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ABSTRACT 

Since 1998 data from the GOES I-M Sounders has been used to generate ozone on an hourly 
basis.  In spite of the relatively coarse spatial and temporal resolution of the current GOES 
Sounder (8 km spaced every 10 km at nadir, hourly CONUS data) the algorithm has shown that 
geostationary infrared data can be used to monitor total column ozone.  The data has been 
applied to studies of atmospheric dynamics, reflecting the relationship between ozone and 
potential vorticity in the stratosphere, and air quality, primarily as a source function in air quality 
and ozone prediction models. 

 

The ABI ozone algorithm is similar to the GOES ozone algorithm.  The specific objectives of 
ABI ozone detection algorithm development are listed below. 

• Adapt current GOES Sounder ozone algorithm to GOES-R ABI accounting for the 
differences in spectral coverage 

• Address needs of user community and meet GOES-R ozone product mission 
requirements. 

• Provide smooth transition from current GOES Sounder to the next generation ABI.   

• Ensure continuity/consistency of a long-term (1995-GOES-R era) geostationary ozone 
data base. 

• Incorporate flexibility for enhancements as demonstrated with GOES-R research. 

• Implementation simplicity and operational robustness. 

The current version of the GOES ozone product provides the total column ozone for a given 
pixel.  The air quality user community has requested higher accuracy and the dynamics 
community wants higher spatial resolution.  
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1. INTRODUCTION 

 

The purpose, users, scope, related documents and revision history of this document are briefly 
described in this section. Section 2 gives an overview of the observing system and instrument 
characteristics, objectives of the ozone detection algorithm development, mission requirements, 
and retrieval strategies. Section 3 describes the ABI ozone algorithm and processing outline, 
input data requirements, theoretical and physical description of ozone monitoring, and algorithm 
output.  Test data sets and sample output is presented in Section 4.  Practical considerations are 
presented in Section 5.  Assumptions and limitations are outlined in Section 6 and Section 7 
provides a list of references.  

1.1 Purpose of This Document 
The ABI ozone detection algorithm theoretical basis document (ATBD) provides a high level 
description of diurnal ozone monitoring utilizing the next generation GOES-R series Advanced 
Baseline Imager (ABI).  The purpose of the GOES-R ABI Ozone ATBD is to provide ozone 
product developers, reviewers and users with a theoretical description (scientific and 
mathematical) of the algorithm. This document presents an overview of requirements for the ABI 
ozone product, ABI characteristics pertinent to ozone monitoring, required input data, the 
physical and mathematical backgrounds of the algorithm, predicted performance based on case 
study analyses, practical considerations, and assumptions and limitations.  Also, this document 
provides information useful to anyone maintaining or modifying the original algorithm.  

1.2 Who Should Use This Document 
The intended users of this document are those interested in understanding the physical basis of 
the ABI ozone algorithm and how to use the output of this algorithm for a variety of ozone 
applications.  This includes a broad user community with various degrees of satellite expertise.  
The ABI ozone product expands on the current GOES Sounder ozone product which is utilized 
by various users for air quality applications. 

1.3 Inside Each Section 
This document is broken down into the following main sections. 
 

• Observing System Overview: Provides relevant details of the ABI and provides a brief 
description of the product generated by the ozone algorithm. 

 
• Algorithm Description : Provides a detailed description of the algorithm including its 

physical basis, its input and its output. 
 

• Test Data Sets and Output: Provides a description of the test data sets used to develop 
and implement the algorithm and characterize the performance of the algorithm.   
 

• Practical Considerations: Provides a brief overview of the issues relating to numerical 
computation, programming and procedures, configuration of retrieval, quality assessment 
and diagnostics, and exception handling.  
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• Assumptions and Limitations: Provides an overview of the current limitations of the 

instrument and algorithm and possible avenues for addressing some of these limitations 
with further algorithm development. 

1.4 Related Documents 
This document may contain information from other GOES-R documents listed in the website 
provided by the GOES-R algorithm working group (AWG): 
http://www.orbit2.nesdis.noaa.gov/star/goesr/index.php.  
 
In particular, readers are directed to read these documents for a good understanding of the goals 
of this ATBD: 
 GOES-R Series Ground Segment Functional and Performance 
 GOES-R Series Mission Requirements Document 
 GOES-R Land Surface Team Critical Design Review (May 2008)  
Other related references are listed in the Reference Section. 

1.5 Revision History 
Version 0.1 of this document was created by Chris Schmidt (UW Madison SSEC/CIMSS), and 
its intent was to accompany the delivery of the version 1.0 algorithm to the GOES-R AWG 
Algorithm Integration Team (AIT).  
 
Version 1.0 and 1.2 of this document was created by Chris Schmidt (UW Madison 
SSEC/CIMSS).  It was reformatted to fit the 80% delivery guidelines. 
 
Version 2.0α was created by Chris Schmidt (UW Madison/SSEC/CIMSS) and incorporates 
comments from initial review of the prior version as well as additional results.  This version was 
submitted for ADEB review.  It corresponds to the state of the ozone algorithm at its fifth 
delivery to the AIT in July, 2010. 
 
Version 2.0 was created by Jay Hoffman and Chris Schmidt (UW Madison/SSEC/CIMSS) and 
incorporates the input from the AIT and Algorithm Development Executive Board (ADEB) 
Independent Peer Reviewer (IPR). 
 
 

ABI Ozone Detection Algorithm Theoretical Basis Document Version History Summary 

Version Description Revised 
Sections 

Date 

0.1 New ATBD Document according to NOAA 
/NESDIS/STAR Document Guideline 

 8/4/2008 

1.0 Updated to fit 80% delivery format All 6/19/2009 
1.1 Updated re: TRR results 4 9/28/2009 
2.0α 100% delivery document for ADEB review All 7/25/2010 
2.0 100% delivery, ADEB/IPR and AIT comments 

integrated 
All 9/20/2010 
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2. OBSERVING SYSTEM OVERVIEW 

This section provides an overview of the ABI ozone algorithm, including the products generated 
and objectives and characteristics of the ABI instrument as they pertain to the ABI ozone product 
development and implementation. 

2.1 Products Generated 
The ozone product is a clear sky, total column value in Dobson Units (DU).  The ozone data can 
be used in studies of atmospheric dynamics, reflecting the relationship between ozone and 
potential vorticity in the stratosphere, as well as air quality, primarily as a source function in air 
quality and ozone prediction models. 
 
The ozone detection requirements defined by the mission requirement document (F&PS v2.1, 
November 23, 2009) are listed in Table 2.1. 
 

