency changes of a carrier wave [25].  A binary FSK signal can be defined by two 
tone frequencies: 0f  and 1f , corresponding to '0' and '1' bits. The demodulator is designed to 
support programmable tone frequencies.  

The tone frequencies may be rather large, while the symbol rate is typically very small. 
The Nyquist sampling [19] requirement dictates a sampling rate, sf , of at least 12 f  to 

prevent aliasing. System throughput and efficiency can be improved by translating the tones 
such that they are centered around DC. The translation is accomplished by first mixing the 
received signal with a tone at a frequency of )(21 01 fffc  .  The new tones are then given 
by: )(21 100 fff   and )(21 011 fff  , as shown in Figure 18.   

 
Figure 18: Down-converted FSK Frequency Diagram 
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Figure 19: Block Diagram Showing the Different Signal Processing Blocks in an EMWIN-I FSK Receiver 

 
The FSK demodulation block diagram is shown in Figure 19. The center frequency 

)(21 01 fffc   is estimated by the carrier frequency acquisition block as shown in the figure.  
A low pass filter is applied to reject out-of-band interference after bringing the tones down to 
baseband.  For simplicity, the baseband tones will be referred to as 0f  and 1f , instead of 0f 

and 1f   for the remainder of the discussion.   
From there, the data is correlated using two locally generated tones, corresponding to 0f  

and 1f . Both correlation output streams go through a running average block, where the 
averaging window period is the width of a symbol period.  The running average is not an 
integrate and dump process.  If there are 100 samples in there will be 100 samples out.  After 
the running average, the data goes through a magnitude block which converts the data from 
complex to real.  These two real-valued data streams then go into an acquisition and tracking 
engine for further processing.   

The timing acquisition and timing tracking blocks that reside inside the ar_fsk_demod 
block are described in sections 4.9.1 and 4.9.2 respectively.  The acquisition block acquires the 
initial time offset, while the symbol timing tracking block maintains timing lock.  The output 
of the timing tracking block is an estimate of the timing error, err  as shown in Figure 21.  
The timing error drives the samplers for both the 0f  and 1f correlation output streams.  Each 
output of the sampler represents the total energy over the 0f  and 1f  bases over an entire 
symbol period.  If the difference of these two outputs is positive, then the correlation against 

0f  is larger than the correlation against 1f , and thus the bit slicer would produce 0.   

cf

0f

1f
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The bit decisions are sent to a data-link layer block for further processing, which is defined 
in fsk_imageprocessor.cpp.  The first step in data processing is descrambling the asynchronous 
FSK data bits. 

The scrambler used is similar to the one in the International Telecommunication Union 
(ITU) V.35 standard (currently replaced by ITU-V.36)[27]. The polynomial used for scrambling 
is 2031)( xxxh   and, unlike the V.35 recommendation, no circuit to detect an adverse 
state is implemented.  Note that unlike the scrambler shown in Figure 15, which can actually 
be thought of as a data-independent bit mask, the EMWIN-FSK descrambler is a data 
dependent shift register. After the data has been properly descrambled, a header consisting of 
six asynchronous null-bytes (with its corresponding start and stop bits) indicates the beginning 
of the data field.   After synchronizing the FSK data, the packet is parsed, and the appropriate 
data is written to disk or sent over a socket according to the EMWIN-I specification.  

 

4.9.1 Symbol Timing Acquisition 

The FSK symbol timing is initially acquired by looking for a “01” sequence transition [26]. 
The outputs of the two running average blocks (for 0f  and 1f ) are monitored over the 
duration of two symbol periods. For each sample on each correlation output stream, the 
current value is compared to the maximum value seen so far. If a new maximum is found, 
three values are recorded: 

1. New maximum. 
2. Current sample number, relative to some arbitrary starting point. 
3. Value of the other channel. 
 
Referring to Figure 20 when one of the channels is at the maximum, the other channel 

should be at the minimum. Assuming a “01” sequence, there will be one large value for each 
channel. Let the maximum value for channel 0 be A, while the value for channel 1 at the same 
time is B.  Likewise, let the maximum value for channel 1 be C, while the value for channel 0 
at the same time is D. A lock condition is declared if the following four conditions are met: 

1.   CA ,  
2. BA    
3. DC   
4.  CA 15.187.0   

The value, , is set to the number of samples/symbol squared and divided by 4. Condition-1 
requires that the peaks be high enough such that if the input AGC is set to 1.0, at least 41 of 
the power is in each peak. The value of   is a programmable threshold, greater than 1. 
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Conditions 2 and 3 require that the peak be at least   times larger than the trough. 
Condition-4 requires that the peaks on channel 0 and 1 be approximately the same. Once the 
lock condition is satisfied, the optimal sampling point is computed by taking the average of the 
offsets where the maximum values occurred for channels 0 and 1. 

If a lock is not detected for the observation window, the window is shifted by one full 
symbol and the operation is repeated. The actual symbol detection is started from the next 
symbol. The initial sample counter is set to T-x, such that a new symbol is declared x samples 
after the current time, where T represents the symbol duration. The value of x  is estimated 
by averaging the times of the two peaks, 0p  and 1p  as )(21 10 Tppx  . 

 
 

 
Figure 20: Detailed Diagram of FSK Timing Acquisition Block 
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4.9.2 Symbol Timing-Tracking 

A classic early-late timing tracking structure is used for the EMWIN-I tracking mechanism 
loop as shown in Figure 21 [19].  In an FSK signal, at any given time, if one tone correlation 
output represents signal, the other output represents noise.  The loop should be driven by 
signal, not noise.  Because of that, the first operation of the timing tracking loop is to select 
which correlation output represents signal, and drive the loop with just that output.  The 
output of the loop, err , drives the sampler as shown towards the end of Figure 19.    

 
Figure 21: Detailed Diagram of FSK Symbol Timing Block 

 

4.10 The Data Link Layer 

After all four data signals, EMWIN-I, EMWIN-N, LRIT, and HRIT, are demodulated and 
decoded, they are sent to a data-link layer processor, as shown in Figure 16, Figure 17, and 
Figure 19 respectively, for final processing.  This processing layer begins by synchronizing the 
data to a header sequence, and ends by either writing the LRIT and EMWIN file products to  
disk, or by sending bytes of data over a socket for further processing using a separate 
application.  

4.10.1 EMWIN-N, HRIT and LRIT CCSDS Packet Processing 

The data–link layer process is very similar for EMWIN-N, LRIT, and HRIT because they 
use a similar CCSDS packet structure as shown in Figure 15. The data file that processes 
these CCSDS packets in our C++ software solution is GOESProcessor.cpp. The first step of 
the process is synchronizing the frames to the 32 bit CADU header.  After synching to the 
CADU header, the payload is de-randomized and then RS decoded. The RS decoder 
determines whether the decoded packet is error free if it still has errors, in which case it is 
discarted.  
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4.10.1.1.1 CADU Frame Synchronization 
CADU frame synchronization is performed by sliding a window of 32 bits and checking the 

sequence against the CADU packet header. If a bit sequence that matches the header is found, 
then frame synchronization is declared.  In an ideal world, one would force all 32 bits to match 
the CADU header sequence in order to declare that the frame is synched and valid, however, 
this could cause many packets to be missed under high noise conditions.  It is important to set 
a suitable frame-synchronization threshold (lower than 32 bits).   

Let the number of differences between the header sequence and a portion of the data 
sequence be denoted by 

 
 )10),32,,1(( ACFFCIDxrxors 

  

 
The 32-bit section of the data sequence that is being evaluated for frame-synchronization 

is represented as )32,,1( 

r .  The summation represents the total number of differences 

between the 32 bit section of processed data and the ideal header.  For instance, if the 32 bit 
section of data differs in 5 of 32 places from 0x1ACFFCID, then 5s .  A frame is detected or 
missed based on the value of s and the frame-synchronization threshold: th .  

 
Frame Synch Found:  ths   

No Frame Present:           ths   
 

Over extremely adverse channels, some frame headers have 20s (which ultimately means 
that 20 out of 32 bits in the header are incorrect), yet the packet can still be decoded after RS 
decoding.  To handle such cases, there are four states of frame-synchronization lock.  The 
value th  varies based on the lock-state.   

Lock State-0 is defined as being completely unlocked, and thus has the most stringent 
frame synchronization threshold requirement to prevent a false detection. On the other hand 
State-3 is defined as being ideally locked, and thus the least stringent threshold. On Figure 22 
a synchronization state machine diagram is shown.  Each state has a lock status number and 
its associated frame-synch threshold. The figure also shows the transition cases to go from one 
state to the next.  
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Figure 22: CADU Frame Synchronization Lock State Graph 

 
The lock state remains unchanged until an event happens that causes a state transition.  

The receiver begins in State-0, and thus the 32-bit sequence must perfectly match the CADU 
header to declare a frame-synch.  This stringent requirement remains in place until a frame is 
found and successfully decoded without error.  From there, the state machine goes 
immediately to State-2.  In this state, we assume that successive headers can be found with 
exact synchronization, i.e., exactly 1024 bytes away from the previous header.  While in State-
2, if five consecutive frames are found with uncorrectable errors in all five frames, then State-2 
is downgraded back to State-0.  If five consecutive frames are detected and decoded error-free, 
then the state machine is upgraded to State-3.   

State-3 assumes that you are perfectly locked, and thus the threshold of tolerable errors is 
set to a very high number.  The default number of tolerable errors in the header for this state 
is set to 22. The user can set its desired threshold for State-3 by setting the flag “–thresh x” 
at the command prompt, where “x” is the desired threshold. A command of “–thresh 32” 
would guarantee that all packets are forwarded to the RS decoder when in State-3.  If a frame 
isn’t found, then the lock state is downgraded to State-2.   

Synchronization can be lost unexpectedly for a number of reasons, including RF 
impairments such as an abrupt frequency drift, fades in the received signal, etc.  It is common  
for a packet to appear unlocked in severe noise conditions (due to excessive errors in the 
header sequence) but this does not always imply that the software receiver has lost lock.  This 
is the reason why, for State-3, the threshold is set to a very high value to ensure that lock is 
maintained in high noise conditions.   The State-machine can still detect when lock is truly lost 
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since as soon as a single frame is found to be in error, State-3 is immediately downgraded to 
State-2, and from there, it can easily restart the state machine and go back to State-0.  

When in State-2 or 3, the next frame in the transmission should be exactly 1024 bytes 
away.  If a frame is not found exactly 1024 bytes ahead of the previous frame header, then the 
software radio advances 1024 bytes and searches for the next header in the exact location is 
expects to find it.  No attempt is made to search in the middle of a frame while in-lock since it 
would reduce throughput and increase the chance of locking to a false header. If headers 
cannot be found in the positions they are expected to be in, the state machine moves to State-
1.   

