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INTRODUCTION

1.1 Purpose of This Document

The following algorithm theoretical basis documgATBD) provides a high level
description of and the physical basis for a methmglo to infer aircraft flight icing
conditions using images taken by the Advanced Basdmager (ABI) flown on the
GOES-R series of NOAA geostationary meteorologgatellites. This document will
describe the required inputs, the theoretical fatiod of the algorithm, the sources and
magnitudes of the errors involved, practical coasations for implementation, and the
assumptions and limitations associated with thedyeb and provide a high level
description of the physical basis for the detectibthe flight icing threat.

1.2 Who Should Use This Document

The intended users of this document are thoseestin in understanding the physical
basis of the algorithm and how to use the outputha algorithm to assess the flight
icing threat. This document also provides infolipratuseful to anyone maintaining or
modifying the original algorithm.

1.3 Inside Each Section
This document is broken down into the following maéections.

» System Overview Provides relevant details of the ABI and providesrief
description of the products generated by the algari

» Algorithm Description: Provides all the detailed description of the alfm
including its physical basis, its input and itspoutt

» Assumptions and Limitations Provides an overview of the current limitatioris o

the approach and gives the plan for overcomingethigsitations with further
algorithm development.

1.4 Related Documents
This document relates to other GOES-R ABI produciunents:

* GOES-R ABI ATBD for Daytime Cloud Optical and Mighbysical Properties

(DCOMP)
» GOES-R ABI ATBD for Nighttime Cloud Optical and Muaphysical
Properties(NCOMP)

* GOES-R ABI ATBD for Cloud Mask
» GOES-R ABI ATBD for Cloud Phase
» GOES-R ABI ATBD for Cloud Height
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1.5 Revision History

e 12/2008 - Version 0.1 of this document was credigdWilliam L. Smith Jr.
Version 1.0 represents the first draft of this doeut.

» 08/2010 - Version 1.0 of this document was credgdVilliam L. Smith Jr. In
this revision, version 0.1 was revised to meet 8@e¢hvery standards.

* TBD - Version 2.0 of this document will be createg William L. Smith Jr. In
this revision, version 1.0 will be revised to m&80 % delivery standards.

2 OBSERVING SYSTEM OVERVIEW

This section describes the products generatedhbyABI flight icing threat
algorithm and the requirements they place on the@e

2.1 Products Generated

The flight icing threat (FIT) algorithm utilizes ARlerived cloud products to make a
determination of the potential existence and lacafor aircraft icing to the extent it can
be detected from satellite observations under icerthoud conditions. The first
component of the FIT is an icing mask, to identfiyich pixels are composed of clouds
that pose an icing threat based on the presensepsr-cooled liquid water (SLW) at
cloud top and the magnitude of the clouds optiegtd. The icing mask, determined
during the daytime and nighttime, also denotes lpigels contain no icing (‘none’) and
pixels where icing is possible but undetectablenftbe satellite perspective (‘unknown’).
In addition, the current icing threat design cdtls a 2-category estimate of intensity
during the daytime. These categories are denatetight and moderate or greater
(MOG). Thus, during daytime the FIT has an addalocomponent to determine the
likelihood of icing and the potential intensity ledson the satellite-derived cloud
microphysical parameters. During the nighttimes groduct output is limited to the
icing mask since the ABI infrared channels havielisensitivity to variations in liquid
cloud microphysical properties for optically thickouds and thus, the icing intensity can
not be estimated. Thus, the formulation descritezé provides an icing mask at all times
of day and daytime only estimates of the probabditicing occurring in two intensity
categories.

2.1.1 Product Requirements

The F&PS spatial, temporal, and accuracy requirésnéor the GOES-R flight icing
threat are shown below in Table 1.
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Table 1: GOES-R flight icing threat product requirements.

2.2 Instrument Characteristics

The FIT algorithm will be executed for each pixetermined to have a high probability
of SLW. Specifically, these are cloudy pixels waloud top temperatures found by the
ABI Cloud Height algorithm to be below freezing amisht the ABI Cloud Phase
algorithm has determined to be composed of watepléets or mixed phase. Table 2
summarizes the ABI channels that will be used toegate the ABI cloud products
needed to run the FIT algorithm. Because the Fforghm utilizes cloud products
generated by other ABI cloud algorithms, any insteat-related artifacts in those
products may be passed along to the FIT. The pedioce of the algorithm will be
sensitive to such issues as sensor or imagerg@sjfinstrument noise and imperfections
in the knowledge of the sensor response functiortbe extent that these affect the ABI
cloud products. Calibrated observations are ctitimcause in general, the ABI cloud
product algorithms utilize the observed values anjgnction with calculations from a
radiative transfer model where accurate radianceassumed.
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Channel Number Wavelength (um) Used in Cloud Product
Algorithms

1 0.47

2 0.64 v

3 0.86

4 1.38

5 1.61

6 2.26 v

7 3.9 v

8 6.15

9 7.0

10 7.4 v

11 8.5 v

12 9.7

13 10.35

14 11.2 v

15 12.3 v

16 13.3 v

Table 2: ABI channel numbers and wavelengths. Thehannels used to generate the ABI cloud
products used as input to the Flight Icing Threat &gorithm are indicated in the right column.

3 ALGORITHM DESCRIPTION

3.1 Algorithm Overview

The FIT algorithm is a straightforward formulatitmat utilizes a suite of GOES-R ABI
cloud products in order to discriminate areas o$sgue aircraft icing. During the
daytime, the probability of encountering icing ineoof two intensity categories is also
estimated. The formulation is similar to that népd in Minnis et al. (2004a) but the
algorithm coefficients and thresholds have beeratgmiusing a significantly expanded
development dataset. The ABI Cloud Phase and Claptital Depth (COD) products
form the basis for the icing mask by indicating beations of optically thick clouds with
tops composed of super-cooled liquid water (SLVWhe cloud liquid water path (LWP)
is the primary indicator of icing intensity. Th&wed particle size (CPS) and LWP are
used to estimate the icing probability. The FIToaidnm is classified as an “Option 2”
algorithm within the GOES-R GS F&PS document. Tlge@dthm requires the following
input to determine the flight icing threat:

* Cloud Phase

* Cloud Optical Depth
* Liquid Water Path

» Cloud Particle Size
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* Cloud Top Temperature
» Cloud Top Height
* GFS NWP Model Freezing Level

The FIT algorithm derives the following ABI prodsdtisted in the F&PS:
* Icing mask
e 2-category icing intensity (daytime only)

In addition, the algorithm determines the followipgoducts that are not included in
F&PS:

* Icing probability (daytime only)

* Top and base altitude of icing layer

3.2 Processing Outline

The processing outline of the FIT algorithm is susmied in Figure 1. The current FIT
algorithm is implemented within the NOAA/NESDIS/SRAGOES-R AIT framework

(FRAMEWORK). FRAMEWORK routines are used to pravidll of the necessary ABI
derived products and ancillary data.