Table 2.1 GOES-R mission requirements for ozone detection 

Ozone requirements for GOES-R mission 
Observati

onal 
Requirem

ent 

Geograp
hic 

Coverag
e1 

Horiz. 
Res. 

Mapp
ing 

Accu
racy 

Measu
rement 
range 
(DU) 

Precision 
(DU) 

Accuracy 
(DU) 

Refre
sh 

Rate 

Data 
Laten

cy 

Product 
Type 

Product 
Sub-
Type 

Ozone 
Total 

C, FD 10 km 5 km 
100-
650 

25 15 
60 
min 

5 min 
Atmosp

here 
Trace 
Gases 

1 C=CONUS, FD=full disk, H=hemisphere, M=mesoscale 
 
The product qualifiers are that it is a day and night algorithm, quantitative to 65° LZA and 
qualitative beyond, and is valid for clear-sky pixels. 
 
This product was originally to be both for the hyperspectral sounder that was once planned for 
GOES-R and the ABI.  While precision and accuracy were adjusted to account for ABI, the 
refresh rate and horizontal resolution were left at the values for the sounder.  The algorithm as 
developed, however, can meet these requirements at ABI resolution, as illustrated in Section 4.2.  
Aggregation to 10 km can be accomplished prior to product distribution if necessary. 
 

2.2 Instrument Characteristics 
The next generation GOES-R ABI offers the basics needed for infrared ozone detection.  The 
ABI will provide full disk coverage every 15 minutes and CONUS coverage every 5 minutes at 2 
km in the short and long-wave infrared window bands.  Those characteristics improve the spatial 
resolution but ABI lacks the bands sensitive to CO2 emissions in the upper atmosphere, thus 
reducing overall accuracy relative to the GOES Sounder.  Comparable performance can be 
achieved if temperature profile data from a model is used in the algorithm.  The GOES-R ABI 
ozone product will be complementary to those derived from ultraviolet-based ozone instruments, 
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providing ozone over the course of the entire day, instead of just near local solar noon when UV 
instruments typically take their measurements. 
 
For ozone monitoring the ABI’s channels are essentially the same spectrally as the channels on 
Met-8/-9 SEVIRI, making it an excellent test bed for the ABI algorithm.  The algorithm is a 
regression, and it has been shown that the regression extracts basically all of the available ozone 
information from broadband IR data that includes the ozone sensitive band around 9.6 µm. 
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Table 2.2 Spectral characteristics of Advanced Baseline Imager 

ABI spectral characteristics 

Channel 
Number 

Wavelength 
(µm) 

Bandwidth 
(µm) NEDT/SNR 

Upper 
Limit of 
Dynamic 
Range 

Spatial 
Resolution 

Used 
in 

ABI 
ozone 
code 

1 0.47 0.45 – 0.49 300:1[1] 
652 

W/m2/sr/µm 
1 km   

2 0.64 0.59 – 0.69 300:1[1] 
515 

W/m2/sr/µm 
0.5 km  

3 0.86 
0.8455 – 
0.8845 

300:1[1] 
305 

W/m2/sr/µm 
1 km  

4 1.38 
1.3705 – 
1.3855 

300:1[1] 
114 

W/m2/sr/µm 
2 km  

5 1.61 1.58 – 1.64 300:1[1] 
77 

W/m2/sr/µm 
1 km  

6 2.26 
2.225 – 
2.275 

300:1[1] 
24 

W/m2/sr/µm 
2 km  

7 3.9 3.8 – 4.0 0.1 K[2] 400 K 2 km  

8 6.15 5.77 – 6.60 0.1 K[2] 300 K 2 km � 
9 7.0 6.75 – 7.15 0.1 K[2] 300 K 2 km � 
10 7.4 7.24 – 7.44 0.1 K[2] 320 K 2 km � 
11 8.5 8.30 – 8.70 0.1 K[2] 330 K 2 km  

12 9.7 9.42 – 9.80 0.1 K[2] 300 K 2 km � 

13 10.35 
10.10 – 
10.60 

0.1 K[2] 330 K 2 km � 

14 11.2 
10.80 – 
11.60 

0.1 K[2] 330 K 2 km � 

15 12.3 
11.80 – 
12.80 

0.1 K[2] 330 K 2 km � 

16 13.3 13.0 – 13.6 0.3 K[2] 305 K 2 km � 
[1]100% albedo, [2]300K scene.  
 
The ABI ozone algorithm performs a regression against the indicated channels.  The 
performance of the ozone algorithm is sensitive to instrument noise and other anomalies 
(striping, etc.).  However the largest impact on product quality is the misidentification of clouds 
and cases that fall well outside the range for which the regression was trained (most often areas 
with a very low total column water vapor and highly reflective surfaces). 

3. ALGORITHM DESCRIPTION 

This section provides a description of the algorithm at the current level of maturity.  
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3.1 Algorithm Overview 
GOES-R ABI ozone detection is an Option 2 component of the GOES-R ABI processing system. 
The ozone detection algorithm is being developed within the GOES-R AWG Air Quality team as 
part of the air quality module processing subsystem. 
 
The GOES-R ABI allows for nearly continuous earth observation with an instantaneous ground 
field of view (IGFOV) at nadir for the visible band and 2 km for the infrared bands.  Multi-
spectral ABI data will be available every 5 minutes over the continental United States with full 
disk coverage of the Western Hemisphere every 15 minutes.  GOES_R ABI offers frequent total 
column ozone measurements at 2 km resolution.  The GOES-R ABI ozone algorithm builds on 
the experience with the GOES Sounder total column ozone developed at the University of 
Wisconsin (UW) Cooperative Institute for Meteorological Satellite Studies (CIMSS) as a 
collaborative effort between NOAA/NESDIS/STAR and UW-CIMSS personnel.  (Schmidt, 
2000; Li et al, 2001; Li et al, 2007; Jin et al, 2008) 
 
The ABI ozone algorithm is a regression algorithm that uses most of the mid- and long-wave IR 
bands, model-provided temperature profiles, and select other information to generate total 
column ozone.  The ozone detection algorithm is based primarily on the sensitivity of the 9.7 µm 
band to ozone absorption but also the relationship between ozone and potential vorticity (and 
thus the thermal structure of the atmosphere).  Two long-wave IR bands, 6.95 µm and 10.35 µm, 
are not used in the regression as they are unnecessary and degrade product quality.  Ozone can be 
calculated for any pixel, but the regression is designed to work for cloud-free pixels within a 
local zenith angle of 80°. 
 
The GOES ABI ozone product will be produced for each ABI image and provides total column 
ozone for data within a satellite view angle of 80°.  The final user output consists of a NetCDF4 
ozone product providing pixel by pixel mask of ozone values and a product quality indicator 
identifying ozone values outside of reasonable bounds. 
 