The threshold in State-1 has a threshold of two errors allowed. With the threshold set to 
such a stringent level, it is safe to search byte by byte (in the middle of a packet) to try to 
find the next header.  After scanning 3072 bytes (three packets) without success, the state 
machine assumes it lost all time reference and returns to State-0 to begin all over again.  Note 
that two missed frames are pre-requisite to entering State-1, thus if an additional three frames 
are missed in State-1, then five total consecutive frames have been missed.   

There is one additional caveat to the state diagram. The EMWIN-N signal has a 
differential decoder which removes the polarity ambiguity; however the LRIT signal does not 
have such a feature. When the LRIT receiver is in State-0,  it will alternatively try to synch to 
the assumed header and its inverted (180) version.  

4.10.1.1.2 RS Decoding 
Once the CADU frames are synched, they are sent to the (223,255)-RS decoder. As shown 

in Figure 15, the CADU payload contains 1020 bytes of data.  The 1020 bytes are comprised 
of four interleaved RS frames of 255 bytes each.  The RS decoder de-interleaves the four RS 
frames and checks to see if each of the four syndromes are correct. If one of the frames is in 
error, the entire CADU packet is dropped. 

4.10.1.1.3 VCDU Product Identification 
The first step after successful RS-decoding is to read the VCDU counter.  The VCDU 

counter increments sequentially.  If a frame is missed, the difference between the current 
VCDU marker and the previous VCDU marker is larger than one.  An error is reported to the 
users if missed CADU frames are detected.   

The following steps occur after obtaining the VCDU marker: read the APIDs, extract the 
file names, and write the files to the disk.  In the case of LRIT, the extracted data file goes 
through a cyclic redundancy check (CRC).  LRIT images are compressed and must be 
decompressed using Rice decompression before the images can be displayed.  
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Each CADU frame represents a single part of an EMWIN or LRIT product.  Some 
products, like short text messages, require two parts, while other files, like EMWIN JPEG 
images, can require over 80 parts.  Every part of the file contains file name information, the 
current product part number, and the total number of parts the product possesses.  If 
subsequent parts of a given file (i.e., TRKINUS.GIF) are not received (i.e., if parts 13 and 15 
are received, but 14 was never accounted for), we alert the user with an error, empty all the 
buffers that store the temporary files, and the complete file is discarded. 

 

4.10.2 EMWIN-N Data Socket Output 

The EMWIN/HRIT prototype solution has preliminary support for outputting data to a 
local socket.  The intention for sending data over the socket is to allow third party vendors to 
develop the weather data user interface.  The system has only been verified with one third 
party application: Wx Weather Message [28].  

To activate the socket output, run the executable from the command line with the flag, -
socket “port number.”  For example, if you want the solution to output data to port 18000, 
then run the executable with –socket 18000.  Once the program executes, it will send a 
message stating that it has established a server at port 18000 and is waiting for a client to 
connect.  At this point, the third party application should request a connection and begin 
interchanging data. The program does not have a time out period, so if no third party 
application is there to connect, the program will wait indefinitely.   

The data sent over the socket is a continuous stream of raw data bytes.  The bytes are 
not manipulated, and there is no advanced handshaking or network protocols used to transmit 
the data.  Once the connection is initially established, the stream of bytes is sent over the 
socket at real-time signal transmission rates.  If the information data rate for HRIT is 450 
Kilo-info-bits/second, then the byte stream being sent over the socket will also be that rate.   

The data cannot be sent over the web, or over a physical device port, or to a user defined 
IP address.  The data is always transmitted to localhost IP address 127.0.0.1.  The only 
flexibility is the port associated with localhost.  That means that the third party software must 
be run on the same machine as the EMWIN/HRIT solution and must always establish a 
connection to localhost.   

The data being sent over the socket is a portion of a CVCDU packet, which is shown at 
the bottom of Figure 15.  This packet has three zones, the VCDU primary header, the VCDU 
data zone and the RS check symbols.  The VCDU data zone is 886 bytes, however the first 2 
bytes in the VCDU data zone are the Multiplexed Protocol Data Unit (M_PDU) headers as 
described in [6].  These 2 bytes are discarded and the remaining 884 bytes of the VCDU data 
zone are transmitted over the socket.   
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4.10.3 HRIT and LRIT Data Socket Output 

LRIT and embedded EMWIN data can also be sent over a socket.  Interaction between 
the EMWIN/HRIT prototype solution and a 3rd party LRIT GUI has not been verified. 

Because LRIT possesses two distinct products, LRIT and EMWIN, our system utilizes two 
sockets.  The flag, –socket “port number” will send the embedded EMWIN data over “port 
number”, while the flag –socket_lrit “port number” will send the LRIT data over a different 
port number.  Thus to send embedded EMWIN data over port 10000, and LRIT data over port 
18000, one would set the flags to –socket_lrit 18000, -socket 10000.    

The first 892 bytes of the CVCDU header is sent over the socket for the LRIT data.  
Every packet is sent over the socket, so it is up to the third party software to handle the data 
accordingly by reading the VCID and APID markers.  Some of the packets will be fill packets, 
and some packets will contain EMWIN data.     

The embedded EMWIN data will be handled exactly as described in the previous section.  
Unlike the LRIT data, interaction between embedded EMWIN data and 3rd party GUI software 
has been verified.   
 

4.10.4 EMWIN-I Data Link Layer Processor 

The EMWIN-I signal does not have CCSDS packets, and its transmission specification is 
explained, with references, in Section 4.8. The data link layer processor follows the 
transmission specification and is done in file FSK_Imageprocessor.cpp in the EMWN/HRIT 
solution.  Because there is no advanced coding or CCSDS packet structure, there is no 
elaborate frame-synchronization process.  

Unlike the HRIT and LRIT and EMWIN-N signal, the first step in the process is not 
frame-synchronization, but instead bit-level de-randomization.  The output of the de-
randomized data still contains asynchronous start bits and idle sequences. This asynchronous 
behavior must be accounted for when performing frame synch, and when processing the 
packet.    

After bit-level de-randomization, the receiver must synch to the 6-byte null character 
header.  If the 6-byte null header cannot be found, the receiver tries to synch to the inverted 
sequence in order to resolve the polarity ambiguity.   

Once a header is found, the data is parsed for a file name, date and time, and most 
importantly, the check sum flag.  The check sum flag that is sent is used for error detection.  
The check sum for FSK, as explained in [24], is the sum of all the ones within the 1116 byte 
FSK packet.  Once the entire data sequence is processed, the sum of all the ones received is 
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compared to the check sum flag transmitted at the beginning of the packet.  If these numbers 
do not agree, an error is sent to the user and the file is not written to disk.  

4.10.5 EMWIN-I Data Socket Output 

The data socket handling protocols and options are identical to the HRIT and LRIT and 
EMWIN-N signals.  The entire 1116 byte EMWIN-I FSK packet is sent over the socket, 
including null headers.  Before sending data over the socket, the asynchronous 8-bit (8,N,1) 
format is removed, so there are no longer any start and stop bits encapsulating the EMWIN-I 
data.   
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5 EMWIN/HRIT Prototype Solution Performance 

5.1 Noise Performance 

5.1.1 Testing Methodology 

There are three ways that the EMWIN/HRIT software receiver is tested for noise 
performance.  

1. A live satellite signal degraded with IF noise  
2. A controlled signal using a signal generator degraded with IF noise. 
3. A controlled signal using a file source including signal impairments. 

5.1.1.1 Testing Methodology for a Live Signal 

 
Figure 23: Testing Setup for Live Signal Feed Experiment 

 
Figure 23 illustrates the live signal test environment.  The satellite dish used to perform 

the test was a 2.3m dish with a G/T specification of 10.5 dB/K.  The dish was pointed at 
GOES-12 for LRIT and EMWIN-I testing, and GOES-10 for EMWIN-N testing. 

The dish had an RF front end integrated in it that provided filtering, amplification, and 
downconversion from L-band to 140 MHz IF using the Quorom Communications LNB model 
no. 1691.10-137.5, with a stated noise figure of 0.5 dB, and an oscillator accuracy of 2.5 ppm.  
The GOES-R IRD requires that the link be closed with a G/T of -0.3 dB/K.  To simulate a 
system with a lower G/T spec, we degraded the signal using an IF noise generator supplied by 
Noise/Com Inc. model number UFX.   
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At the output of the signal + IF noise combiner, there is an additional filter and amplifier.  
These were there to make sure that the levels going into the AID board were sufficient and to 
filter the wideband noise being generated by the Noise Comm IF noise generator.  The Noise 
Comm generates a 3-GHz wideband noise signal, and in practice, the AID board would not 
experience noise with this bandwidth due to filtering provided by the LNB.  

The performance metrics for the system are CADU Frame Error Rate (FER) at the output 
of RS decoding and Bit Error Rate (BER) at the output of Viterbi decoding.  The RS decoder 
automatically reports when one of the RS frames possesses an uncorrectable error within a 
CADU frame.  If one of the four RS frames is in error, then the entire 8192 bit CADU frame is 
declared erroneous.  Missed CADU frames also contribute to the FER, and they are computed 
by examining the VCDU markers as described in Section 4.10.1.   

To estimate the BER of an unknown signal, we assume that the output of the RS decoder 
is error free if there are no uncorrectable errors detected in the frame. We compare this perfect 
sequence to the output of the Viterbi decoder (input to the RS decoder) to estimate the BER 
at the output of Viterbi decoding.  We do not approximate the BER at the output of RS, but 
instead focus solely on FER.   

5.1.1.2 SNR Definition 

The SNR was measured two ways.  The first way was with the spectrum analyzer, and the 
second way was with the EMWIN/HRIT software receiver using the input to the Viterbi 
decoder. To measure the SNR using the spectrum analyzer, we would measure the in-band 
carrier power of the signal.  To measure power, we integrated the power spectral density over 
a band of 450 and 40 kHz for LRIT and EMWIN respectively. Because this signal contains 
both noise, N , and signal, C , the measurement reported by the scope is actually NC  .  In 
order to estimate 0NC , we had to measure the noise density and the total in-band noise 
power.  Generally speaking, )(10log100 BWNN  , where BW stands for bandwidth, and can 
be either 450 or 40 kHz, depending on which signal is being measured.  We made no 
assumptions that the noise was perfectly flat, thus N was never computed analytically, but 
rather it was directly measured with the spectrum analyzer.  Once there was a good 
measurement for NC  , N , and 0N , 0NEb could be computed using the following formula.  
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In the above formula, M is the number of bits/symbol for the modulation constellation, 
and the code rate is simply the rate of the error correction code. For LRIT signals, the symbol 
rate, code rate, and M were 293883 symbols/second, 1/2(*223/255) = 0.437, and M = 1 
respectively.  For EMWIN, the symbol rate, code rate, and M were 17970 symbols/second, 
0.437, and M=2 respectively.   