3.3 Algorithm Input

This section describes the inputs needed to prabesEIT algorithm. The algorithm is
run at the pixel level.

3.3.1 Primary Sensor Data

The list below contains the primary sensor data liyethe OT and ATC algorithm
package. By primary sensor data, we mean infoondkiat is derived solely from the
ABI observations and geolocation information.

» Solar zenith angle
» Sensor viewing zenith angle

3.3.2 Ancillary Data

The following data lists and briefly describes #meillary data required to run the FIT
algorithm. By ancillary data, we mean requirechdhgt is not directly provided by the
ABI observations or geolocation data.

* Numerical Weather Prediction (NWP) Freezing Level
The freezing level is needed to provide a lowetuale boundary for the flight
icing threat.
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3.3.3 Derived Data

Specific ABI cloud products developed by the clalgbrithm team (CAT) required to
run the FIT algorithm include:

* ABI cloud phase output (product developed by cltaain)

» ABI cloud optical depth output (product developgdcloud team)

» ABI cloud particle size output (product developsgdcloud team)

» ABI cloud liquid water path output (product devetoipby cloud team)
» ABI cloud top temperature output (product developgaloud team)
» ABI cloud top altitude output (product developeddbyud team)
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< FIight_icing_threat)

Input data structures

A

Initialize variables & pointers

!

Determine if

‘icing pixel’ No—

ABI Flight Icing Threat
Algorithm High Level Flow

Determine if
‘no icing’ or
‘unknown’ pixel

Yes
5 Daytime? No
o
o
P |
G Yes
x
X

Estimate Icing Probability

!

Estimate Icing Severity

v

A

Assign quality flags

v

Nullify pointers

v

Output results

:

Glight_icing_threat EnD

Algorithm Dependencies: Cloud Phase, Optical
Depth, Liquid Water Path, Cloud Top Temperature,
Droplet size, Cloud Top Height

Ancillary Dependencies: NWP freezing level

Products generated: Icing mask (Day & Night), Icing
Probability and Severity (Day)

Figure 1: High level flowchart of the Flight Icing Threat algorithm illustrating the main processing

sections.

3.4 Theoretical Description

Flight icing threat detection from satellite invebsthe detection of SLW pixels since
SLW is a prerequisite for aircraft icing. The RIgorithm chosen for the GOES-R ABI

is a theoretically based method since it utilizeesotetically based cloud parameters
derived from satellite radiance data. It is destymo work as a standalone algorithm
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based solely on passive satellite data. Not aWWSllouds can be detected from passive
satellite techniques since they are sometimes obddwy higher cloud layers.

3.4.1 Physics of the Problem

It is natural for clouds to contain liquid waterodtets at altitudes where the air
temperature is below freezing. When SLW comes imami with a hard surface such as
the frame of an aircraft, it freezes, thereby icthg airframe as shown for example in
Figure 2. As ice accumulates on an aircraft gralthe airflow, which can increase drag
and reduce the ability of the airframe to create leading to control problems with
potentially disastrous consequences. A signifigententage of weather-related aviation
accidents over the last half-century have beerbatéd to icing. Typically, the flight
icing threat to aircraft is reduced by either petitegy the aircraft with de-icing and/or
anti-icing equipment or by avoidance, particulaidy unprotected aircraft. However,
severe icing can overwhelm an aircraft’s icing potibn system. Icing conditions can be
highly variable, often occurring in small areasttb@annot be resolved with current icing
diagnosis and forecasting methods, which tend trestimate the areal coverage of the
flight icing threat. Thus, avoidance can be expensesulting in significant increases in
flight time or delays on the ground. While theavé been improvements in systems to
mitigate aircraft icing, no phase of aircraft ogiEmas is immune to the threat. Icing
severity is sensitive to temperature, the clouditiqwater content and the drop size
distribution (Rasmussen et al., 1992). Since passible to infer these parameters, or
closely related parameters, from satellite datan(l4 et al., 1995, 1998, 2004b) and
because SLW is often found to accumulate in thesegeral hundred meters of cloud
layers (Rauber and Tokay, 1991), satellite databmused advantageously to diagnose
icing conditions (Ellrod and Nelson, 1995, Smithaét 2000, 2003, Ellrod and Bailey,
2007). Complicating its definition, however, isetliact that icing also depends on
characteristics of the aircraft and other flightgmeters such as the type and weight of
the aircraft, the duration of exposure to SLW ameldccretion rate of ice on the airframe.
These aircraft-related factors can not be accouloteexplicitly in a satellite-based icing
algorithm.

Although it can form anywhere, aircraft icing is sha&wommonly found in two
geographical regions over North America (Bernstimal., 2006). The first includes the
Pacific Northwest, western British Columbia, andagda. The second is from the
Canadian Maritimes and stretching west and southteesncompass the Great Lakes
Region, Ohio River Valley, and Hudson Bay. Muchtls area is within the GOES
observation domain. Currently, model forecasts pitok reports (PIREPS) constitute
much of the database available to pilots for agsgdke icing conditions in a particular
area. Such data are often uncertain or sparseiiable. The advanced design of GOES-
R provides the information needed to quantitativestimate important properties of
clouds, including those that help determine thghtlicing threat, such as cloud
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Figure 2: Ice accreted from super-cooled water dralets on the wig leading edge of a research
aircraft while in cloud (Left) and after ascendingabove cloud (Right). Photo credits: NASA Glenn
Research Center.

temperature, thermodynamic composition, verticatlyegrated liquid water content

(LWP), and effective droplet size. These cloud picigl and others derived from GOES-
R satellite observations provide unique informatédoout icing conditions and form the
basis for the FIT algorithm. The icing productsnigedeveloped here using GOES-R
data will provide improvements in the temporal @patial coverage of icing diagnoses
and prognoses and should contribute a substamrt@neement in aviation safety in
regions susceptible to heavy super-cooled liquidewalouds. The following sections

describe the rationale and procedures employelemdévelopment of the FIT algorithm
for in-cloud aircraft icing.