3.2 Processing Outline 
Figure 3.1 contains a flowchart of the GOES-R ABI ozone detection algorithm. 
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Figure 3.1 High level flowchart of the ABI Ozone code illustrating the main processing 
sections. 
 

3.3 Algorithm Input 
This section describes the input needed to process the GOES-R ABI ozone product.  While the 
ozone code is applied to each pixel it should be used in conjunction with a cloud mask to screen 
for the cloud-free pixels. 
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3.3.1 Primary Sensor Data 

Table 3.1 lists the primary sensor data used by the ozone code.  Primary sensor data means 
information that is derived solely from the ABI observations and geolocation information.  For 
each pixel the GOES-R ABI ozone algorithm requires calibrated and navigated ABI brightness 
temperatures/radiances, solar-view geometry (local zenith angle), and ABI sensor quality flags. 
 

Table 3.1 Input list of required sensor data 

Required sensor data 
Name Type Description Dimension 

Ch7 brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 7 

Scan grid (xsize, ysize) 

Ch8 brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 8 

Scan grid (xsize, ysize) 

Ch10 
brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 10 

Scan grid (xsize, ysize) 

Ch11 
brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 11 

Scan grid (xsize, ysize) 

Ch12 
brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 12 

Scan grid (xsize, ysize) 

Ch14 
brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 14 

Scan grid (xsize, ysize) 

Ch15 
brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 15 

Scan grid (xsize, ysize) 

Ch16 
brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness 
temperatures for channel 16 

Scan grid (xsize, ysize) 

Solar geometry input ABI solar zenith angle Scan grid (xsize, ysize) 

View angles input 
ABI view zenith and relative azimuth 
angles 

Scan grid (xsize, ysize) 

QC flags input 
ABI quality control flags with level 1b 
data 

Scan grid (xsize, ysize) 

 

3.3.2 Ancillary Data 

The following tables (Tables 3.2 and 3.3) list and briefly describe the non-ABI dynamic and 
static ancillary data required to run the GOES-R ABI ozone algorithm.  By ancillary data, we 
mean data that requires information not included in the ABI observations or geolocation data.  
Dynamic ancillary data refers to data sets that change over time, while static ancillary data refers 
to data sets that remain constant over time. 
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Table 3.2 Input list of required non-ABI ancillary dynamic data 

Dynamic non-ABI ancillary data 
Name Type Description Dimension 

Temperature 
profile 

input NCEP NWP temperature profile 0.25° resolution 

 
The NWP data can come from virtually any model that performs well, and the resolution can be 
coarser though the quality will decrease.  The algorithm as designed uses a nearest neighbor 
match of the pixel to the model data. 
 

Table 3.3 Input list of required non-ABI ancillary static data 

Static non-ABI ancillary data 
Name Type Description Dimension 

Regression 
coefficients 

input 
Regression coefficients calculated 
from training dataset of atmospheric 
profiles, binned by local zenith angle. 

Binned by 1° local zenith 
angle, 0° to 80° 

Land Mask input 
Global 1-km land/water mask used 
for MODIS collection 5 or 
comparable substitute. 

0.05° resolution 

 
The regression coefficients are generated from a collection of collocated ozone and temperature 
profiles as described in this document.  The land mask can come from any source so long as it is 
accurate. 
 

3.3.3 Derived Sensor Data 

As designed, the ozone algorithm does not directly apply the cloud mask.  However, the mask is 
needed to identify cloud-free pixels.  Table 3.4 briefly describes this derived sensor data input. 
 

Table 3.4 Input list of derived sensor data 

Derived sensor data 
Name Type Description Dimension 

Cloud mask input ABI  level 2 cloud mask data grid (xsize, ysize) 
 
The cloud mask is the cloud mask created for ABI. 
 

3.4 Theoretical Description  
Ozone is present throughout the atmosphere, but the majority of it is above the tropopause in the 
stratosphere.  A substantial amount is present near the tropopause as well.  Ozone is strongly 
correlated to potential vorticity (PV) and by extension temperature in the stratosphere.  PV is 
strongly correlated to tropopause height and by extension the weather we experience at the 



 

 

surface.  By this relationship ozone does vary on the same time scales as weathe
synoptic scale weather events but also with mesoscale weather events.  In order to detect ozone 
with a broadband IR instrument, the instrument must have sensitivity to at least one of the 
following, though both are preferred

• Stratospheric temperatures
• Ozone absorption (around 9.6 µm)

In GOES Sounder total column ozone studies
regression: 

• The ozone band alone could achieve a %RMSE of 
• Other bands (Sounder channels 1
• All Sounder bands together could achieve a %RMSE of <5%

Those studies showed that the regression is exploiting ozone absorption information and the 
relationship between stratospheric temperature, potential vorticity, and ozone.
 

3.4.1 Physics of the Problem

Infrared satellite ozone detection primarily utilizes
of other mid- and long-wave IR bands.
and temperature at different altitudes.
sensitivities) for SEVIRI, ABI, and current generation GOES Sounder are shown in Figure 3.3.  
It shows that the GOES Sounder has more sensitivity above 200 hPa than SEVIRI and ABI, and 
that sensitivity is due to bands sensitive to CO
atmosphere defines the potential vorticity (PV) of the atmosphere, and PV in the stratosphere is 
correlated pretty strongly with ozone in the stratosphere, where 90% of the ozone column e
 
ABI does not have as much sensitivity to stratospheric temperature as the GOES Sounder.  To 
make up for the missing information a NWP temperature profile can be used in the regression.
(Li et al, 2007; Jin et al, 2008)
 

Figure 3.2 Atmospheric wei
Sounder.  SEVIRI and ABI are very similar, where as the GOES Sounder has higher 
sensitivity in the upper atmosphere
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surface.  By this relationship ozone does vary on the same time scales as weathe
synoptic scale weather events but also with mesoscale weather events.  In order to detect ozone 
with a broadband IR instrument, the instrument must have sensitivity to at least one of the 

, though both are preferred: 
temperatures 

Ozone absorption (around 9.6 µm) 
In GOES Sounder total column ozone studies, published in Li et al (2001),

The ozone band alone could achieve a %RMSE of ~11% 
Other bands (Sounder channels 1-8, 10-15) could achieve a %RMSE of 
All Sounder bands together could achieve a %RMSE of <5%

Those studies showed that the regression is exploiting ozone absorption information and the 
relationship between stratospheric temperature, potential vorticity, and ozone.