When working with FER, the code rate was ½*(223/255) because it takes into account 
both codes, while the code rate for BER was only ½ since it takes into consideration just the 
Viterbi decoder. 

The other way to measure SNR was to measure 0NEs directly in software after 
demodulation.  In this case, the SNR estimate is not being defined at the input to the 
EMWIN/HRIT receiver, but instead at the input of the software-based Viterbi decoder.  Figure 
24 is a plot of a signal constellation at the input of the Viterbi decoder. The histogram of the 
data shown in Figure 24 would represent two Gaussian distributions centered around the 
software AGC levels of ±10.  Denote the mean of one Gaussian distribution as   and the 
variance 2

n .  The estimate for SNR is  

s nE N 2 2
0 10 log10( 2 )   

 
We use an iterative signal processing algorithm called the expectation maximization 

algorithm to optimally determine   and 2
n  of the Gaussian distributions. 

 
Figure 24: LRIT Constellation Points 

 
Measuring SNR at the input to the Viterbi decoder obviously assumes that the 

EMWIN/HRIT solution has no implementation loss from the input to the AID board to the 
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input of the Viterbi decoder.  Indeed, in most cases the difference between the SNR measured 
at the input of AID board and the input of Viterbi decoder were less than 0.2 dB.  Using the 
digital data to estimate SNR instead of a spectrum analyzer is helpful for two reasons.  First, 
the measurement accuracy and precision are better.  Second, the digital method allows you 
capture the time varying nature of the SNR more effectively.   

There are several ways that measurement inaccuracies can be introduced when measuring 
the SNR of a live signal.  The best measurement accuracy is achieved when you can turn 
modulation off while doing the measurements.  Modulation was not turned off while testing 
with the live signal.  There was no way to measure just the noise in-band without measuring 
the carrier power, so an assumption was made that the noise was perfectly flat, thus the noise 
power at 137.5 MHz was equivalent to the noise at 139 MHz. In this case, we could measure 
the noise power over 139 MHz, where no signal was present, and assume that it held true for 
the band of interest of 137.5 MHz.   

It was observed at times this was not necessarily true.  There is no guarantee that the 
noise estimate did not posses undesirable signals that were slightly above the noise floor or if 
the noise measured at 139 MHz was precisely equal to the noise at 137.5 MHz.  Sometimes, 
the noise floor appeared uneven causing measurement inaccuracies.   

When measuring the carrier power, NC  , the signal might contain distortions or 
interferers that cannot be fully accounted for.   

The rapid fluctuations in a real signal meant that significant averaging had to be used in 
order to get reasonable measurements.  This introduced many other potential measurement 
problems.  Long averaging blurs time dependent characteristics that can greatly affect the 
performance of the system.  For instance an interferer can corrupt a signal over a short burst 
of time, affecting instantaneous FER, but can be averaged out over time as far as SNR 
measurements are concerned.  The performance of the down-converter might fluctuate 
sporadically over time as well and that might be averaged as well.  In general, the SNR is a 
function of time.  It was observed that the SNR changed 1.5 dB over a 3 hour period without 
any changes to the lab setup.  All of these issues make it difficult to measure SNR 
performance consistently over a long period of time.  

Lastly, estimating Es/No using the data at the input of the Viterbi decoder can produce 
inaccuracies in three main ways.  The first way is that the system may have had a large 
implementation loss due to an interferer, signal distortion, or RF impairments that invalidate 
the assumption of near zero implementation loss between the input of the AID board and the 
input of the software Viterbi decoder.  The second way is when the Es/No is so low that the 
noise estimation algorithm has a non-negligible estimation error.  Lastly, if the noise is non-
Gaussian, for example if there is residual phase noise present, then the Expectation 
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Maximization algorithms assumption of additive white Gaussian noise (AWGN) does not hold, 
and the estimate accuracy will suffer.   

Despite all of these potential measurement inaccuracies, the SNR was measured very 
carefully, and the data presented in this section is reliable.   

5.1.1.3 Testing Methodology for a Signal Generator-based Signal Source 

Figure 25 illustrates the test setup for the signal generator tests. The live feed was 
replaced with a controlled signal source using a signal generator.  One thousand valid CADU 
frames,  containing 8192 bits each, of clean CCSDS EMWIN and LRIT binary data was loaded 
into the signal generator, then the signal generator was set to the appropriate modulation, 
power and frequency to generate the signal IF waveform.  In order to compare the results to 
the live signal, the original data rate for LRIT of 293,883 symbols/second was used instead of 
the proposed 927 ksymbol/second rate for HRIT in the GOES-R era.  The SNR was for the 
most part known, but it was also measured with a spectrum analyzer and with the digitized 
demodulated data to ensure accuracy.  FER and BER were measured.  

 

 
Figure 25: Diagram of Signal Generator Testing Setup 

 

5.1.1.4 Testing Methodology Using a File Source 

Because the EMWIN/HRIT receiver is software based there is an option to drive it with a 
file instead of driving it with a stream of USB samples from the AID board.  The data files 
contain modulated EMWIN and LRIT data corrupted by AWGN, phase noise, and carrier drift.  
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Figure 26 illustrates the test setup for testing with a file source.  There is no hardware 
involved in this process.  A mathematical software tool called Matlab was used to generate the 
waveform and write the data to a file.  The EMWIN/HRIT software application used this data 
file as an input.  The motivation for using a file source was to characterize the receiver 
performance over a wide range of known noise and RF impairment levels.   

 
Figure 26: Diagram of Testing Using a File Source 

 
The software generated waveform used perfect CCSDS LRIT and EMWIN binary data and 

then modulated them according to the modulation parameters.  Denote the clean digital 
waveform as ( )x t . 

After ( )x t  is generated, AWGN, phase noise, and carrier drift were added to the 
waveform, and the final waveform was then written to a file and read by the software receiver.  

The phase noise was added first.  It can be expressed in the following equation 
)()()( tj

pn etxtx   

Phase noise is modeled by a Wide-Sense Stationary (WSS) random process )(t .  Because 
it is WSS, it has a time domain autocorrelation function )( .  The Fourier transform of )(  
generates the spectrum )( .  Figure 27 shows the spectrum of the phase noise used in the 
test.  The phase noise level was set using the 2  level.  Thus, a phase noise of 16 would mean 
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that the random process )(t would be scaled such that *180
(2 { ( ) ( )}) 16E t t 


 .  An 

example of BPSK with a phase noise of 16 and SNR of 20 dB is shown in Figure 28.  

 
Figure 27: Phase Noise Spectrum of Waveform Generated by a File Source 

 
Figure 28: File Source Based LRIT Signal with 16 of Phase Noise and SNR = 20 dB 

 
The carrier drift was added after adding phase noise. It was reported that EMWIN and 

LRIT systems can face a peak-to-peak drift rate of 5 kHz over 20 minutes.  That means that 
the frequency drifts up 5 kHz in 10 minutes, then back down 5 kHz in 10 minutes.   To model 
this drift profile we used a cosine wave instead of a linear drift profile to better approximate 
real conditions.  If a linear profile is used, a 5 kHz rate over 20 minutes peak-to-peak would 
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result in a constant drift rate of 8.3 Hz/second.  Because the profile is a cosine shape, its rate 
exceeds 8.33 Hz/second at some points, and approaches 0 Hz/second at other times.  Below is 
an equation that represents the drift profile.  

2
( ) [cos( ) 1]

2 1200
dfdr t t


   

In the above equation, df , represents the peak-to-peak drift over 20 minutes. The 
maximum instantaneous drift rate is 1200df , which is about 1.5 times ( /2) faster than the 
instantaneous drift rate of the linear drift profile.   

The final data stream, ( )rx t , was created by adding the drift, the carrier frequency cf , 
and AWGN denoted by ( )n t . 

2 [ ( )]
( ) ( ) ( )cj f t dr t

r pnx t x t e n t
    

Because the waveform was created digitally, the Eb/No levels could be tightly controlled.    

5.1.2 Noise Performance Results 

All three testing methodologies are used for both the EMWIN and LRIT signals.  The 
Eb/No metric is estimated as discussed in the previous section.  Recall that when using a file 
source, the Eb/No is known precisely and added digitally. For the live signal, it is estimated 
with a spectrum analyzer, and for the signal generator, it is estimated with the spectrum 
analyzer and analytically computed using known parameters to ensure consistency.   
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Figure 29: LRIT BER Performance Test Results Using All Test Methodologies 

 

5.1.2.1 LRIT BPSK Results 

The BER performance results of the EMWIN/HRIT solution using the various testing 
methodologies are shown in Figure 29.  Recall that the BER is defined at the output of the 
Viterbi decoder, and thus does not take into consideration the RS error-correction 
performance.  The full LRIT link, including RS decoding, is typically closed when the BER at 
the output of Viterbi is 10-3.   

The testing results show that the implementation loss of the EMWIN/HRIT system can be 
as low as 0.3 from theory in terms of BER performance.  There are two file-source tests, one 
with a 5 KHz peak-to-peak drift rate over 20 minutes and a phase noise of 4, and the other 
with a drift rate and phase noise of 20 KHz and 16 respectively.  The less stressed file source 
test showed results worse than the signal generator test but better than the live signal.  The 
more stressed file source experiment actually performed worse than the live signal, which 
implies that the live signal did not have that much phase noise or drift present.   

The Matlab curves and theory are very smooth, while the live signal and signal generator 
curves are reasonably smooth.  All of the curves are within 0.25 dB of each other.  According 
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to the BER plot illustrated in Figure 29, the implementation loss for our system is in the 0.3 
dB range, however, implementation loss can only be officially determined when measuring the 
FER.   

There did not appear to be much of a tradeoff between drift-rate tolerance and BER when 
testing with the file source.  The phase bandwidth and timing bandwidth are always set to 
3 kHz and 100 Hz respectively.  These bandwidths are adequate to track dynamics within 
system specifications.  If these bandwidths are significantly altered, the performance will suffer.  

The FER is very difficult to measure, especially for the live signal.  The tests must be run 
over a long period of time with random fluctuations, and the theoretical FER curve is very 
sharp.  It goes from 10-2 to less than 10-5 in less than 1 dB.   Error events that contribute to 
the FER are burst errors, cycle slips in the phase and/or tracking loops, undetected CCSDS 
synchronization headers, falsely detected CCSDS synchronization headers, in addition to 
standard AWGN. These events do not affect the BER nearly as drastically as FER, if at all. 
Add in measurement inaccuracies and it becomes apparent that FER curves would not be 
terribly accurate.   