3.4.2 Mathematical Description

In this section, the methodology for determining ftim-cloud flight icing threat for
aviation is described. The flight icing threaprtially determined by the presence and
density of SLW, and the water droplet size distiitou The FIT algorithm output is
available at the pixel level and composed of thteeponents; (1) the icing mask,
available day and night, which discriminates regiohpossible icing from regions icing
is unlikely to occur and regions that icing canhetdetermined from satellite due to the
presence of high level clouds, (2) the icing proligh estimated during the daytime
only, and (3) a two category intensity index whishalso derived during the daytime
only. All three components are determined usirsgtaof the theoretically based GOES-
R ABI cloud property retrievals as inputs to th& Rlgorithm. The icing probability and
severity are determined using empirical formulageblaon correlations between satellite-
derived cloud parameters and icing reports frorot®i{PIREPS). Since PIREPS provide
the most extensive aircraft icing information cuathg available, they are a significant
element in the development and testing of the ABI1 &gorithm. Another key element
in the FIT algorithm development is the use of lfiteederived cloud products produced
at NASA Langley Research Center (LaRC) as a proxyHe ABI products. The LaRC
cloud retrieval algorithms are those developedafgplication to MODIS data as part of
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the Clouds and the Earth’s Radiant Energy SysteBERES) experiment (Minnis et al.,
1995, 1998). The algorithms have been adapteddplication to geostationary satellites
and are routinely applied to GOES-11 and 12 dattebbkat SEVIRI, and other satellites,
thus providing a significant test-bed for the FIgaaithm.

3.4.2.1Icing Mask

The first step in the FIT algorithm is to constraicé icing mask for each geo-located
pixel with valid GOES-R radiance data and for whtble cloud algorithms have been
properly executed and returned valid retrievalshe Ppurpose of the icing mask is to
determine which cloudy pixels pose an icing threatircraft based on the retrieved
cloud properties and to differentiate these piXxeds clear and cloudy pixels that pose
no icing threat, and from cloudy pixels for whidteticing threat cannot be determined
(e.g. optically thick pixels composed of high lei@ phase clouds). Thus, the output of
the icing mask is an index that denotes each yakel to be either an icing, no icing, or
unknown pixel. The ABI cloud phase product anddloeid optical depth products from
DCOMP (for solar zenith angles less tharf)8@nd NCOMP (for solar zenith angles
greater than or equal to §2are used to construct the icing mask. The lagghown in
Table 3. In the current version, mixed phase doare considered to be an icing threat
which is a conservative approach adopted until #ebeinderstanding is developed
between the mixed phase radiative signals andafiiraing. This will be explored
further when the ABI cloud phase product becomeslable over regions where icing
validation data are available. For SLW and mixedaggh clouds, an optical depth
threshold of 1.0 is chosen to eliminate the veigrtést clouds associated with very low
LWC values from the icing threat. For ice phaseeapclouds, an optical depth threshold
of 6.0 is used to eliminate thin clouds from thimgcthreat that are unlikely to overlap
SLW clouds, while the icing threat for thicker cttsy which may or may not overlap
SLW clouds, is considered to be unknown. Descmistiof the theoretical basis for
determining cloud phase and optical depth can lbedon the appropriate ATBD’s
developed by the GOES-R ABI CAT. An example ofittieg mask is shown in Figure 3

Cloud Phase Cloud Optical Depth Icing Mask
Clear NA No Icing
Water ALL No Icing

Tiis > 1.0 Icing
SLW Tvis < 1.0 No Icing
. Tvis > 1.0 Icing
Mixed Tyis < 1.0 No Icing
Tuis < 6.0 No Icing
ICE Tvis > 6.0 Unknown

Table 3: Logic table for mapping the ABI cloud phae and optical depth products to the icing mask.

along with the cloud phase product derived from GeiEEand GOES-W using the NASA
LaRC cloud algorithm at 1745 UTC on November 8,206or this case, a large area of
clouds over the mid-western states, the Ohio vallay southern Canada, associated with
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a mid-latitude cyclone, were found to contain SLW the satellite analysis which
contribute to the icing threat as depicted by tlienccolors in the icing mask image.
Areas where there is no icing and that the icimgahcannot be determined are denoted
by the gray and white colors, respectively. Itiddde pointed out that a significant

Figure 3: Cloud phase (Left) derived from GOES-E ad GOES-W using the NASA LaRC cloud
algorithm and the corresponding icing mask (Right)determined with the ABI FIT algorithm at 1745
UTC on November 8, 2008

advance in the accuracy of the icing mask will éaized with the GOES-R ABI due to
the additional spectral information and sensititdycloud top phase not available on
current GOES satellites, particularly at night aoding the day/night transition. The fact
that the ABI cloud phase algorithm is based orueof infrared channels only offers
consistency in the retrieval of cloud phase anddimg mask for all times of day, unlike
methods designed for use with current GOES datahwliork best during the daytime
using solar reflectance channels.

3.4.2.2Icing Severity

The potential for in-cloud aircraft icing and isverity depends on many factors related
to the particular aircraft and the weather condgicSome aircraft will accumulate ice in
certain conditions while other aircraft will remaice-free in the same cloud. These
aircraft-related factors are not considered hevieteorological factors that contribute to
icing severity include the concentration of supeoled water droplets and the droplet
sizes. Generally, larger droplets, and/or largercentrations of droplets or higher liquid
water content (LWC) contribute to more severe icind he satellite-derived effective
radius (R) is sensitive to the cloud droplet sizes and tlevedd LWP is sensitive to the
concentration since it is a measure of the vefjigategrated LWC. It may be possible
to estimate the LWC profile from the liquid wateatlp (LWP) and the cloud thickness
(AZ) but would require simplifying assumptions. Tluisncept is being explored for a
future version of the FIT algorithm and is desaditilow in Section 6.3. The current
version of the FIT algorithm has been developedabyuming that LWP serves as a
reliable proxy for LWC such that larger values &/E are associated with larger values
of LWC and thus, more severe icing. Developmerd dfvo-category severity estimate
for the FIT algorithm is based on correlations e satellite-derived cloud parameters
and icing PIREPS. The motivation for a two-catggecheme is illustrated in figure 4,
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which depicts the frequency distribution of icintREPS over the CONUS during two
winter periods (Nov-Mar, 2006/2007 and 2007/2008)learly, most icing reports fall
into just a few of the nine icing intensity categsr and in fact most of the positive icing
reports are either light or moderate in this ddtager this reason, the two-year winter
season icing PIREPS dataset was reclassified fnemine categories into three (none,