Physics of the Problem 

detection primarily utilizes the 9.6 µm “ozone” band but also makes use 
wave IR bands.  IR bands have different detection sensitivities for ozone 

and temperature at different altitudes.  Atmospheric weighting functions (relative band 
sensitivities) for SEVIRI, ABI, and current generation GOES Sounder are shown in Figure 3.3.  
It shows that the GOES Sounder has more sensitivity above 200 hPa than SEVIRI and ABI, and 

e to bands sensitive to CO2 emissions.  The thermal structure of the 
atmosphere defines the potential vorticity (PV) of the atmosphere, and PV in the stratosphere is 
correlated pretty strongly with ozone in the stratosphere, where 90% of the ozone column e
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Atmospheric weighting functions for SEVIRI, ABI, and the current GOES 
Sounder.  SEVIRI and ABI are very similar, where as the GOES Sounder has higher 
sensitivity in the upper atmosphere. 

surface.  By this relationship ozone does vary on the same time scales as weather, specifically 
synoptic scale weather events but also with mesoscale weather events.  In order to detect ozone 
with a broadband IR instrument, the instrument must have sensitivity to at least one of the 

, published in Li et al (2001), it was found that for 

ieve a %RMSE of ~11% 
All Sounder bands together could achieve a %RMSE of <5% 

Those studies showed that the regression is exploiting ozone absorption information and the 
relationship between stratospheric temperature, potential vorticity, and ozone. 
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ABI does not have as much sensitivity to stratospheric temperature as the GOES Sounder.  To 
make up for the missing information a NWP temperature profile can be used in the regression. 
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3.4.2 Mathematical Description 

There are two approaches that can be taken to extract ozone information from the available data: 
statistical regression and physical retrieval.  In studies with the GOES Sounder and initial 
simulation studies for GOES-R it was shown that the physical retrieval does not achieve better 
performance than the regression.  Regression extracts virtually all of the ozone information from 
broadband IR radiances. (Schmidt, 2000; Jin et al, 2008) 
 
The ABI ozone regression utilizes the information contained in the ozone band as well as the 
correlation between ozone and stratospheric temperature to estimate the total column ozone 
value.  The other bands used are listed in Table 2.1.  The specific bands chosen for regression 
vary by instrument, but in general the regression utilizes window channels with minimal water 
vapor signal.  GOES Sounder, simulated ABI, and SEVIRI perform comparably when simulated 
ABI and SEVIRI regressions are given temperature profiles as predictors to make up for the CO2 
bands on the GOES Sounder.  Ozone from IR instruments is generally considered a clear sky 
product.  However future improvements could allow for ozone estimates over some clouds. 
 
 

3.4.2.1 Generating Regression Coefficients 

Regression is the development of a relationship between two sets of data.  Curve-fitting is an 
example.  For ozone the regression is finding coefficients that relate total column ozone to a set 
of values, known as predictors, coming from a training dataset.  The generalized form of the 
equation is shown in Equation 3.1 and the variables explained in Table 3.5. 
   

Table 3.5 Explanation of terms for generating regression 

Regression Terms 
CNP Regression coefficients for NP predictors 
ONS Total column ozone for NS sets of predictors from training dataset 

PNP,NS 
The training dataset, each location with its data is a column, 

NS/number of rows is the number of members of the training dataset 
NS Number of members of the training dataset 

NP 
Number of pieces of information for each member of the training 

dataset 
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information) located between 70
NOAA88b profiles, radiosondes, ozonesondes, ECMWF+SBUV data, and TIGR data.
forward model (PFAAST) was used to generate brightness temperatures.  Scattering
was neglected.  Local zenith angle is varied for each profile in 
result is 161 sets of coefficients to use to solve for ozone in the regression equation.
shows the locations of the training dataset profiles.
Jin et al, 2008) 
 

 
Figure 3.3 Locations of the profiles used in the training dataset
 

3.4.2.2 Calculating Ozone With Regression

Given the vector C ozone can be found by calculating the dot product of the coefficients 
the predictors P as shown in Equation 3.2.  The terms of the equation are listed in Table 3.6.
 

Table 3.6 Explanation of terms for solving regression

CNP 
OTCO 
PNP 

NP 
Number of pieces of information for each member of the training 
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Calculating Ozone With Regression 

one can be found by calculating the dot product of the coefficients 
as shown in Equation 3.2.  The terms of the equation are listed in Table 3.6.

Explanation of terms for solving regression 

Regression Terms 
Regression coefficients for NP predictors

Total column ozone 
Predictors (NP of them) 

Number of pieces of information for each member of the training 
dataset 

training dataset consisting of 
NOAA88b profiles, radiosondes, ozonesondes, ECMWF+SBUV data, and TIGR data.  A 
orward model (PFAAST) was used to generate brightness temperatures.  Scattering by aerosols 
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(Schmidt, 2000; Li et al, 2001; Li et al, 2007; 
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(3.2) 
 
 
 
 

The terms are expanded out to the following equation: 
 
 
 

(3.3) 
 
 
 
 

The terms are laid out in Table 3.7. 
 

Table 3.7 Expanded terms of regression equation 

Regression Terms 
Cx Regression coefficients (C0 is an offset) 
n Number of bands used 

Tb Brightness temperature 
Ta Atmospheric temperature profile 
ps Surface Pressure 
Lp Fraction of land within pixel 
M Month of year 

LAT Latitude of pixel 
Surface pressure is used as a predictor to reduce overall error.  Land fraction partially accounts 
for mixed emissivity but can be just a land vs water flag.  The month accounts for a 
climatological, cyclical variation in ozone.  Latitude is also a climatological variable.  Each local 
zenith angle bin has its own coefficients. 
 

3.4.2.3 Basic Assumptions in Using Regression for Ozone 

The regression training dataset is assumed to be sufficient for conditions observed by the ABI 
instrument (based on global and seasonal coverage).  There will always be cases not represented 
by the training dataset which will not perform well with the regression but the training set is big 
and varied enough to cover the vast majority of circumstances.  It is assumed that the pixel is 
cloud-free and that the input satellite data meets specifications.  The NWP temperature profiles 
are assumed to be at 101 pressure levels, as is standard today. 
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3.4.2.4 Ozone Detection Decision Tree 

The GOES-R ABI ozone algorithm uses a simple approach to determine total column ozone.  
The needed data is initialized, the regression coefficients are loaded into memory, and for each 
pixel the regression is performed once the predictors are configured.  Figure 3.1 contains the 
flowchart. 
 