Instead of making a curve, we have generated tables that have three basic data points.  
The first data point is where the FER is extremely high and the link is totally unusable.  The 
second point is where the FER is moderate leading to lost data, but still fairly usable. The final 
point is where the FER is confidently less than the system specification of 10-4.  This data is 
shown in Table 12 for all three testing methodologies.   
 

Table 12: LRIT Frame Error Rate Performance for All Testing Methodologies 

 
 

      Signal Generator
Eb/No FER Eb/No FER Es/No FER

2.7 1.60E-01 2.8 0.12 2.7 1.50E-01
3.2 1.40E-03 3.1 1.00E-02 3.1 8.00E-04
3.7 <1e-4 3.7 <1e-4 3.6 <1e-4

      Live Signal File Source Stressed
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5.1.2.2 EMWIN O-QPSK Results 

5.1.2.3  
Figure 30The EMWIN-N BER performance using a live-signal test, signal-generator test, 

and one file source test that has a drift of 1 kHz and phase noise of 4, is shown in Figure 30.  
The live signal feed used to test the EMWIN signal was GOES-10.  The live signal and the 
signal generator tests result in nearly identically performance.  This implies that the additional 
RF impairments present in the live signal do not significantly degrade BER performance.  The 
file source test shows noticeably better performance compared to the other testing methods.  
Again, implementation loss is established by looking at the FER instead of BER. However, the 
BER implementation loss appears to be a little under 0.5 dB and 1 dB at 10-4 for the file 
source and live signal respectively when using the BER metric.  

Five different file sources that represent varying degrees of RF-impairments are compared 
in Figure 31.  The first three curves compare performance across drift rates of 1, 3, and 4 kHz, 
while the last two curves compare performance across phase noise levels of 4º and 12.  The 
EMWIN-N receiver cannot tolerate as much drift as the LRIT signal, thus we limit the 
experiment to a drift rate of 4 kHz peak-to-peak over 20 minutes.  Also, because EMWIN-N is 
an OQPSK signal, it is much more susceptible to degradation due to phase noise.  For the 
LRIT signal, a single loop bandwidth is good over a wide range of frequency drift rates, 
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however the EMWIN-N signal requires one loop bandwidth for small levels of drift and a 
different loop bandwidth for other levels of drift.  The carrier recovery loop-bandwidth for drift 
rates of 1 kHz or less is 120 Hz, and 180 Hz otherwise.  The clock recovery loop bandwidth is 
fixed at 18 Hz.  

At a BER rate of 10-5, four of the curves have approximately the same performance, with 
a loss of about 0.4 dB compared to theory.  The final curve, which represents 12 of phase 
noise, has a loss of about 0.8 dB.  

 
Figure 30: EMWIN-N Bit Error Rate Test Results Using All Test Methodologies 

 
Finally, the FER performance is shown in Tables 13, 14, and 15.  The FER for the 

EMWIN-N signal was considerably more difficult to characterize.  The carrier power seemed to 
be very dynamic compared to the LRIT signal when testing with the live GOES-10 feed, 
therefore it was very difficult to estimate FER vs Eb/No precisely.  The test would begin at 
2 dB, then vary widely between 1.5 and 2.5 dB throughout the test run.  On a given day, the 
link could be closed as low as 2.6 dB, but the following day, the link required an additional dB 
to close.  

When testing EMWIN-N with the signal generator, the transition region was also difficult 
to find.  At one point, the FER is unacceptably high.  At a level 0.25 dB higher, sometimes 
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you would get fairly reasonable FER for awhile before the tracking loops would run into 
successive cycle slips and FER would degrade significantly.  At 0.25 dB higher than that, the 
performance was great and the link was closed.  For these reasons the FER isn’t tabulated for 
the live GOES-10 feed or the signal generator tests.   

As one can see in Table 13, we claim that the link can be closed in the range of 2.9 to 
4.2 dB.  The reasoning for this behavior is because over an extended period of time, the 
system ran error free with an estimated Es/No of 2.9 dB on a given day, but required 4.2 dB 
on another day. As it was mentioned before, one of the reason for this behavior is that the 
overall BER performance over an extended period of time (required to get meaningful 
statistics) is dominated by the lowest Es/No of the testing period. If the channel had a 
theoretical AWGN behavior then these variations would not occur. However a better 
characterization as a fading channel would be able to predict such behavior. The signal 
generator was able to close the link at 3.4 dB, and this is the level that the live GOES-10 
typically closes the link under.  

 
Figure 31: EMWIN-N BER Performance Comparison Using File Sources with Varying Levels of RF 

Impairments 
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Table 13: EMWIN-N FER Performance over GOES-10 Live Feed and Signal Generator Testing 

  
 
Table 14 and Table 15 both represent testing with a file source.  In Table 14, the phase 

noise was fixed at a moderate level of 4 while the carrier drift was varied from 1 kHz to 
4 kHz.  At 1 kHz, the link is closed very well at 3.6 dB, leaving a lot of margin. While at 3 
and 4 kHz, it closes at 4.6 dB, which is right on system specification limits.   

 
Table 14: EMWIN-N FER Performance Using a File Source with Varying Levels of Drift Rate with a 

Fixed Phase Noise of 4. 

 
 

In Table 15, the carrier drift is fixed at 1 kHz, while the phase noise varies from 4 to 16.  
At a moderate level of 8, the link is closed at 4.1 dB leaving 0.5 dB margin left.  At 12, the 
link closes at 4.6 dB, which coincides with the system limits.  Finally, at 16, the link does not 
close at a reasonable level, and the implementation loss is 1.5 dB larger than the allocated 
maximum in system specifications.  A phase noise of 16 is excessive, and if users are using 
reasonable LNBs, like the ones manufactured by Quorum (that was used for testing), phase 
noise will rarely exceed these levels.   
 

Table 15: EMWIN-N FER Performance Using a File Source with Varying Levels of Phase Noise with a 
Fixed Drift of 1 KHz 

 
 

In conclusion, both LRIT and EMWIN-N close the link with the live signal with an 
implementation loss of under 2 dB, and thus meet system specifications.  The EMWIN-N 
signal is very sensitive to drift and phase noise, however, the live signal feed and Quorom 
down-converter used in our experiment never produced excessively high levels of drift or phase 
noise that caused the system to have an implementation loss of more than 2 dB.   

Eb/No FER Eb/No FER
2.9 2.00E-01 2.2-2.9 >1e-2
3.4 <1e-4 3.4-4.2 <1e-4

      Signal Generator       Live Signal (LA)

Eb/No FER Eb/No FER Es/No FER
2.7 1.00E-01 3.1 1.00E-01 3.1 1.40E-01
3.1 1.00E-02 4.1 1.00E-03 4.1 1.40E-02
3.6 <1e-4 4.6 <1e-4 4.6 <1e-4

Drift = 1 kHz Drift = 3 kHz Drift = 4 kHz

Eb/No FER Eb/No FER Es/No FER Es/No FER
2.7 1.00E-01 3.1 1.00E-01 3.1 1.00E-01 3.1 1.00E-01
3.1 1.00E-02 3.6 1.00E-03 3.6 1.00E-02 4.1 1.00E-03
3.6 <1e-4 4.1 <1e-4 4.6 <1e-4 6.1 <1e-4

Ph No = 4    Ph No = 8 Ph No = 12 Ph No = 16
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5.1.2.4 EMWN-I FSK Results 

The Performance of EMWIN-I FSK was measured using the GOES-12 live signal feed, and 
the results compared to theoretical FERs computed via computer simulation. Since the 
EMWIN-I signal does not use any type of error correcting code protection, we only measure 
the FER, and not the BER.  To measure FER, we compared the check sum transmitted during 
each 1116 byte packet, and the check sum computed from the received bits as specified in 
Section 4.10.4.  The FER is plotted in Figure 32.  

The theoretical curves were generated using Matlab, where the program’s built in 
modulator and demodulators were used over AWGN noise, using packets of 1116*8 = 8928 
bits. Due to the low transmission rate of the FSK signal, the results for low frame-error rates 
took many hours of simulation.  

  
Figure 32: EMWIN-I (FSK) Frame Error Rate (FER) performance over GOES-12 compared to an ideal 

FSK modulation over AWGN noise. Packet size is 8128 bits. 
 
As shown in the Figure 32, in the waterfall region of the FER curve, we experienced an 
implementation loss of ~2 dB when using a Signal Generator and ~3 dB for the live signal.  
For the live-signal case an error floor at 2.10-3 appears for Es/N0 values above 17 dB.  For the 
simulated environment using a Signal Generator, performance appears to begin to floor around 
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Es/N0= 18.5 dB, however no errors were found after simulating 45,000 packets at 
Es/N0= 20 dB. 
   

5.1.3  GOES-R Frequency Plan Noise Performance Tests 

In this section, we conduct an all signal generator test to emulate the GOES-R waveforms.  In 
GOES-R, there will be a Global Re-Broadcast signal (GRB) located at 1690 MHz (136.5 MHz 
IF using Quorum down-converter) and HRIT will be centered at 1697.4 MHz (143.9 MHz IF).   
As shown in Figure 33, there are two signal generators, one for GRB and one for HRIT, that 
are combined before adding noise.  The purpose of this experiment is to better represent the 
real frequency environment of the GOES-R signal.  Ideally, there should be no difference in 
performance between this experiment and the standard frequency as tested before. 
 

 
Figure 33: Diagram of GOES-R Frequency Emulation Testing Setup Including HRIT and GRB Signals 

using AID Board 

 
The GRB signal has a proposed Equivalent Isotropically Radiated Power (EIRP) of 

105.25 dBm per polarization while the EIRP for HRIT was 89.25 dBm.  Because of this, the 
carrier power is set to 16 dB higher for the GRB signal than the HRIT signal on the signal 
generator.  The GRB signal is emulated using a QPSK signal with a symbol rate of 9 Mega-
symbols/second, and root raised cosine pulse shape of 0.25  , and a resulting bandwidth of 
12 MHz. The HRIT signal has a symbol rate of 927 Kilo-symbols/second, and an 0.50 
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resulting in a bandwidth of 1.39 MHz 7.  In the previous tests, LRIT was tested, not HRIT, 
thus the rate was only 293,883 symbols/second and centered at 137.5 MHz, with no GRB 
signal present.  Below is a screen capture of the spectrum analyzer of the GRB and HRIT 
signals used to conduct the BER/FER tests in this section.  
 

 

 
Figure 34: Spectrum Analyzer Screen Capture of the Input HRIT + GRB Signal Including Noise and 

SAW Filter Response. 
 