PIREPS ICING INTENSITY
Nov-Mar, 2006/2007 and 2007/2008

60
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Frequency (%)
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Figure 4: PIREPS icing intensity for two winter periods (Nov-Mar, 2006/2007 and 2007/2008) over
the CONUS and motivation for two-category satelliteseverity estimate.

light, and moderate or greater), as depicted imifeigt, for correlation with the satellite-
derived cloud properties. The icing PIREPS showifrigure 4 were matched with the
LaRC satellite-derived cloud parameters using GQESNnd GOES-12 data taken over
the CONUS to find relationships between icing aatklite-derived cloud properties.
The satellite results were averaged in a 20km saddgion centered at the location of
each icing PIREP (~ 25 8-km pixels). This anaysias restricted to overcast SLW
scenes as determined by the LaRC cloud phaseviadtaad to daytime (SZA < 82 deg)
data. Additionally, daily snow maps obtained fréine National Snow and Ice Data
Center (now available at the national Ice Ceritép://www.natice.noaa.ggwvere used
to restrict the analysis to areas with no snow caiece the snow albedo was not
accounted for in this version of the LaRC cloudIlgsia, which could bias the cloud
microphysical property retrievals. Figure 5 depithe frequency of occurrence of
‘none’, ‘light’ and ‘MOG’ icing reports as a funai of the GOES-derived LWP. There
were 1,349 matches and the results are binneccieritents of 100 g/fm As the LWP
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increases, the number of negative and light iceygprts decreases while the number of
moderate or greater reports increases. Despite afbeementioned uncertainties

associated with icing PIREPS and the fact that thesy superimposed on a highly
variable cloud field such as the GOES-derived LW results in Figure 5 are

encouraging and physically realistic.
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Figure 5: Relative frequency of icing vs GOES-devied LWP for two winter periods (Nov-Mar,
2006/2007 and 2007/2008) over the CONUS.

Tables 4a-4d list the results of a statistical ysial performed on the matched
satellite and icing PIREPS dataset. The mean tartiard deviation for a number of
satellite-derived cloud parameters is shown. Thkies in Table 3(a) and (b) are
computed with all the matched data (1,349 pointbjle the values in Table 3(c) and (d)
are computed with a filtered dataset that attentptseduce some of the ambiguity
associated with temporal and spatial errors inRIREPS data (1,139 points). In the
filtering procedure, a set of conservative LWP shads are set for specific PIREPS
icing intensities based on the assumption thatwlreare positively correlated as shown
in Figure 5. Thus, in the filtered dataset, thetamed data are eliminated for the
following scenarios: (a) all positive icing repoitd WP < 50 g/nf, (b) all positive icing
reports with moderate or greater icing intensity WP < 200 g/m, (c) all icing reports if
the intensity is less than light if the LWP > 750ng and (d) all light icing intensity
reports if LWP > 1000 g/fa Only about 15% (210 points) of the original nfeed data
is eliminated in the filtered dataset. The result$able 3a ad other analyses (not shown)
indicate that there is little dependency found leswicing intensity PIREPS and.Rit's
not yet clear weather this is natural behavior oresult of uncertainties in the.R
retrievals. The scattering phase function for dloydrometeors is extremely sensitive to
droplet size when the solar angles and satellésvivig geometry are such that strong
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backscatter occurs which results in larger unceies in the R retrievals. This
phenomenon may occur in the late morning (earlgrafton) for GOES-E (GOES-W)
over the CONUS in the fall and winter months wheng is most prevalent. More work
is needed in this area, using other satellitesnamitiple-wavelength Rretrievals to better
understand the relationship betweegn dd aircraft icing. A stronger dependence is
found for the LWP, but there is not much separatietween the mean LWP found for

(a) Mean Cloud Parameters (ALL Data) {c) Mean Cloud Parameters (Filtered data)

Cloud Property Pireps Intensity Cloud Property Pireps Intensity
(GOES) 0 1 2 (GOES) 0 1 2
Tau-Liq 26,36 32.78 4047 Tau-Liq 2239 2848 46.56
Re (um) 11.35 11.80 11.88 Re (um) 11.29 1190 11.86
LWP (gm-2) 37454 566.50 678.49 LWP (gm-2) 22925 339.99 75348
LWPF (gm-2) 297.52 49539 596.30 LWPF (gm-2) 197.92 309.17 660.27
Te-Lig (K) 26156 262.67 262.13 Te-Lig (K) 263.40 262.79 262.15

ZTHK-Liq (km) 120 133 1.42

ZTHK-Liq (km) 1.13 1.25 147

(b) Standard Deviations (ALL Data)

(d) Standard Deviations (Filtered data)

Cloud Property Pireps Intensity Cloud Property Pireps Intensity
(GOES) 0 1 2 (GOES) 0 1 2
Tau-Liq 2407 28.13 28.76 Tau-Liq 1589 21.14 27.62
Re (um) 256 293 284 Re (um) 2.63 .06 2.72
LWP (gm-2) 43951 606.84 644.19 LWP (gm-2) 149.22 227.58 653.29
LWPF (gm-2) 316.90 519.41 534.49 LWPF (gm-2) 134.84 213.55 540.30
Te-Liq (K) 435 396 3.63 Te-Liq (K) 444 393 362

ZTHK-Liq (km) 034  0.38 037

ZTHK-Liq (km) 0.29 030 036

Number: 90 836 433

Number: 78 681 380

(0=None; 1=light; 2=mod+severe) (0=None; 1=light; 2=mod+severe)

Table 4(a)-(d): Mean and standard deviation founddr satellite-derived cloud parameters matched
with Icing PIREPS in three categories: (0 - no icig; 1 — light icing; 2 — moderate or greater icing).
Results are shown for the entire matched dataset ifa) and (b) and for the filtered dataset in (c) ad

(d).