3.4.2.5 Input ABI, NWP data, and other predictors 

Required Input ABI data is presented in Section 3.3 of this document. It includes primary sensor 
data (channels 8-10, 12-16), NWP temperature profiles, view angles, surface pressure field, pixel 
locations, and QC flags.  Data from each band/channel should be calibrated.  Ancillary input data 
are dynamic and static (See section 3.3 for more details).  Dynamic data includes:  NCEP model 
temperature profile and surface pressure).  Static input data is the set of ozone regression 
coefficients. 
 

3.4.2.6 Configure angles, load predictors 

In this section of the algorithm space pixels and bad pixels (based on QC flags) are skipped.  For 
every pixel that remains the predictors are assembled.  The cloud mask is not applied to allow the 
users to make decisions on how to apply the mask once the data is generated. 
 

3.4.2.7 Test total column ozone against thresholds 

Prior to output the ozone values are checked against maximum and minimum thresholds of 650 
Dobson Units (DU) and 100 DU respectively.  The thresholds are based on the product’s 
required range of performance. 
 

3.4.3 Algorithm Output 

The ABI ozone algorithm provides a field of total column ozone that is stored in a NetCDF4 
format output file.  Under mode 3, the ozone algorithm has a 60 minute refresh, therefore it 
should be run once an hour.  The ozone algorithm also has a 10 km horizontal resolution 
requirement.  To meet this requirement, the pixel resolution ozone product with a quality flag of 
good (zero) will be averaged over a 5x5 pixel box.  A summary of the output data sets is 
provided in Table 3.8. 
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Table 3.8 Summary of ABI ozone code output data 

ABI ozone code output 
Name Type Description Dimension 

o3_col End-product 
Total column ozone 
(NetCDF4) 

grid (xsize, ysize) 

o3_pqi 
Quality 

Assurance flags 

Product quality flags for 
TCO.  0 for good TCO 
values, 1 for TCO less than 
100 DU, 2 for TCO greater 
than 650 DU, 3 is for space 
pixels, 4 is for bad or 
missing input data. 

grid (xsize, ysize) 

Metadata Output metadata 

1. Total column ozone 
statistical information: 
minimum, maximum, 
mean, and standard 
deviation 
2. Number of Quality 
Assurance (QA) flag 
values 
3. Definition of each QA 
flag value 
4. Percent of retrievals with 
each QA flag value 
5. Total number of retrieval 
pixels 

11 values, 5 strings 
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4. TEST DATASETS AND OUTPUTS 
The development, implementation, and testing of the GOES_R ABI ozone detection algorithm is 
limited to proxy data sets from SEVIRI.  Standard numerical weather prediction models do not 
handle ozone very well and typically insert climatology, which is of little benefit to an algorithm 
that relies on the coupling between ozone and thermal properties of the atmosphere. 
 

4.1  Simulated Input Data Sets 
SEVIRI data are used as proxy input data sets for the GOES-R ABI Ozone algorithm.  SEVIRI 
bands are sufficiently similar to ABI that for this application they can be used (with their own 
regression coefficients).  Both SEVIRI and ABI require NWP data to reach performance level of 
the GOES Sounder.  Table 4.1 shows the bands used for ozone detection with the GOES 
Sounder, ABI, and SEVIRI.  ABI has two bands that SEVIRI lacks.  These bands would give a 
modest improvement to the ozone product. 
 
SEVIRI data allows for 15 minute full disk images of a resolution comparable to ABI,  SEVIRI 
pixels are nominally 9 km2 versus 4 km2 for ABI, so processing time on SEVIRI data needs to 
exceed specifications by a factor of 2.25, 
 
The dataset used for algorithm testing during development consisted of Met-8 SEVIRI from 
August 2006; February 1-14, 2007; and April 1-10, 2007.  This provides coverage over a range 
of seasons.  The ozone product was produced at full instrument resolution without binning to 10 
km resolution as specified in the requirements. 
 
The delivered algorithm package includes the following SEVIRI cases: 

1) August 24-25, 2006 (2 hours each day) 
2) February 24-25, 2007 (2 hours each day) 
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Table 4.1 Bands used for ozone regression with different instruments 

GOES-12 ABI  SEVIRI  

BandNEDR 
Wavelength

(µm) BandNEDR
Wavelength

(µm) BandNEDR
Wavelength

(µm) 
18 0.0009 3.75             
17 0.0022 3.98 1 - 0.47       
16 0.0024 4.12 2 - 0.64 1 - 0.635 
15 0.0066 4.45 3 - 0.87 2 - 0.81 
14 0.0062 4.53 4 - 1.38       
13 0.0062 4.57 5 - 1.61 3 - 1.64 
12 0.11 6.5 6 - 2.25       
11 0.059 7.01 7 0.0038 3.9 4 0.0046 3.92 
10 0.099 7.44 8 0.058 6.19 5 0.0098 6.2 
9 0.14 9.72 9 0.0827 6.95       
8 0.11 10.96 10 0.0958 7.34 6 0.0226 7.35 
7 0.11 11.99 11 0.1304 8.5 7 0.0948 8.7 
6 0.14 12.66 12 0.1539 9.61 8 0.0975 9.66 
5 0.34 13.34 13 0.1645 10.35       
4 0.39 13.63 14 0.1718 11.2 9 0.1247 10.8 
3 0.45 14.03 15 0.1754 12.3 10 0.1923 12 
2 0.61 14.38 16 0.5237 13.3 11 0.4178 13.4 
1 0.77 14.66             

 
Figure 4.1 shows an example image from 23 UTC on 1 August 2006 which shows the entire 
hemisphere at SEVIRI’s full 3 km resolution.  Major ozone features are visible in the upper 
latitudes and over the North Atlantic.  During the Northern Hemisphere’s summer, total column 
ozone at high latitudes will not necessarily reach 400 DU, as seen in Figure 4.1.  The high 
latitudes of the Southern Hemisphere, during its winter, are not included in the image. 
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Figure 4.1 SEVIRI TCO data for 23 UTC on 1 August 2006.  The red fringe is due to the 
visualization software. 
 
The full day loop of this data shows the synoptic-scale ozone features moving.  Ozone, due to its 
relationship to PV, effectively reflects the height of the tropopause, meaning ozone features 
generally change as fast as the synoptic weather.  (Wimmers et al, 2003; Knox and Schmidt, 
2004)  Typically, ozone has been treated as a daily value, but the total column over one’s head 
can change by as much as 50% in a matter of hours, with accompanying changes in the synoptic 
weather.  The typical example is a strong cold front with a well-defined tropopause fold.  ABI 
and instruments like it are not particularly sensitive to ozone in the boundary layer, where most 
ozone formation due to anthropogenic pollution occurs.  Transport is the primary cause of ozone 
change over a particular earth location. 
 