The FER and BER results for the HRIT+GRB signal generator simulation are identical to 

the results tabulated in the LRIT signal generator simulation tests.  This implies that the 
EMWIN/HRIT solution closes the link on current generation LRIT signals, and will be able to 
do the same for the future HRIT signal in the future, without much performance degradation.  

 

5.2 Throughput  

Because HRIT will be operating at 927 ksps, it is important that the throughput of our 
software receiver be at least 1 Mbps.  A throughput test must be conducted in order to ensure 
that our receiver can operate at higher rates.  Because the data structure and modulation 

                                      
7 The HRIT-GRB test was conducted using a roll-off factor of 0.5, however the latest official GOES-R IRD 

specifies a roll-off factor of 0.3.  This discrepancy would not significantly alter the results of the test. 
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properties of the new HRIT signal will be equivalent to today’s LRIT signal, throughput tests 
only need to be conducted on LRIT.   

In order to achieve bitrates that are over 927 ksps, our software splits the demodulator 
across two threads.  As it was explained on Section 4.7, the first thread consists of the 
software blocks from the input of the AID up to the Viterbi decoder. The second thread takes 
care of the Viterbi decoder and the remaining tasks, like frame synchronization and RS 
decoding. Throughput performance using an Intel® Core 2 CPU running at 2.66 GHz is shown 
in Table 16. To produce these measurements, we recorded a live feed of the LRIT 293 ksps 
signal into a local hard drive. We then ran the decoder to process the recorded data instead of 
a live satellite feed. A speed increase of about 1.8 times was achieved due to multi-threading.  

All dual core Intel processing based computers (laptop or desktop) that have been tested 
have sustained throughputs greater than the proposed 927 ksps HRIT data rates.  

 
 

Table 16: Throughput Measurements for EMWIN-N and LRIT 

 
 

Signal Samples/Symbol Single Thread Mult. Thread

LRIT 2 1030 Ksps 1890
EMWIN-N 11 191 ksps N/A
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6 Appendix A: Software Design Document 

6.1 EMWIN/HRIT Software Solution Overview 

This appendix details the design architecture of the prototype EMWIN/HRIT software 
radio.  It is intended for designers who are interested in designing a commercial system or 
doing independent research or analysis based off of the prototype design. The objective of this 
document is to guide designers through the process of re-engineering our software solution 
using the source code that is provided by the GOES-R program office.   

The core design of the software is completely based off of GNU Radio version 3.1.2.  GNU 
Radio is an open source product and subject to the general purpose library GPL.  GNU Radio 
is constantly being updated by the user community. Further information can be found in [8]. 

The Aerospace Corporation modified GNU Radio version 3.1.2 to work in the Windows 
environment and to take advantage of multiple-core computers.  Since our software 
development efforts began, the GNU Radio development community has added built-in 
functionality to work in the Windows environment and support multiple-core processors. The 
newer versions of GNU Radio create a separate thread for every communication block present 
in a given project.  

When our software receiver was compiled using these new versions, the large amount of 
threads present (over 12) generated an excessive amount of handshaking in the software. The 
large amount of buffers and controllers between threads caused the overall throughput of the 
project to decrease from the speeds achieved using only two threads. Overall a careful design 
where software radio blocks are distributed smartly to balance the CPU’s load proved to be a 
more effective way of designing an effective software radio. The GNU Radio environment 
described in this section is based off of our implementation of GNU Radio version 3.1.2, and is 
not current with the latest GNU Radio release.   

In order to open and recompile the source code, the user will need Microsoft Visual Studio 
2003, the Intel® Compiler version 10, Intel® Performance Primitives 5.1, and Microsoft 
Windows XP Service Pack 2.  The list of software products needed to recreate the 
EMWIN/HRIT radio software appears in Table 17.  All of the additional necessary drivers and 
libraries will be included in the software package.   

 
Table 17: List of Required Software Needed to Recompile the HRIT/EMWIN Radio Software and 

Firmware 

Windows XP Service Pack 2 
Intel® Performance Primitives 5.1 
Intel® Compiler version 10 
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Microsoft Visual Studio 2003 
Altera Quartus II  
Small Devices C Compiler 2.6 

 
To begin, download GOESRadio.zip, and unzip its contents to the root C:\ drive.  Notice 

that there are several directories inside the parent directory, C:\GOES Radio\.  
 
 
The following folders can be found in the parent directory GOES Radio\ 
 \Common 
 \Documents 
 \EMWIN_I 
 \EMWIN_N 
 \Filters 
 \Firmware 
 \gnuradio 
 \GUI 
 \EMWIN_HRIT 

 
The directories: EMWN_HRIT, EMWIN_I, EMWIN_N, and GUI are all directories that 

contain a Visual Studio Project file that can be used to generate a new executable. The HRIT 
project creates EMWINHRIT.exe, which is a software receiver for HRIT and LRIT.  The 
EMWIN_I project creates EMWINI.exe which is a software receiver for the EMWIN-I FSK 
signal, and finally the EMWIN_N project creates EMWINN.exe for the EMWIN-N OQPSK 
signal.   

The \common folder has static libraries for the FFTW and LibUSB32 package, and it also 
has files that are shared by more than one project.  The frequency acquisition class is a good 
example of  shared class that would be located in this folder.  

The \Filters folder contains low pass filter coefficients of varying decimation rates for the 
LRIT and EMWIN-N signal.  The current filter coefficient path is set to 
\temp\usrp_log\input_data.  This path can be changed to reflect your compilation, or you 
can move the filter coefficients into that directory. 

The \Firmware folder contains windows drivers for the IF digitizer USB device, usrp.inf.  It 
also contains USB and FPGA firmware, std.ihx and std_2rxhb_2tx.rbf respectively.  A new 
windows system variable, USRP_PATH, must be created and must point to the firmware 
folder. 
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The last folder is the \gnuradio folder.  The \gnuradio folder is a stripped down version of 
the folder from GNU Radio 3.1.2.  Although the file structure is very similar, almost all of the 
original GNU Radio files that are used in the Visual Studio projects have been modified.  In 
addition to the original file structure, there is a new folder called \arradio-core.  This folder 
contains completely new files that never existed in GNU Radio 3.1.2.  There are many critical 
files in this folder, but the most extensive ones are ar_viterbi.cc, ar_viterbi_lib.cc, 
ar_fsk_demo_cf.cc, and ar_freq_acq.cc.  The files, ar_viterbi.cc and ar_viterbi_lib.cc, 
implement the entire Viterbi decoder.  The file ar_fsk_demo_cf.cc implements most of the 
FSK demodulation chain, while a significant portion of the frequency acquisition engine was 
implemented in ar_freq_acq.cc.   

The GUI is a separate project written using Microsoft Foundation Class Library (MFC).  
The GUI takes user inputs and executes EMWINHRIT.exe, EMWINI.exe, and EMWINN.exe 
with various configuration flags. This is equivalent to executing the different software-receivers 
from the command prompt using the flags described in Table 6, Table 7 and Table 9   These 
applications create products such as gif, jpg, txt, zip files, and store these files in two folders 
C:\EMWINTEMP and C:\LRITTEMP.  The GUI has a file dialog box that shows the files 
contained in these temporary folders and allows users to display the files.  The GUI also allows 
users to set various radio options.  For more information about executing the software radio 
using the command prompt or the GUI, please see the User Guide Document on the GOES-R 
website.   

 

6.2 EMWIN-HRIT Visual Studio Project Description 

To open the project,  
 Browse to C:\GOES Radio\.   
 Open EMWIN-HRIT.sln 

The solution view ofEMWIN-HRIT.sln should show the major folders 
 Source Files 
 Header Files 
 Resource Files 

The header and resource files will not be covered in this document, only the source code.  
Inside the Source Files folder, there are the following sub folders 

 gnuradio 
 Main 

The source files within the \Main subfolder contain most of the major processing code.  
The generic communication signal processing blocks, such as gr_agc_cc.cc, are provided by 
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the GNU Radio 3.1.2 package and contained inside the \gnuradio folder and its subfolders.  
The low level code that facilitates the GNU Radio development environment is in the 
gnuradio\gnuradio-cores\runtime folder.   The top level source file that possesses the function 
main() is main_emwin_hrit.cpp, which is located within the \Main folder of the solution. 
 

6.3 EMWIN-HRIT Solution Source Code Organization 

 
In Figure 35 we show the main source code flow from main_emwin_hrit.cpp.  

 

 
Figure 35: Flow of Major Software Blocks in the EMWIN/HRIT C++ Project 

 
All of the functionality that interfaces the hardware to the software is contained in the 

gnuradio\gnuradio-cores\usrp  folder.  If the digital portion of the hardware is significantly altered, the 
code in the usrp folder must be changed.  The most important file is usrp1_source_c.cc.  

The frequency acquisition algorithm is implemented with a frequency-acquisition class described in 
freq_acq.cc within the Main\arradio-functions\ folder. This class uses another frequency acquisition 
sub-class that is defined in the solution file \gnuradio\Arradio-cores\ar_freq_acq.cc.    

The Solution Subfolder data link layer contains code that implements the data link layer blocks as 
specified in Section 4.10.1.  These blocks include Frame Synch, De-randomization, RS decoding, 
decompression, and final file assembly.  The main data link layer code is contained in 
GOESprocessor.cpp.  GOESprocessor was not written in the GNU Radio environment, so the GNU 
Radio block ar_lrit_image_sink.cc was written to create a bridge.  The lrit_image_sink class creates 
and instantiates the GOESprocessor class.  

The RF Digitizer Board Configuration subfolder has a file called front_end_ctrl.cpp.  This 
file allows the software to configure the hardware front end for the RF board as specified in Section 7.4 
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via a Serial Peripheral Interface (SPI) interface.  The gain of the mixers and the frequency of the DDFS 
can be controlled using the functions defined in that class.    

The other folder within \Main is BPSK demod and Viterbi.  This folder contains code that 
performs the physical layer demodulation blocks (shown in Figure 16), the files bpsk_rx.cpp and 
viterbi_rx_bpsk.cpp.  In single threaded mode, the file viterbi_rx_bpsk.cpp is not used, 
as the Viterbi decoder is already implemented in bpsk_rx.cpp.  In multi-threaded mode, which is 
the default mode, bpsk_rx.cpp implements everything in the Physical Layer except Viterbi decoding 
and data link layer processing.  The Viterbi decoding and data link layer processing are done on its own 
thread in the file viterbi_rx_bpsk.cpp.     