the ‘light’ and ‘MOG’ categories when using all thfe data. Much stronger sensitivity to
LWP is found in the filtered dataset (Table 3c).IscAnote that the filtered dataset
generally produces much lower LWP standard dewviatiowhich implies that the
correlation between the icing intensity and the L& increased. The weighted average
of the mean LWP values shown in Table 3c for tgktland MOG categories is found to
be 488 g/ Based on these results, the current versiohefT algorithm uses this
value as a threshold for icing severity and cléssipixels with LWP> 488 g/nf as
MOG. Icing pixels with LWFk 488 g/nf are classified as light icing.
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3.4.2.3lcing Probability

Using the data in Figure 5, the probability of giwas computed and is shown in Figure
6 along with best fit curves for two values qfiRtended to represent the upper and lower
limits. These relationships were developed by fismalizing the negative icing reports
to account for the sampling bias relative to pwsiticing reports that is apparent in
Figure 4. The fact that Pilot's naturally lack theeentive to report ‘no icing’ is an
inherent bias in icing PIREPS that must be accalifdein algorithm development and
validation. The probability of icing was then comtgd and binned as a function of LWP
as in Figure 5. Those values were multiplied ey phobability of icing found from the
data for values of &= 5 pum (comprised of data with & 8 um) and R = 16 pm
(comprised of data with & 16 um). These two sets of data were then normalized to
yield a 100% probability of icing at 1050 dfrfor R.= 16 pm. The results shown in
figure 6 are consistent with our theoretical untderding of icing, indicating an increased
likelihood of icing with increased LWP ande.R Based on these results, the icing
probability (IP) is formulated in the FIT algorithas

(1) IP =0.244In(LWP) + 0.02€,
for Re= 5um, and
(2) IP=0.32In(LWP) +0.034,

for Re= 16um. Linear interpolation between the results ofgijl (2) are used for pixels
with Rebetween 5 and 1m. Pixels with larger or smaller values ofdRe assigned the
appropriate extreme value. Values of IP < 0.4 dassified as low probability. For
values between 0.4 and 0.7, pixels are classifeednadium probability and values
exceeding 0.7 are classified as high probability.
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Figure 6: Re-normalized probability of in-cloud arcraft icing as a function of satellite-derived LWP
and model fit for two values of Re.

3.5 Algorithm Output

The final output of the flight icing threat (FIT)garithm includes three sets of indices,
which are shown in Tables 5 — 7. The icing proligbindex and the icing intensity

index shown in Tables 5 and 6 are combined intmgles FIT index, shown in Table 7,

which can be color coded for display purposes. eAample of the FIT index output in a
McIDAS display is shown in Figure 7 for the samseahown in Figure 3, along with
corresponding icing PIREPS near the same time,wtoafirms the ABI flight icing

lcing Iigzzab'“ty Description
-7 No Retrieval/bad data
0 No icing
1 Icing Possible (Nighttime only: SZA 82)
2 Low probability of icing (Daytime only: SZA < 82
3 Medium probability of icing (Daytime only: SZA < 8p
4 High probability of icing (Daytime only: SZA < 8p

Table 5: Table describing the icing probability index output from the ABI FIT algorithm.

Icing Intensity

Index Description




25

-7 No Retrieval/bad da

0 No icing

1 Unknowr

2 Light icing (Daytime only: SZA < 82

3 Moderate or greater (MOG) icing (Daytime only: SZ/82°)

Table 6. Table describing the icing intensity index outputfrom the ABI FIT algorithm.

FIT Index Description
-7 No Retrieval/bad da
-9 Missing data/othe
0 No icing
1 Unknowr
2 Low probability of light icing (Daytime only: SZA 8z°)
3 Medium probability of light icing (Daytime only: $¥< 82°)
4 High probability of light icing (Daytime only: SZA 82°)
5 High probability of MOGicing (Daytime only: SZA < 8°)
6 Icing Possible (Nighttime only: SZ> 82°)

Table 7: Table describing the FIT index output from the ABl FIT algorithm.

threat Generally, there is good correspondence betwleerFIT output and the icir
severity PIREPS. It's apparent how much more infdram the current FIT product w
provide during the daytime compared to a binarynescing product (e.g. Figure &
The current approach appears to resolve some of theahatariability in the flight icing
threat to a significant degree, but of course neéedse validated to the extent possik
This will be discussed further in the validatiorctsen below. In addion to the indices
described above, the icing layer boundaries wgbabe output and are planned to
included in the quality control flags since theg aot specifically required in the F&F
requirements.

ong  PIREPS Data Key s
GUUYUYWUW o 5

none TRC LGT MDT :

None  Unknown

Figure 7: The flight icing threat index at 1745 UTC, color coded itMcIDAS (Left) and icing severity
reported by Pilots (Right) from 16— 20 UTC on November 8, 2008.
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4 TEST DATA SETS AND OUTPUTS

4.1 Simulated/Proxy Input Data Sets

The data used to test the ABI FIT algorithm includeud parameters derived from
current GOES, Aqua/Terra MODIS, and SEVIRI. Idgathe goal is to validate the
algorithm using the cloud products produced byAB¢ cloud algorithm team. SEVIRI
provides the best source of proxy data for the ABuUd algorithms since the spectral
coverage is most similar to that of the ABI. Uniorately, there are few icing validation
data available in the SEVIRI field of view. MODIS also a good proxy in terms of the
spectral coverage but the temporal coverage isdarip just a few times per day. Before
this document is finalized, it is expected thatgnificant effort will be made to test the
FIT algorithm on ABI cloud products derived from NdC5 over the CONUS but it is
uncertain if enough data for icing conditions vi# made available to robustly quantify
the algorithm performance. To date, most of thangtative validation of the FIT
algorithm has been performed using cloud produetiveld from current GOES data with
the NASA LaRC cloud algorithms over the CONUS whengch more icing validation
data is available. The results of these efforts r@ported here. The LaRC cloud
algorithms are also run routinely with SEVIRI ddtathe event that a suitable sample of
ABI cloud products derived from MODIS, coincidentthvicing observations, are not
made available for quantifying the FIT algorithmcartainties, we will have to rely on
the uncertainty analyses conducted with the LaRCCBDIn addition, the level of
agreement between the LaRC and ABI cloud produdtsneed to be quantified using
SEVIRI data. The FIT algorithm will be run usingetABI cloud products from SEVIRI
in the Framework and compared to the LaRC resaltsssure the algorithm is working
properly and to test the output for consistencyhwite LaRC icing product. The FIT
algorithm is validated using icing PIREPS, the Tagpheric Airborne Meteorological
Data Reporting (TAMDAR) sensor, and data from th&34 Icing Remote Sensing
System (NIRSS). These datasets will be describediybbelow.