In some places, such as over northern Africa, a bias was introduced into the data due to a 
combination of surface characteristics and a relatively dry atmosphere.  This impact is illustrated 
in Figure 4.2. 
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Figure 4.2 SEVIRI TCO at 1:00 UTC and 12:00 UTC on 1 August 2006.  Left: 1:00 UTC 1 
August 2006, Right: 12:00 UTC 1 August 2006. 
 
The GOES I-M Sounder TCO experimental product often shows a diurnal variation over hot 
surfaces, and as expected this behavior is observed in SEVIRI TCO data as well.  Label A shows 
how the hot, reflective surface of southern Spain effectively enhances a pre-existing streamer.  
Similar behavior is seen over the Sahara at label B.  In both regions the total precipitable water is 
very low, allowing more surface signal to reach the satellite.. 
 

4.2  Output from Simulated Inputs Data Sets 
Assessment of the ozone data’s accuracy is accomplished by comparison with ozone data from 
the Ozone Mapping Instrument (OMI) on the Aura satellite.  OMI is an ultraviolet sensor that 
follows on the tradition of the Total Ozone Mapping Spectrometer (TOMS) and has been 
validated against ground-based Dobson Photospectrometers and shown to be accurate to within 
1%.  (Veefkind et al, 2006) 
 
The delivered algorithm package includes the following SEVIRI cases: 

3) August 24-25, 2006 (2 hours each day) 
4) February 24-25, 2007 (2 hours each day) 

The results presented in this section assess performance of the algorithm over a longer time 
period. 

4.2.1 Precision and Accuracy Estimates 

For clear sky pixels, simulations show that the ozone product should achieve better than 25 DU 
precision and 15 DU accuracy within a local zenith angle of 65° for clear sky pixels.  At greater 
local zenith angles, the accuracy and precision cannot be guaranteed to reach that threshold.  
This is due to the large footprint of the pixel, the long, slant-wise column, and the higher 
likelihood of undetected cloud contamination within the pixel. 
 
Table 4.2 lists the precision and accuracy measures for all of the tested data.  Pixels were 
screened for clouds (only clear sky pixels were accepted), all surface types and local zenith 
angles were included.  The ozone algorithm exceeds the product requirements.  Section 4.2.2 
looks at precision and accuracy estimates for various scenarios. 
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The comparisons between Met-8 SEVIRI and OMI are produced by remapping OMI footprints 
to the SEVIRI projection and determining which Met-8 clear-sky pixels fit into each footprint.  
OMI footprints are 13 km by 24 km as satellite nadir, as opposed to Met-8 footprints which are 5 
km by 5 km, tilted so as to appear diamond shaped, and spaced every 3 km.  OMI footprints are 
determined by deriving footprint corners from the footprint centers and remapping those 
footprint polygons to the Met-8 SEVIRI fixed grid projection.  From that point spatial co-
location is a simple matter of looking at the two fixed grids and averaging together clear-sky 
SEVIRI ozone values within each OMI footprint. 
 
Temporal co-location is very tight, SEVIRI values are within 15 minutes of OMI values thanks 
to SEVIRI’s high refresh rate.  This allows for a comparison of nearly instantaneous 
measurements. 
 

Table 4.2 Comparison of SEVIRI and OMI Validation to Requirements 

 Number of co-
locations 

Accuracy (DU) 
(req: 15 DU) 

Precision (DU) 
(req: 25 DU) 

August 2006; February 1-14 and 
April 1-10, 2007 

5,796,726 3.3 14.8 

 
Figures 4.3 and 4.4 show an example of the co-located pixels on 14-15 February 2007.  Figure 
4.3 is the Met-8 SEVIRI ozone values averaged into and plotted as OMI footprints.  Figure 4.4 is 
the OMI data for the same cloud-free locations.  Gaps are due to clouds and the space between 
OMI orbital passes.  Time differences led to some discontinuities in ozone features.  However, 
the overall ozone patterns are the same, with most gradients matching well between the two 
satellites.  The most notable variation in the gradients occurs in South Africa, during their 
summer.  The Met-8 ozone has a slight high ozone bias in part of that country.  Section 4.2.2 
examines the impact of hot surfaces and dry atmospheres on the Met-8 ozone product. 
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Figure 4.3 Met-8 SEVIRI total column ozone co-located in time and space with OMI total 
column ozone.  Only SEVIRI clear-sky pixels were used. 



 

 

Figure 4.4 OMI total column ozone for 14
SEVIRI clear-sky pixels were used.
 

4.2.2 Error Budget 

The largest source of error for broadband infrared retrievals of total column ozone 
inadequate characterization of surface emissivity variations
the range in the regression training dataset
water vapor column is dry, though that is not the driving factor
largest factor.  For broadband instruments, increasing instrument noise by a factor of two 
generally increases %RMSE by <0.5% (typically about 1.
the ozone regression in extracting the useful information of the broadband data.  For the same 
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OMI total column ozone for 14-15 February 2007.  Locations corresponding to 
sky pixels were used. 

for broadband infrared retrievals of total column ozone 
characterization of surface emissivity variations, allowing diurnal heating to 

the range in the regression training dataset.  The impact is particularly prono
water vapor column is dry, though that is not the driving factor.  Instrument noise

For broadband instruments, increasing instrument noise by a factor of two 
generally increases %RMSE by <0.5% (typically about 1.5 DU), indicative of the efficiency of 
the ozone regression in extracting the useful information of the broadband data.  For the same 

 
15 February 2007.  Locations corresponding to 

for broadband infrared retrievals of total column ozone is from 
, allowing diurnal heating to exceed 

The impact is particularly pronounced when the 
nstrument noise is the next 

For broadband instruments, increasing instrument noise by a factor of two 
5 DU), indicative of the efficiency of 

the ozone regression in extracting the useful information of the broadband data.  For the same 
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instruments removing noise completely from simulations results in a minimal improvement of 
%RMSE, on the order of 0.8% (typically about 2.4 DU).  For this reason averaging pixels to 
reduce noise has a small impact on %RMSE, precision, and accuracy.  For other predictors 
(surface pressure, month, latitude, land fraction) errors of 20% have shown a minimal impact in 
previous studies.  (Schmidt, 2000; Li et al, 2001; Li et al, 2007; Jin et al, 2008) 
 
The definitions of accuracy and precision used herein were taken from the GOES-R ABI F&PS: 
Product Measurement Accuracy (non-categorical products) - Product Measurement Accuracy 
is defined for non-categorical products as the systematic difference or bias between the derived 
parameter and ground truth.  It is determined by computing the absolute value of the average of 
differences between the derived parameter and ground truth over a statistically significant 
population of data such that the magnitude of the random error is negligible relative to the 
magnitude of the systematic error. (CCR01292, CCR01635) 
Product Measurement Precision (non-categorical products) - Product measurement precision is 
the one-sigma standard deviation of the differences between the derived parameters and ground 
truth over the same population of data used to compute the product measurement accuracy. 
(CCR01292, CCR01635) 
 
Table 4.3 lists the accuracy and precision for all pixels, land pixels excluding desert, desert 
pixels, and water pixels for all processed data and August 2006 alone.  All pixels for April 2007 
are also included.  Only clear sky pixels were selected, and no local zenith angle threshold was 
used.  The surface type determination was made using the land surface mask.  Thanks to the 
large volume of SEVIRI data anywhere from 1,000,000 to 5,800,000 co-located pixels were 
available to provide statistics. 
 