6.4 EMWIN-HRIT Solution Signal Source Code Details 

6.4.1 Introduction to GNU Radio Syntax 

 
Before covering source code details, a short overview of our GNU Radio environment syntax is 

required.  There are four general steps to building a communication system using the modified GNU 
Radio environment 

1. Create a block space 
2. Define individual blocks within a block space 
3. Connect the individual blocks together into a chain 
4. Pass data from block to block within a block space 

 
An example of syntax that creates a block space is  
 

vector<gr_block_sptr> bpsk_blocks; 

 
This syntax creates a vector of GNU Radio blocks named bpsk_blocks.  A GNU Radio block is 

implemented using a gr_block class, which is defined in  gr_block.cc.  
To create an individual block, one can use the multitude of GNU Radio based blocks or create a 

custom block of class gr_block or gr_synch_block.  A tutorial for building a GNU Radio compliant 
block is provided on the GNU Radio webpage.  The following is an example of how to define an AGC 
block using the GNU Radio file gr_agc_cc.cc.  

 

 
 
In the above example, an AGC block, named “agc” is created.  It is configured to have an 

averaging window of 100,000 samples, and to maintain an AGC level of 10.  All GNU Radio block 
classes possess a make-function that creates, configures, and assigns a block to a variable.   

After making one or more blocks, they can be connected using the following syntax 
 

float agc_rate = 1e-5;
gr_agc_cc_sptr agc = gr_make_agc_cc (agc_rate, 10);
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connect_blocks(block 1, output port, block 2, input port, block 
space). 

 
The connect_blocks function is defined in gnuradio.cpp.  
 

The following is an example of connecting blocks.  In our system, there is a phase tracking block 
named “phase_track”, and a matched-filtering block, named “match_filt”.  To connect the first output 
of “phase_track”to the first input of the “match_filt” the following code is executed 

 
connect_blocks(phase_track, 0, match_filt, 0, d_blocks) 

 
The first output and input ports are referenced by 0 based on our convention.  The block space 

used for this code is called d_blocks.  Most blocks have one input and one output, but some blocks 
have multiple inputs and multiple outputs.  

Lastly, after connecting all of the blocks, the data is passed from one block to the next, within a 
block space labeled d_blocks, by starting a scheduler using the following syntax.   

 
gr_single_threaded_scheduler_sptr scheduler =        
start_scheduler_thread(d_blocks, true); 

 
 The scheduler function is defined in the file gr_single_threaded_scheduler.cc. 

 

6.4.2 Description of Source Code Functions 

 
One of the key tasks performed in Main() is to form a connection between hardware and 

software using the GNU Radio file usrp1_source_c.cc.  Any hardware that is designed to work 
with GNU Radio software should be designed to utilize usrp1_source_c.cc.  If a contractor 
develops hardware that is not compatible with usrp1_source_c.cc, then significant changes to 
the software will be required.  

To instantiate the hardware one should declare and instantiate the usrp_source_c class.  This is 
done in Main() using the following syntax.  

 

 
 
The original USRP device was designed to be a multi-channel transceiver, while the AID is only a 

single-channel receiver.  As such, the only variable that must be set when establishing a connection to 
the hardware is the decimation rate within the FGPA based down-converter. The frequency of the 
mixer can be set to fc using the following code. 
 

usrp1_source_c_sptr           usrp_source;
usrp_source= usrp1_make_source_c ( which_board, decim_rate,nchan, mux,mode, 0,0,"","")
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usrp_source->set_rx_freq (0,fc); 
 
As described in Section 4.2, the first action of the software radio is frequency acquisition. 

Frequency acquisition does not need to be run concurrently with demodulation, so it is more efficient to 
allocate all of the computer resources to either frequency acquisition or signal demodulation and 
decoding, but not both.  To do this, a hardware source is instantiated for the purpose of 
frequency acquisition only.  After the frequency acquisition engine determines the frequency 
offset present in the received signal, the hardware is released and is re-instantiated later. Below 
is a sequence of code representing frequency acquisition.   

 

 
 
In the example above, a frequency acquisition configuration struct, freq_acq_config0, is formed.  

This configuration struct has two major groups of variables: hardware configuration and frequency 
acquisition configuration.  Frequency acquisition variables such as sampling frequency, the number of 
FFTs, and other parameters are configured in the top half, while the second half is used to configure 
the hardware, which must be instantiated and then released during this process.  After performing 
frequency acquisition, the next steps are BPSK demodulation, Viterbi decoding, and data link layer 
processing as discussed in sections in 4.4, 4.7, and 4.10 respectively.   

The HRIT solution was designed to be capable of using multiple threads available on a PC.  
Viterbi decoding and data link layer processing run on one thread while BPSK demodulation runs on a 
second thread.  In order to do this, two separate block spaces must be created, one for Viterbi 
decoding and one for BPSK demodulation.  This is done with the following code. 

 
vector<gr_block_sptr> bpsk_blocks; 

freq_acq_config freq_acq_config0;
freq_acq_config0.Fs                =  config.Fs;
freq_acq_config0.Fc                = 0;
freq_acq_config0.resolution      = 50;
freq_acq_config0.freq_range     = 50e3;
freq_acq_config0.num_fft_avg  = 16;
freq_acq_config0.square_law    = true;
freq_acq_config0.fourth_law      = false;

//Configure USRP
freq_acq_config0.usrp_which_board  = which_board;
freq_acq_config0.usrp_decim_rate  = decim_rate;
freq_acq_config0.usrp_nchan        = nchan;
freq_acq_config0.usrp_mux          = mux;
freq_acq_config0.usrp_mode = mode;
freq_acq_config0.usrp_fc           = fc;

freq_acq acq(freq_acq_config0, false); 
acq.run();
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vector<gr_block_sptr> viterbi_blocks; 

 
BPSK demodulation,Viterbi decoding and data link processing are abstracted away from main().  

The bpsk_rx class, defined in bpsk_rx.cpp, is created to define and connect the blocks associated 
with demodulation.  The BPSK demodulator is instantiated by calling the bpsk_demod() function of 
the bpsk_rx class. 

bpsk_rx     bpsk_demod(bpsk_blocks, config); 
 

Main() interfaces with this class through the public class functions get_input_block(), 
get_soft_output(), and a configuration struct called bpsk_config. Several configuration 
options are passed from main() to the bpsk_rx class bpsk_demod using the following code. 

 
bpsk_config    config; 
config.Fs     = 64e6/decim_rate;      
config.bit_rate   = atoi(in_bitrate); 

     config.shaping_rolloff = atof(in_shaping_rolloff);     
config.PBW    = atof(PhaseBW); 

     config.TBW    = atof(TimeBW); 
     config.AGC    = atof(in_AGC); 
     config.vthresh          = atof(vit_thresh); 
     config.resynch_thresh       = atoi(resynch_thresh);   
     config.resynch_period       = atoi(resynch_period); 

   config.sink_data            = atoi(sink_data); 

 
The bit rate, pulse shaping, sampling frequency, timing tracking loop bandwith, and other 

parameters are transferred from main() to the bpsk_rx class.  
  Main() creates the first two blocks, the hardware source block called usrp_source, and 

the digital rejection filter block called lrit_filter.  The next several demodulation blocks are 
performed within the bpsk_rx class.  The following code shows the syntax for passing the processing 
from main() to the bpsk_rx class, bpsk_demod.  
 

 
 

Within the bpsk_rx class (bpsk_rx.cpp), several blocks are created and connected as follows. 
 

 
 

connect_blocks(usrp_source,      0, lrit_filter, 0, bpsk_blocks);
connect_blocks(lrit_filter, 0, bpsk_demod.get_input_block(), 0, bpsk_blocks);

connect_blocks(agc, 0, phase_track, 0, d_blocks);
connect_blocks(phase_track, 0, match_filt, 0, d_blocks);
connect_blocks(match_filt, 0, timing_track, 0, d_blocks);
connect_blocks(timing_track, 0, slicer_real, 0, d_blocks);
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As defined in the header file for the bpsk_rx class (bpsk_modem.h), the agc block is connected 
to the outside world using the public function get_input_block(), and the slicer_real block is 
likewise connected to the outside world using get_soft_output().    

After the bpsk demodulator finishes processing the data, it is sent to the Viterbi decoder.  The 
Viterbi decoder is instantiated by calling the viterbi_dec()function of the viterbi_rx class. 

viterbi_rx  viterbi_dec(viterbi_blocks, configV); 

 
The Viterbi class is configured using the following code. 

viterbi_config configV; 
configV.AGC     = atof(in_AGC); 
configV.resynch_thresh          = atoi(resynch_thresh);      
configV.vthresh                 = atof(vit_thresh); 
configV.resynch_period          = atoi(resynch_period); 
configV.socket_flag             = atoi(in_socket);   

 
Several variables are passed to the Viterbi decoder such as the AGC level, the Viterbi 

synchronization threshold, and the time between Viterbi re-synchronization periods.  The data link layer 
variables such as CADU frame synchronization thresholds and socket output options are also passed to 
the Viterbi_rx class. 

As stated earlier, Viterbi processing is done on one thread over the viterbi_blocks block 
space, while BPSK processing is done on another one over the bpsk_blocks block space.  To pass 
data from the output of BPSK processing to the input of Viterbi processing, the following code within 
main() is executed.  

 

 
 

 

The first connect_blocks() call uses the block space bpsk_blocks while the second 
connect blocks() function call uses the block space viterbi_blocks.  Using the our 
modified GNU Radio environment, connect_blocks() is not designed to be inherently 
multithreaded.   To pass data from one thread to the next, circular buffers are used.   

The blocks, buff_sink and buff_source, are circular buffers defined over the block spaces 
bpsk_blocks and viterbi_blocks respectively.  The two buffers point to the same address in 
memory and are designed to be thread safe.  This allows data to be passed between threads safely 
while still using syntax designed for single threads. 

The Viterbi_rx class performs the following code within the file viterbi_bpsk_rx.cpp. 
 
connect_blocks(viterbi_decoder,    0, viterbi_bytes, 0, d_blocks); 

connect_blocks(viterbi_bytes,      0, lrit_sink, 0, d_blocks); 
 

connect_blocks(bpsk_demod.get_softout(), 0, buff_sink, 0, bpsk_blocks);
connect_blocks(buff_source, 0, viterbi_dec.get_input_block(), 0, viterbi_blocks);



Interim Report Provided for the NOAA GOES-R Program by The Aerospace Corporation 

71 

Viterbi decoding is represented by the block viterbi_decoder.  The block viterbi_bytes 
converts a bit-stream into a byte-stream. The block, lrit_sink, creates an instantiation of the 
GOESprocessor class, which take the Viterbi output byte-stream and performs frame synchronization 
and RS decoding. 