4.1.1 SEVIRI Data

SEVIRI provides 11 spectral channels with a spaeablution of 3 km and provides
spatial coverage of the full disk with a temporasalution of 15 minutes. SEVIRI
currently provides the best source of data foirtgsind developing the cloud parameter
algorithms but its utility for validating the FITigorithm is limited due to a lack of icing
ground-truth data over Europe. Figure 8 depididladisk SEVIRI RGB image and the
corresponding cloud top phase image derived usiagABI cloud phase algorithm from
12 UTC on November 25, 2005. SEVIRI data areirgavailable from the University
of Wisconsin Space Science and Engineering CeS8®EC) Data Center.
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Figure 8: SEVIRI RGB image (Left) and results fromthe ABI cloud phase algorithm (Right) from 12
UTC on November 25, 2005 (courtesy of Michael Pavaiis, NOAA/NESDIS/STAR).

4.1.2 Current GOES Data

Current GOES satellites (GOES-East atVWW5and GOES-West at 138/) are a much
better source of data for testing the FIT algoritimnterms of their correspondence with
available icing ground truth data. One limitatioowever is that the GOES-R ABI cloud
phase algorithm cannot be run with current GOE®llgat data due to their limited
spectral coverage. However, NASA LaRC has beetingly deriving cloud parameters
from the current GOES imager data for nearly a decaThe cloud retrieval methods
were developed for application to MODIS for the @le and the Earth’s Radiant Energy
System (CERES) global climate program and have ksapted for application to
current GOES data beginning with GOES-8 in the [E80’s. These state-of-the-art
techniques are described in Minnis et al., 2010&e LaRC cloud products have been
rigorously validated for CERES with cloud parameteterived from ground-based
remote sensing and in-situ data collected at thepaBment of Energy (DOE)
Atmospheric Radiation Measurement (ARM) progranessi{Dong et al. 2002, 2008,
Mace et al. 2005, Smith et al. 2008, Xi et al. 204rd others). They have also recently
been favorably compared to cloud parameters defieed active remote sensors aboard
the ICESat, CALIPSO and CloudSat satellites (Miretisal. 2008, 2010b). The LaRC
GOES-derived cloud products (GDCP) have been useshg&vely in the FIT algorithm
development and validation because they can bdyeastched with thousands of
ground-truth data points from a variety of sourcés the FIT algorithm is transitioned
for application to the GOES-R ABI cloud productswill be necessary to quantify the
level of agreement between the ABI cloud retrieadglorithm and the LaRC algorithm,
particularly in terms of the cloud phase and LWEnestes, and make any appropriate
adjustments to the FIT algorithm. Thus far, congmars conducted for just a few cases
indicate that the daytime LaRC retrievals and t@ES-R ABI proxy retrievals are in
reasonably good agreement (provided the same seablorations are used), which also
justifies the utility of the LaRC products for thare-launch ABI FIT algorithm
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development and validation. An example of the La&@Qud products derived from
current GOES-10 and GOES-12 is shown in Figurelfichvdepicts the retrieved LWP
and effective radius @R Together, with the retrieved cloud phase shawfigure 3,
these parameters define the flight icing threatreges shown in Figure 7. Current GOES
data are readily available from the University ofiséénsin Space Science and
Engineering Center (SSEC) Data Center. The LaRGdcproducts are readily available
from NASA.

Effectlve Radlus

9 11 13 15 17 19 21 25

Figu rom GOES-10 and GOES-12 on
November 8, 2008 are critical inputs to the ABI FITalgorithm. These data were derived using the
LaRC cloud retrieval algorithm.

4.1.3 MODIS Data

The Moderate Resolution Imaging Spectroradioma®DIS) has been operating on
the Terra satellite starting in late February 2®@0n a Sunsynchronous orbit with a
1030-LT equatorial crossing time. MODIS on the Acadellite became operational in
July 2002 from a Sun-synchronous orbit with a 1830equatorial crossing time.
MODIS is a 36-channel radiometer with similar spgctoverage as the ABI and good
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spatial coverage over the CONUS where most of tiregivalidation data have been
collected. Thus, MODIS is a suitable platform &yve as a proxy for testing the FIT
algorithm with cloud products derived using the ABdud algorithms. This effort is

planned for the next version of this document ameblves running the ABI cloud

algorithm to generate the required cloud produguis needed for testing the FIT
algorithm against the validation data describedWwelMODIS data are available from
the NASA Goddard Space Flight Center DistributedvacArchive Center.

4.1.4 PIREPS Data

Pilot reports (PIREPS) constitute the most widelgilable information on in-flight icing
conditions, particularly over the CONUS, but havewn deficiencies when used for
validation (Kane et al. 1998). They are spatialtyl temporally biased and the biases are
not systematic. PIREPS include severity reportschvishould be useful for validating
the FIT algorithm severity estimates. However, gheerity reports are subjective, based
on pilot experience, as well as airframe and fligharacteristics, so their accuracy is
difficult to characterize. A typical distributicof icing severity PIREPS shown in Fig. 4
for two winter periods over the CONUS indicatest thst of the positive reports fall
into only two of the eight possible severity catég® and there are relatively few
negative (‘no icing’) reports. Icing PIREPS haweb found to be particularly useful for
validating icing detection (Smith et al. 2000) lawé inappropriate to compute standard
measures of over-warning, such as the False Alaatio RFAR; Brown and Young
2000). Icing PIREPS used in the FIT algorithm depment and validation, are easily
acquired from the University of Wisconsin SpaceeSce and Engineering Center
(SSEC) Data Center.