The table and following figures illustrate how diurnal surface temperature changes impact the 
ozone product, both over the full testing period and during August 2006 alone.  Water surfaces 
have the least diurnal surface temperature variation and have the best accuracy and precision, 
whereas desert surfaces have the most diurnal temperature variation and worst accuracy and 
precision values.  Performance over land, excluding desert, falls in between water and desert.  
Figures 4.2, 4.3, and 4.4 show two different examples of the effect of diurnal temperature 
variations, one over the Sahara in August and the other over dry parts of South Africa in 
February, dates well into summer in both regions. 
 
While water has the best accuracy of the surface types, it too shows noticeable patterns within 
the scatter plot.  Incomplete cloud masking, incorrect surface type determination, and systematic 
factors such as biases dependent upon latitude and viewing angle could account for those trends. 
 

Table 4.3 Accuracy and Precision Results for Met-8 SEVIRI vs OMI Comparisons 

 Number of 
co-locations 

Accuracy (DU) 
(req: 15 DU) 

Precision (DU) 
(req: 25 DU) 

RMSE 
(DU) 

August 2006; February 
1-14 and April 1-10, 
2007 (all clear-sky 
pixels) 

5,796,726 3.3 14.8 15.1 
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August 2006; February 
1-14 and April 1-10, 
2007 (non-desert land) 

1,862,589 3.3 14.4 14.7 

August 2006; February 
1-14 and April 1-10, 
2007 (desert) 

1,177,329 14.8 12.9 19.6 

August 2006; February 
1-14 and April 1-10, 
2007 (water) 

2,756,808 1.5 13.1 13.1 

August 2006 (all clear-
sky pixels) 

3,408,432 6.5  13.3 15.8 

August 2006 (desert 
only) 

681,994 18.3 11.9 17.4 

August 2006 (non-desert 
land) 

1,124,385 6.5 12.5 14.1 

August 2006 (water 
only) 

1,602,053 1.4 11.1 11.2 

April 2007 (all clear-sky 
pixels) 

1,052,090 1.2 15.4 15.4 

 
In all cases described above, the algorithm meets the F&PS requirements. 
 
Figures 4.5-4.8 are scatter plots of the Met-8 ozone data versus the corresponding OMI data for 
the test data period August 2006, February 1-14 and April 1-10 2007.  Figure 4.5 shows all of the 
data for the test period, followed by the scatter plot over all land but desert, desert, and water for 
Figures 4.6, 4.7, and 4.8 respectively.  As indicated by the data in the table, desert pixels produce 
the worst results, as reflected in the scatter plot in Figure 4.7. 
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Figure 4.5.  Met-8 SEVIRI vs OMI total column ozone for all cloud-free pixels during the test 
data period August 2006, February 1-14 and April 1-10 2007.  Accuracy is 3.3 DU and 
precision is 14.8 DU. 
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Figure 4.6.  Met-8 SEVIRI vs OMI total column ozone for all cloud-free, non-desert land 
pixels during the test data period August 2006, February 1-14 and April 1-10 2007.  Accuracy 
is 3.3 DU and precision is 14.4 DU. 
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Figure 4.7.  Met-8 SEVIRI vs OMI total column ozone for all cloud-free desert pixels during 
the test data period August 2006, February 1-14 and April 1-10 2007.   The high ozone bias of 
Met-8 total column ozone over desert can be seen as the large region of points above the 1:1 
line.  Accuracy is 14.8 DU and precision is 12.9 DU. 
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Figure 4.8.  Met-8 SEVIRI vs OMI total column ozone for all cloud-free pixels during the test 
data period August 2006, February 1-14 and April 1-10 2007.  Accuracy is 1.5 DU and 
precision is 13.1 DU. 
 
Figure 4.5 shows all of the data for the test period, followed by the scatter plot over all land but 
desert, desert, and water for Figures 4.6, 4.7, and 4.8 respectively.  As indicated by the data in 
the table, desert pixels produce the worst results, as reflected in the scatter plot in Figure 4.7. 
 
 

5. PRACTICAL CONSIDERATIONS 
The ozone algorithm is relatively stable computationally as it does not involve iterations on data 
values but rather a straightforward vector and matrix multiplication. 
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5.1 Numerical Computation Considerations 
The primary numerical operation is a dot product of a matrix and a vector.  That operation results 
in the natural logarithm of the total column ozone value.  This makes the algorithm quite stable 
numerically but also exposes sensitivity to correlations between the input predictors, which is 
tied to the difficulty that models have with generating useful proxy data for the ozone algorithm. 
 
While numerically stable overall, undoing the natural logarithm does to a small extent enhance 
the impact of small variations in precision between machines and compilers.  Testing has 
showing such impacts to be less than 0.0001% of a total column ozone value, however. 
 

5.2 Programming and Procedural Considerations 
The ozone algorithm needs access to the set of regression coefficients read from a file.  
Otherwise the algorithm is very straightforward.  Regression coefficients should not change 
unless substantial changes to the instrument (central wavelength of bands, NEDT) occur. 
 

5.3 Quality Assessment and Diagnostics 
The ozone product should be screened against the ABI cloud mask once it is produced.  Ozone is 
calculated for all valid pixels, but it is left to the user of the data to determine which values to 
use. 
 
The ozone algorithm was designed this way to account for anticipated future upgrades that could 
allow for calculation of ozone over some clouds.  Routine and automated (to the maximum 
extent possible) validation based on comparison to OMI (and follow-on polar orbiting UV-based 
ozone detection missions) is the most effective way to assess the ABI ozone product.  Daily 
visualization for imagery coincident with OMI (or its successors) provides a quick-look 
qualitative assessment of algorithm performance.  Quantitative comparisons can be made 
through generation and evaluation of statistics summarizing ongoing intercomparisons of ABI 
ozone and OMI (or its successors).  Monthly statistics, including %RMSE and relative bias 
(accuracy and precision), should also be generated.  
 