 
The last major execution within main() begins the scheduler for both the viterbi_blocks 

and bpsk_blocks block spaces.  
 

gr_single_threaded_scheduler_sptr       scheduler = 
start_scheduler_thread(bpsk_blocks, true); 

gr_single_threaded_scheduler_sptr       scheduler_viterbi = 
start_scheduler_thread(viterbi_blocks, true); 

 
That concludes the illustration of the code flow in main(). This is just a general illustration of 

the code flow, not a software source code manual.  In order to alter the code, an experienced software 
and communications engineer will need to review the actual source code.   
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7 Appendix B: Hardware Implementation 

7.1 Overview 

The Aerospace Corporation designed two boards, an IF board and an L-band board 
referred to as the Aerospace RF Digitizer (ARD).  The AID works with data at 140 MHz while 
the ARD works with L-band frequencies between 1668 – 1708 MHz. The performance of the 
IF board is better than the RF board, and thus it is the preferred board.  All of the testing, 
details, and analysis in this report were conducted using the IF board.  A brief description of 
the RF board is provided in Section 7.4.  The schematics and schematic description for the IF 
board and RF board are available from the GOES-R program office. 

 

 
Figure 36: AID Board Layout 

 

7.2 Aerospace IF Digitizer Layout 

In order to minimize interference from the noisy digital components, the analog portion of 
the board was placed as far as possible from the digital side. The analog and digital grounds 
are joined by the ferrite beads, which improve noise isolation.  Many beads were used in 
parallel to reduce the inductance and therefore reduce the ground bounce. The power planes 
were separated by Low Drop-Out Voltage regulators (LDOs), especially in the case of power 
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supply to the RF side of the board for the ARD.  The general layout of the AID board is 
shown in the Figure 36. 

7.2.1 Components 

Below is a list of all of the components present in the board together with their price. 
Table 18: Component List and Prices 

Device Part # Supplier # Price 
USB 

Controller CY7C68013A-100AXC 
http://www.mouser.com/cypre

ss 1 $8.28 

FPGA EP1C6-Q240 http://www.altera.com 1 $15.50 

FPGA EP1C12-Q240C8 http://www.altera.com 1 $35.50 

ADC LTC2226  1 $4.55 

AGC(Digital) AD8367(45dB range) http://www.analog.com 1 $5.88 
Crystal 
(24MHz) XC742CT-ND http://www.digikey.com 1 $0.43 
Crystal 

(64 MHz) CWX813 1 $1 

Transformer MA/COM1-1-13(balun) www.macom.com 1 $0.90 

EEprom 24LC02B/ST http://www.digikey.com 1 $0.22 

BPF(SAW) TB0320A/TB0203A/TB0438A http://www.golledge.com 1 $12.77 
LDO 3.3V 

(1A) TPS78633KTTT http://www.ti.com 1 $2.80 

DC-DC LM3671MF-1.5 http://www.national.com 1 $1.50 

DC-DC PT5521-1.5(1.5A) http://www.ti.com 1 $15.00 

Capacitor Various Capacitors http://www.digikey.com 104 $8.32 

Resistor Various Resistors http://www.digikey.com 30 $0.41 

Inductor(HP) CDRH5D18NP-1ØØN http://www.digikey.com 1 $0.46 

Inductor MI1206K601R-10 http://www.digikey.com 4 $0.07 

Transistor 2N2907 www.mouser.com 1 $0.23 

SMA J500-ND http://www.digikey.com 2 $2.54 

Fuse(500mA) P11361TR-ND http://www.digikey.com 1 $0.11 

LED L62405CT-ND http://www.digikey.com 2 $0.16 
USB 

connector WM17113-ND http://www.digikey.com 1 $0.40 

JUMPER A26228-ND http://www.digikey.com 5 $0.15 

Board 4 layer 4"x4"(1K, 4weeks) http://www.4pcb.com 1 $5.86 

Population Board Ingko@dec-assembly.com 1   
Power fem. 

Con WM4900 http://www.digikey.com 1 $0.39 
Power male 

Con WM2900 http://www.digikey.com 1 $0.19 

    Total   $76.61 
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7.2.1.1 Clocking  

There are two crystal oscillators on the board: a 24 MHz clock driving the USB controller, 
and a 64 MHz crystal which controls the ADC and the digital signal processing portion of the 
FPGA.  The 24 MHz clock has a frequency stability of 100 ppm and a jitter of 116 psec. The 
64 MHz clock is not temperature controlled, and has a frequency stability of 25 ppm and a 
jitter of 1 psec.   

The FGPA FIFO that streams data to the USB controller is clocked using a 48 MHz 
clock.  The USB device takes the 24 MHz input clock, and uses an internal clock multiplier 
and Phase Locked Loop (PLL) to generate the 48 MHz clock for the FPGA FIFO.  The 
original USRP design used a more extensive PLL network to generate a high speed clock for 
the DSP portion of the FPGA and the ADC, however our analysis showed that it could be 
removed without hurting system performance.  Although the 64 MHz clock utilized by the AID 
did not go through a PLL network, it was good enough to meet system requirements.    

7.2.1.2 Power 

For the AID board, power is provided using the same USB interface used for data 
communication. For the ARD board, an external power supply is necessary. The total power 
consumption for the AID and ARD board is 1.5 W and 4.8 W respectively.   

7.2.1.3 ADC 

An LTC 2228 A/D converter was used in the project. The maximum sampling frequency 
of this device is 65 MHz, with an input signal bandwidth of 500MHz.  The ADC SNR is about 
71 dB at 140 MHz. The digital output of this device is in the 2’s complement format and is 
set by providing ¾ Vdd to one of the pins. Aside from the data format, the device has no 
other major configuration parameters. The noise figure was computed to be around 37dB. The 
input dynamic range is 2Vp-p.  

 

7.2.1.4 AGC  

An AD8367 AGC was used in the project to ensure proper signal levels before entering the 
ADC. This AGC takes in a single ended input, conditions it, and using a balun transformer 
produces a differential signal for the ADC. The AGC has a 7.5 dB noise figure at its maximum 
gain of 42.5 dB for our frequency of interest.  

7.2.1.5 Power Measuring Circuit 

The power measuring circuit lights a series of LEDs based on the estimated signal 
strength.  The signal strength is estimated by evaluating how much amplification the AGC 
needs to boost the input signal to 13 dBm.  The AGC gain is fed into a circuit that drives the 
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individual LEDs.  This circuit consists of a simple resistive ladder which produces six voltages 
between 0 and 0.85 V.  The voltage steps required to light successive LEDs is not linear since 
only six LEDs are used to show the power levels across a broad range.   

7.2.1.6 SAW filter  

The Golledge TB0439 IF anti-aliasing filter was used in the design. The center frequency is 
140 MHz, the bandwidth is 20 MHz, and the insertion loss is 11 dB.  

This filter allows a wide pass band to accommodate multiple IF frequencies, as well as 
sharp rolloff to reject out-of-band noise and signals.  The stop band provides over 30 dB in 
rejection, and the maximum ripple in the pass band is less than 1dB.   

7.3 Hardware-Software Interface 

7.3.1 Loading the USB and FPGA Firmware  

The heart of the original USRP design, and consequently the AID design, is the digital 
processing that is provided by the USB controller and the FPGA.  Both of these digital devices 
utilize intricate firmware. 

When the AID is first plugged into the computer, the FPGA and USB firmware is not 
loaded.  When the board is plugged into a USB port, a sequence of events takes place. First, 
one of the LEDs begins to blink with frequency of 3 Hz. This blinking means that the USB 
controller has awakened and loaded a simple program from the onboard EEProm.  The 
EEProm is loaded using an I2C interface that is available on the board.  The EEProm routines 
provides necessary device IDs that the PC uses to recognize the USB device.  If the device’s 
driver has been properly installed, a “USRP filter” message will pop up on the computer, along 
with USB device name.   

The USB drivers are based on an open source USB package called LibUSB32. The drivers 
are located in GOES Radio\gnuradio\gnu_usrp_files\usrp.inf. 

When a user creates  
 
usrp_source = usrp1_make_source_c 
(which_board,decim_rate,nchan,mux,mode, 0,0,"","")  

 
within the main software radio code, it executes a chain of commands that go all the way 
down to low level USB calls, as provided by the LibUSB32 library.   The first thing this 
function does is load two firmware files: one is std_main.ihx for the USB controller, and the 
other is std_2rxhb_2tx.rbf, which is the firmware for the FPGA.  The naming convention was 
based on the original USRP design which had 2 half band Rx channels and 2 Tx channels, 
however our solution only utilizes one Rx channel.   
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The C++ file that facilitates the firmware loading sequence is usrp_prims.cc.  In order to 
successfully load the firmware, the application requires a firmware PATH.  The USRP_PATH 
variable must be set as an environment variable, with its value indicating the directory where 
the firmware is located.  This directory is 

 \GOES Radio\gnuradio\gnu-usrp\gnu_usrp_files\rev4.  
 

7.3.2 USB Controller Firmware 

The USB firmware runs on a USB controller called Cypress CY C68013.   The USB 
firmware can be recompiled using the Small Devices C Compiler (SDCC).  The top level source 
code needed to recompile the USB controller is located in GOES 
Radio\gnuradio\usrp\firmware\src\usrp2\usrp_main.c.  Compilation of this file and its 
dependencies will produce an ihx binary file.  The source code creates an instance of the 8051 
embedded controller architecture.    

Once loaded with the powerful firmware, the USB controller is capable of supporting many 
of the digital functions on the board including: programming the FPGA, supplying SPI and I2C 
interfaces to configure all SPI/I2C compatible onboard devices, and streaming the high speed 
data from the FPGA to the computer. 

7.3.3 FPGA Firmware 

The GNU Radio webpage provides FPGA source code as well as documentation on its 
overall architecture.  The FPGA firmware can be recompiled using the Altera Quartus II 
software. Quartus II is an open source development tool for Altera FPGA devices.  The top 
level source code for the FPGA firmware is located in the directory GOES Radio\ 
gnuradio\usrp\fpga\toplevel\usrp_std\usrp_std.v.   

To alter the FPGA design, open usrp_std.v in the Quartus II environment.    Once a 
design is open, the files can be altered manually, or reconfigured using the configuration files.  
Common configuration files, e.g. common_config_bottom.vh, can be found in  \GOES Radio 
\gnuradio\usrp\fpga\toplevel\include\.  More specific configuration files, like config.vh, are 
available in the same directory as the top level source file. 

After altering the design as necessary, a designer can recompile the project to generate a 
new binary rbf file.  The rbf file is loaded onto the FGPA during every runtime execution of a 
GNU radio software application.   