4.1.5 TAMDAR Data

TAMDAR is the Tropospheric Airborne Meteorologidahta Reporting sensor currently
deployed on approximately 400 commercial aircrgkerating over the CONUS, Alaska
and Canada. TAMDAR is a low-cost sensor that wasldped by AirDat, LLC for
NASA. It is designed to measure and report wineisyerature, humidity, turbulence and
icing from regional commercial aircraft (Daniels &t, 2002). The TAMDAR icing
sensor contains two independent infrared emittextder pairs mounted on the probe to
detect ice accretion. The accretion of at leastn@ilbmeters of ice on the leading edge
surface will block the beams and result in a pesitietection. When ice is detected,
internal heaters mounted within the probe melt itee and the measurement cycle
repeats. The heaters are powered for at least amgterand the de-icing cycle occurs
each time ice is detected. The icing data are gagepes (icing) or no (no icing) reports.
Thus, TAMDAR provides a direct, objective measufénecloud icing. TAMDAR data
are useful for validating icing detection but cast be used reliably to validate the null
case or FAR due to difficulties in ascertaining tiee the negative icing reports are in
cloud or clear air since this is not specificayported. Attempts to use satellite-derived
cloud boundaries matched with the aircraft altitQdbich is reported with the icing data)
have not sufficiently rectified this problem due tioe inaccuracies in the satellite
retrievals. TAMDAR data can be acquired from AIRDALLC. Data collected during
the Great Lakes Fleet Experiment (GLFE) in 2005chalveady been obtained by NASA
and are included in the current ABI FIT validatiarsenal. Figure 10 shows the Mesaba
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Airlines regional jet routes for TAMDAR during th@LFE. The current TAMDAR
deployment has shifted to the western states andkal These data should also prove
useful for validation.

Mesaba Airlines Regional Iet Routes

reat Lakes Fleet

Experiment (GLFE)

- Dec’04 to
May’'05

Figure 10: Depiction of the jet routes for the TAMDAR instruments deployed on MESABA Airlines
regional jets in early 2005.

4.1.6 NIRSS Data

The NASA Icing Remote Sensing Experiment (NIRSS3 baen collecting valuable
information on icing conditions that can be usedRd" algorithm testing and validation.
The NIRSS has been operating since 2005 at NASArGResearch Center in Cleveland,
Ohio. This location is well situated for observiemg conditions as it lies in the heart of
a climatological icing bulls-eye (Bernstein et 2007). The NIRSS was developed to
demonstrate a ground-based remote sensing systereptothat could provide accurate
detection and warning of in-flight icing conditiomsthe near-airport environment. The
system fuses data from radar, lidar, and multitieetcy microwave radiometer sensors to
guantify the icing environment and compute thegdimazard (Reehorst et al. 2009) based
upon the expected ice accretion severity for thesueed environment (Politovitch
2003). Figure 11 shows an example of the icingirthzomputed using NIRSS data over
a six-hour period. Although the system does notsuemicing directly, this remote
sensing concept appears to be robust enough tasusesatellite validation tool. For
example, it appears that these unique data coslul l&lp quantify the FIT algorithm
FAR, which cannot be done reliably with any otharrently available validation data.
Analyses of NIRSS data have just begun for FIT rétigan validation.
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Figure 11: Example of the icing hazard product praduced using NIRSS data at Cleveland’s Hopkins
International airport.

4.2 Output from Simulated/Proxy Input Data Sets

Examples of proxy data taken from current GOES daiag the LaRC GDCP are shown
in Figures 3 and 7. MODIS results using the ARJud products are forthcoming and
will be presented in the next version of this doeam In this section, we show the
results of a Framework demonstration of the ABI Blgorithm using SEVIRI data taken
at 1400 UTC on October 18, 2009. Since the LaR©rikgns are being run routinely
over Europe using SEVIRI data, a direct comparisanade between the ABI and LaRC
cloud products and the subsequent icing analyBegure 12 depicts the cloud top phase
comparison for this case. In general, the LaRC AWdAG/ABI retrievals are very
consistent. The AWG/ABI retrieval has a little radce cloud than the LaRC retrieval
and also has a mixed phase category for pixels itbtand water radiative signals that
are difficult to differentiate. For this case thas a significant amount of SLW over
northeastern France, northern Germany and arethee toorth for which to test the FIT
algorithm. Figures 13 and 14 show the &d LWP comparisons. The level of
agreement found for the.Retrievals is somewhat mixed. Accounting for thehd

Clear  Liquid  SLW Ice
C f fmsml femm

Figure 12: Cloud top phase derived from SEVIRI daa taken at 1400 UTC on October 19, 2009 using
the LaRC algorithm (Left) and the AWG ABI cloud algorithm (Right).



Figure 13: Cloud Effective Radius (R) derived from SEVIRI data taken at 1400 UTC on Oocbber 19,
2009 using the LaRC algorithm for liquid clouds (Ldt) and the AWG ABI cloud algorithm for all
clouds (Right).

differences in the color bars, it appears thergosd agreement in some areas and less
agreement in others. We will attempt to understinede differences better as we make
more comparisons. In the current algorithm formatatR. has only minor direct impact.
However, becausechs used to compute the LWP from the COD, thesemihces may
impact the derived flight icing threat indirectlynse the FIT output does depend to
significant degree on LWP. The LWP comparison heven in Figure 14 and the
differences found to be quite large. The primagson for this has been traced to the
calibration being used for the SEVIRI visible chahin the Framework where the
AWG/ABI cloud products are generated. In this ¢calse nominal calibration was used.
In the LaRC system, a more accurate calibratiarséxl that accounts for the post launch
degradation of the SEVIRI visible channel. Thdibcation was derived using MODIS

_ 2

Figure 14: Cloud water path derived from SEVIRI data taken at 1400 UTC on October 19, 2009
using the LaRC algorithm for liquid clouds (Left) and the AWG ABI cloud algorithm for all clouds
(Right).
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data for which the visible channel is well charaetl using on-board calibration targets.
This explains why the AWG/ABI cloud LWP values am@nsiderably lower than those
derived using the LaRC algorithm. Also note thas tversion of the AWG/ABI cloud
algorithm (DCOMP) was not run for SZA > 70A future version will run this out to 82
since that is the current plan for operations &y @AT. The flight icing threat derived
from the two sets of cloud products is shown inuFggl5. As expected, there are
significant differences but this is primarily duethe calibration issue. There were a few
icing PIREPS near the same time as this analyatscthnfirm the satellite-derived flight
icing threat. Icing PIREPS are not normally repdrover Europe, however these were
obtained from Dr. Thomas Hauf at the UniversityHzinnover in Germany as part of a
special operations field campaign being conductgdEbropean icing research teams.
Despite the differences found between the ABI an®C cloud products, this exercise
indicates that the ABI FIT algorithm is working egpected in the Framework. The
Framework version should yield results that are lmoore consistent with the LaRC
results once the nominal calibration for the visibhannel on SEVIRI is replaced with
something more accurate, such as the LaRC cabbratin another offline study, COD
values from the AWG/ABI algorithm have been compa@the LaRC values for liquid
clouds over the eastern Pacific ocean and fouradjtee quite well. Thus, it appears that
the LaRC GDCP could serve as a suitable proxy faracterizing the FIT algorithm
uncertainties in lieu of the ABI cloud products slibthey not be made available with
coincident icing observations for testing with MCGDbefore the GOES-R launch.
Clearly, more work is needed to understand the cclptoduct differences and the
possible impacts on the accuracy of the FIT albonit

AIT Flight Icing Threat
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Figure 15: The ABI flight icing threat derived from SEVIRI data taken at 1400 UTC on October 19,
2009 using the LaRC cloud products (Left) and the WG ABI cloud products (Right).