5.4 Exception Handling 
Most run-time exceptions are handled by the system running the ozone algorithm.  The ozone 
code fails and does not run if the regression coefficients cannot be found.  The ozone code fails 
for a given pixel if any of the required inputs are missing.  In that case the algorithm proceeds to 
the next pixel. 
 
The quality flag for a valid ozone value is 0 or undefined.  If the ozone value is less than or equal 
to 100 DU, the flag is 1.  For ozone values greater than or equal to 650 DU, the flag is 2.  Space 
pixels have a flag of 3.  Missing input data results in a flag of 4. 
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5.5 Algorithm Validation 
Future validations include processing ozone in real-time and having automatic OMI co-locations 
and statistics generated.  This allows for additional improvements and refinements to help reduce 
issues such as the false diurnal ozone variations over desert. 
 
Proxy ABI data generated from models data that do handle ozone are becoming available, and 
once it is that will be used with the TCO product made with ABI regression coefficients.  In the 
GOES-R era, validation will involve comparison to ozone from UV satellite instruments, 
comparison to Dobson-Brewer photospectrometers, and available sondes.  The latter two are 
effectively measurements of opportunity (clear sky is required).  OMI is well characterized with 
regards to these instruments and given larger OMI data volume it will remain the primary source 
of validation. 
 

6.   ASSUMPTIONS AND LIMITATIONS 

6.1  Performance 
The ABI ozone algorithm performance assumptions are as follows.  The algorithm has been 
tested on Pentium III Xeon and Intel Core 2 Duo class CPUs and meets the latency requirement 
on those platforms.  The code is written and compiled as a single-threaded application, and 
substantial enhancements are possible if multi-threading and other advanced features of modern 
CPUs are applied.  Overall performance is proportional to the number of pixels processed.  
Performing operations on data in memory with a minimum number of disk accesses is the best 
way to maintain performance. 
 
Other performance assumptions include: sub-pixel cloud contamination is minimized (the ABI 
cloud mask does its job), remapping to a perfect navigated grid does not have a discernable 
impact on the ozone product, and surface emissivity variations can adversely impact ozone 
(specifically over deserts, as seen over the Sahara in the examples presented herein). 
 
Regression is predicated on training with a known set of inputs.  Replacement of bad input 
values with 0 can be attempted, but by design this algorithm is not designed to function on 
anything less than the full set of input data. 
 

6.2  Assumed Sensor Performance 
The ABI sensor data is assumed to be within specifications.  Radiances are treated as is with no 
adjustments for remapping.  The L1B remapping of ABI data should have no discernable impact 
on the ozone product. 
 
Errors in input radiances can have an impact on the algorithm, especially when the errors are in 
the 9.6 µm band.  That band has the largest contribution to the ozone product.  Radiance errors 
outside of specification in other bands will not impact the ozone product as strongly. 
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6.3  Pre-Planned Product Improvement 
The ozone algorithm has two pre-planned improvements which are under consideration. 
 

6.3.1 Increased number of training profiles 

The group of training profiles used to create the ozone regression coefficients covers a wide 
range of weather conditions, but since the profiles are only available from certain sites and at 
certain times, additional profiles can improve the quality of the regression.  This type of 
improvement has been made to the GOES Sounder Ozone algorithm on a recurring basis for the 
last several years as new collocated profiles have become available from various sources. 
 

6.3.2 Ozone over low clouds 

Low, relatively warm cloud tops emit strongly enough in the long-wave infrared to make ozone 
estimation possible.  This improvement will require an additional set of regression coefficients 
and modifications to the processing in the algorithm, but the changes are relatively minor to the 
software.  This improvement is being researched. 
 

6.3.3 Missing inputs 

The current ozone algorithm is unable to function properly if inputs are missing – regression 
with one set of coefficients does not allow for it.  To allow for graceful degradation scenarios 
where acceptable performance can be achieved without without certain inputs will be examined.  
Not all scenarios can be realistically accounted for, but cases such as missing temperature 
profiles or the loss of certain bands can be addressed. 
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Appendix 1: Common Ancillary Data Sets 
 

1. LAND_MASK_NASA_1KM 

a. Data description 
 

Description: Global 1km land/water used for MODIS collection 5 
Filename: lw_geo_2001001_v03m.nc 
Origin : Created by SSEC/CIMSS based on NASA MODIS collection 5 
Size: 890 MB. 
Static/Dynamic: Static  

b. Interpolation description 
 

The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the satellite 

pixel. 

 

2. NWP_GFS 

a. Data description 
 

 Description: NCEP GFS model data in grib format – 1 x 1 degree (360x181), 26 
levels  

 Filename: gfs.tHHz.pgrbfhh 
Where, 
HH – Forecast time in hour: 00, 06, 12, 18 
hh – Previous hours used to make forecast: 00, 03, 06, 09  

Origin : NCEP  
Size: 26MB 
Static/Dynamic: Dynamic 

b. Interpolation description 
 

There are three interpolations are installed: 
 
NWP  forecast interpolation from different forecast time: 
 



 

43 
 

Load two NWP grib files which are for two different forecast time and 
interpolate to the satellite time using linear interpolation with time difference. 

 
Suppose: 
 
 T1, T2 are NWP forecast time, T is satellite observation time, and 
 T1 < T < T2. Y is any NWP field. Then field Y at satellite observation time T 
is: 
 

Y(T) = Y(T1) * W(T1) + Y(T2) * W(T2) 
 
Where W is weight and 
   

W(T1) = 1 – (T-T1) / (T2-T1) 
W(T2) = (T-T1) / (T2-T1) 

 
 
NWP forecast spatial interpolation from NWP forecast grid points. This 
interpolation generates the NWP forecast for the satellite pixel from the 
NWP forecast grid dataset.   
 

The closest point is used for each satellite pixel: 
 
1) Given NWP forecast grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 
 
 

NWP forecast profile vertical interpolation 
 
Interpolate NWP GFS profile from 26 pressure levels to 101 pressure levels 
 
For vertical profile interpolation, linear interpolation with Log pressure is 
used: 

 
Suppose: 
  
y is temperature or water vapor at 26 levels, and y101 is temperature or water 
vapor at 101 levels. p is any pressure level between p(i) and p(i-1), with p(i-1) 
< p <p(i). y(i) and y(i-1) are y at pressure level p(i) and p(i-1). Then y101 at 
pressure p level is:  

 
y101(p) = y(i-1) + log( p[i] / p[i-1] ) * ( y[i] – y[i-1] ) / log ( p[i] / p[i-
1] ) 

 
 