Altering the FPGA design can usually be avoided by utilizing the existing registers to 
extend the functionality of any board design.  These registers are defined in 
fpga_reg_commons.h and fpga_reg_standard.h, and are also summarized on the GNU 
Radio website.   
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For the ARD board, we needed to control the gains of few onboard devices and for that 
we used I/O registers that are available for general use.  There are two I/O registers with a bit 
width of 16 bits. The Output register is accessed by first enabling it with   
_write_oe(which_board, 0x0000,0xffff) and then by writing a value to it using usrp_source-
>write_io(which_board, 0x0900, 0x0c00).  To understand how to modify and/or utilize 
the entire FPGA design, designers will need to follow the documentation and source code 
available by GNU Radio.  

 

7.3.4 GNU Radio Files Associated with Hardware Instantiation 

The entire GNU Radio architecture cannot be summarized in this document.  A designer 
that wants to modify the digital back-end of the hardware will ultimately need to examine the 
source code and the documentation that is available on the GNU Radio website.  This section 
intends to give a very brief overview of the files that enable GNU Radio to interface with the 
hardware.  

It is advisable to visit http://gnuradio.org/doc/doxygen.html where all the classes can be 
easily traced. GNU Radio software is highly hierarchical. The GNU Radio software architecture 
was designed to keep the signal processing algorithms and the low level hardware routines 
separated.  There are only four high level classes that handle the hardware connection: 
usrp1_source_c, usrp1_source_s, usrp1_sink_c, and usrp1_sink_s.  The usrp1_source_c and 
usrp1_source_s classes create a hardware receiver that supports complex and short data types 
respectively. The sink classes create hardware transmitters.  Because we are working with 
complex digital modulation data, and we are using the hardware as a receiver, we only use 
usrp1_source_c.  The following is an example of the inheritance chain for usrp1_source_c:  

 
usrp1_source_c usrp1_source_base  usrp_standard.cpp  usrp_basic  

usrp_prims, fusb.cc  libusb.dll (lowest level USB function calls) 
 
The FPGA and USB firmware are loaded into the hardware in the usrp_prims.cc file.  
As an example of how the hardware configuration parameters are passed down through 

varying levels of software, let’s examine how setting the decimation rate on the FPGA’s down-
sampling block flows through the GNU Radio software.   

The high level call,  
usrp1_make_source_c (which_board,decim_rate,nchan,mux,mode, 0,0,"","") 
[defined in usrp1_source_c.cc] 

 
invokes 
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usrp_standard_rx(which_board,decim_rate,nchan,mux,mode, 0,0,"","") [defined 
in usrp_standard.cc] 
 
which calls 
 

set_decim_rate (decim_rate) [defined in usrp_standard.cc] 

 
which calls 
 
  int v = has_rx_halfband() ? d_decim_rate/2 - 1 : d_decim_rate - 1; 
  bool ok = _write_fpga_reg (FR_DECIM_RATE, v); [defined in usrp_basic.cpp] 

 
FR_DECIM_RATE is an FPGA register defined in the fpga_reg_commons.h 
 
The function _write_fpga_reg() calls 
 
usrp_write_fpga_reg (d_udh, regno, value) [defined in usrp_prims.cc] 

 
which calls,  
 
usrp1_fpga_write (udh, reg, value); [defined in usrp_prims.cc] 

 
which calls,  
   
  buf[0] = (value >> 24) & 0xff; 
  buf[1] = (value >> 16) & 0xff; 
  buf[2] = (value >>  8) & 0xff; 
  buf[3] = (value >>  0) & 0xff; 
   
  return usrp_spi_write (udh, 0x00 | (regno & 0x7f), 
    SPI_ENABLE_FPGA, 
    SPI_FMT_MSB | SPI_FMT_HDR_1, 
    buf, sizeof (buf));  [defined in usrp_prims.cc] 
 

SPI_ENABLE_FPGA is specified in usrp_spi_defs.h 
The function usrp_spi_write() propagates the value of buf to write_cmd(), and write_cmd() 
then calls 
 
usb_control_msg (udh, requesttype, request, value, index, 
      (char *) bytes, len, 1000);  

 
Usb_control_msg() is a low level USB device primitive supplied in the libusb.dll dynamic 
library provided by LibUSB32.  
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In summary, setting the FPGA’s decimation rate requires data to propagate down 8 levels.  
If a contractor alters the analog front end to the AID, then there will likely be no change to 
the software.  Adding additional registers to the FPGA would not require the software to be 
rewritten since there are already open registers defined in the file fpga_reg_standard.h.  If a 
contactor wishes to alter the serial controller, or the interaction between the serial controller 
and the FPGA, or the existing SPI interfaces on the board, very significant changes to the 
software would be required. 

The GNU Radio design already provides a flexible bidirectional SPI and I2C interface, a 
solid connection to a sufficiently powerful FPGA, and a more than adequate USB interface to 
support the GOES-R application.  It is strongly recommended that designers work within the 
framework already provided by GNU Radio and the original USRP design.  Utilizing the USRP 
design will require contractors to resolve copyright issues. 

 

7.4 Aerospace RF Digitizer Overview  

The Aerospace RF digitizer is very similar to the IF digitizer except that it has four new 
major components: An L-band filter, a mixer, an additional oscillator, and a Direct Digital 
Frequency Synthesis unit (DDFS).  These four components are used to down-convert the 
signal from L-band to IF frequencies.  The rest of the board is completely unchanged after the 
down-conversion from L-band to IF.  

The mixer is implemented using the RFMD 2460 mixer chip.  This chip has a variable gain 
that is controlled by the FPGA’s SPI interface, and can be as high as 25 dB.  The noise figure 
of the device is about 1.5 dB. 

The DDFS was implemented using the ADF4360-3 synthesizer chip.  Any frequency can 
be generated in software through the SPI interface in order to properly down-convert the L-
band signal to a reasonable IF. The DDFS chip is driven by a 27 MHz crystal with frequency 
stability of 2.5 ppm. 

The Aerospace RF digitizer is shown in Figure 37.  As shown in the figure, the SMA input 
goes to the mixer chip, and then to the successive blocks that are present in the AID board.   
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Figure 37: Aerospace RF (L-band) Digitzer Board Block Diagram 
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8 Conclusion 
 
The EMWIN/HRIT Prototype Solution uses a low-cost hardware digitizer that interfaces 

with a standard Windows based PC. This software solution allows processing of the EMWIN-I, 
EMWIN-N, LRIT, and also the future HRIT signal.  The proposed system-solution uses the 
same antenna and LNB as current generation EMWIN and LRIT solutions. The part costs of 
the new AID board are about $100, providing a worldwide-affordable solution. The proposed 
system operates using a PC’s USB interface for both data and power supply, eliminating the 
need for an additional power source.  

The future HRIT signal will have a similar waveform definition to the LRIT signal, with 
the exception that its data-transmission rate will be increased from 293 to 927 Ksps.  The 
latest throughput measurements using the AID box and an HRIT-simulated sequence allowed 
processing rates of more than 1.7 Msps using a portable laptop-machine. This demonstrates 
how users will be able to receive the different EMWIN / HRIT products using Aerospace’s 
software defined radio,  once the HRIT signal becomes available, sometime after  2013.   

The link budget for the new HRIT signal will allocate up to 2 dB of implementation loss 
margin for our solution.  Our proposed AID solution shows an implementation loss of about 
1.8 dB, which achieves the system-requirement.    

The hardware and software are designed to work together providing a low-cost flexible 
solution. In this way, users have the flexibility of receiving a whole family of EMWIN/HRIT 
signals with a single hardware/software solution. Furthermore, compatibility with future 
transmission-protocols could also be added by means of a simple software update. 
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9 Acronym List 
 
GOES –   Geostationary Operational Environmental Satellite  
NOAA –  National Oceanic and Atmospheric Administration 
NWS –   National Weather Service 
EMWIN –  Emergency Managers Weather Information Network 
HRIT –   High Rate Information Transmission 
LRIT -   Low Rate Information Transmission 
GRB –   Global ReBroadcast System 
FSK –   Frequency Shift Keying  
BPSK –   Binary Phase Shift Keying 
OQPSK –   Offset Phase Shift Keying 
Ksps –   Kilo-symbols per second 
Msps –   Mega-symbols per second 
Mbps –   Mega-bits per second 
sps –   symbols per second 
Msamps/s –  Mega samples per second 
samps/s –   samplers per second 
USRP –   Universal Software Radio Peripheral 
IF –   Intermediate Frequency 
RF –   Radio Frequency 
AID –  Aerospace IF Digitizer 
ARD –   Aerospace RF Digitizer 
LNA –   Low Noise Amplifier 
LNB –   Low Noise Block Down-converter 
G/T –   Gain over temperature figure of merit 
FOM –   Figure of Merit 
FPGA –   Field Programmable Gate Array 
ADC –   Analog to Digital Converter 
SMA –   SubMiniature version A connector 
SAW –   Surface Acoustic Wave 
AGC –   Automatic Gain Control 
fc –   center frequency 
fs –   sampling frequency 
BPF –   Bandpass Filter  
LPF –   Low Pass Filter  
BW -   bandwidth 
FIR –   Finite Impulse Response  
FFT –   Fast Fourier Transform 
CPU –   Central Processing Unit 
LED –   Light Emitting Diode 
USB –   Universal Serial Bus 
GUI –   Graphical User Interface 
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PLL –   Phase-locked loop 
CIC –   Cascaded Comb Filter 
CCSDS –   The Consultative Committee for Space Data Systems 
CGMS –   Coordination Group for Meteorological Satellites 
ITU –   International Telecommunications Union 
CADU -   Channel Access Data 
VCDU -   Virtual Channel Data Unit 
CVCDU –   Coded Virtual Channel Data Unit 
M_PDU -   Multiplexed Protocol Data Unit 
CRC –   Cyclic Redundancy Check 
RS –   Reed Solomon (decoder) 
M&M –   Mueller- Müller (timing tracking) 
BER –   Bit Error Rate 
FER –   Frame Error Rate 
SNR –   Signal to Noise Ratio 
Eb/No –   Energy per bit over noise density 
Es/No -    Energy per symbol over noise density 
AWGN –   Additive White Gaussian Noise 
GNU –   GNU’s not Unix 
GPL –   General Public License 
FFTW -   Fastest Fourier Transform in the West 
MFC –   Microsoft Foundation Class Library 
EIRP -   Equivalent isotropically radiated power 
FIFO –   First Input First Output 
LDO –   Low Drop Out (voltage regulator) 
Vpp -  Peak-to-Peak Voltage 
SPI –   Serial Peripheral Interface 
I2C –   Inter-Integrated Circuit (interface) 
EEProm –   Electrical Erased Programmable Read Only Memory 
IO –   Input and Output 
DDFS –   Direct Digital Frequency Synthesizer  
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