4.2.1 Precision and Accuracy Estimates

To estimate the precision and accuracy of the Rgbrahm, icing information from
PIREPS, TAMDAR and NIRSS are used. They each havgque advantages and
disadvantages as described briefly in Section ldslimportant to emphasize again that
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aircraft icing is not just a meteorological phenowe but also depends on
characteristics of the airframe, flight trajectamgsidence time, and other factor’'s. The

Observed
§ Yes No Total
2 Yes YY YN YY+YN
& No NY NN NY+NN
a Total YY+NY YN-+NN YY+NY+YN+NN

Table 8: Two-by-two contingency table used to estiate FIT algorithm skill.

validation data sources each have associated amtes as well, which may not be well
understood in some cases. Thus, FIT algorithndaabn is extremely difficult. Field
experiment data could be useful, but to date, myyicelated field campaign has been
designed with satellite algorithm development aalidation as a goal. There has been a
wealth of icing information collected from NASA G@le’s airborne icing research
program during previous field campaigns that remdargely unexplored for satellite
validation, primarily due to a lack of resourcesr Row, the primary verification method
for the ABI FIT algorithm is to match the satelliproduct with icing information
extracted from PIREPS, TAMDAR, and NIRSS data. Twetwo contingency tables
are constructed to help quantify the inter-comppeuss Each cell in the table provides the
frequency with which a particular observation atireate occurs at a specific threshold.
For the contingency table shown in Table 8, thegholds are ‘Yes’ or ‘No’ icing. The
observed values represent the validation sourceédhandiagnosed values represent the
satellite estimates. Ideally, in order to deteemihe true skill in the satellite method,
both the probability of detecting icing conditiolBODY) the probability of detecting
non-icing conditions (PODN) and the probabilityfafse alarm (POFA, also known as
FAR) should be determined. These can be compubed the contingency table as:

PODY = YY/(YY+NY)
PODN = NN/(YY+NY)
POFA = YN/(YY+YN)

Assuming that the observations are accurate artdtlibastatistical sample is relatively
uniform, the true skill score (TSS) can be estimas:

TSS = PODY + (1 - PODN)
However, as alluded to earlier for the validatidatasets used here, ‘no icing’
observations are likely to be biased or unreliablative to ‘yes icing’ observations. In
those cases, and to offer a consistent measutellofising the various validation data, a
skill score that excludes the ‘no icing’ observaidSS) is estimated as:

SS = (YY = NY)/(YY + NY)
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4.2.1.1Comparisons with Icing PIREPS

A two-year dataset matching the icing threat defiivem GOES-10 and GOES-12, using
the LaRC cloud products during the daytime, witimdcPIREPS collected between
November 1 and March 31, 2006/2007 and 2007/20@8amalyzed. In this preliminary
analysis, all pixels within 20 km and +/- 30 mirautef the icing PIREP were matched
under the condition that each of the satellite Isixeas composed of SLW as determined
by the cloud phase algorithm. This approach wkentdo reduce any ambiguity in the
satellite retrievals that might arise in partly wlly conditions or due to possible
contamination by higher level ice clouds. It alsposes some level of uniformity to the
matched dataset and eliminates pixels where thg itireat is unknown or known not to
exist (e.g. in clear conditions or warm clouds)hug, the purpose of this exercise is to
validate the ABI FIT algorithm only in icing condihs as determined from the satellite
perspective. This strategy resulted in 4,455 matché&he skill in detecting icing
conditions was determined from the contingencyeablown in Table 9. PODY, PODN
and SS are 93%, 32%, and 87%, respectively, ferdhtaset. False detections (N=328)
are common, but comprise only a small percentagbeototal (POFA=.08). However,
‘no icing’ reports in the PIREPS are nearly an ommfemagnitude less frequent than ‘yes
icing’ reports, and as Brown and Young, 2000 hagted, POFA is an inappropriate
measure considering

PIREPS
— Yes No Total
L Yes 3703 328 4031
g No 273 151 424
Total 3976 479 4455

Table 9: Frequency of yes/no icing reports foundofr matched GOES/PIREPS dataset constructed
over two winter seasons.

since the value depends on the relative numbeampkes. A similar contingency table
is formed to test the two-category severity compormed the FIT algorithm and is shown
in Table 10. The probability of detecting lightdPL) and moderate or greater (PODM)
icing conditions are 53% and 62%, respectivelyngidering the uncertainties associated
with icing PIREPS and the difficulties in accurgtaetatching the reports to satellite data,
these comparisons are reasonably good.

PIREPS
— Yes No Total
L Yes 3703 328 4031
g No 273 151 424
Total 3976 479 4455
Table 10: Frequency of two-category icing severitindex found for matched GOES/PIREPS dataset

constructed over two winter seasons.
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4.2.1.2Comparisons with TAMDAR

Daytime GOES-12 data from April 1-26, 2005 were lwred with the LaRC cloud
algorithm and compared to TAMDAR data taken dutimg GLFE (Nguyen et al. 2006).
The TAMDAR icing data consist of six indices: “lfgnifies that icing is occurring and
the probe heater is on; “F’ indicates an ice-detetdult; “D” means that no icing is
indicated; "H” signifies no icing and the probe texais on; “L” indicates that icing is
occurring and the heater is about to turn on; @tmheans that the heater has shut-off
and the probe is cooling down. The post-procesgad 2005 data obtained from AirDat
contains only the “I”, “D”, and “H” indicators. The were 440,542 observations, of
which 13,321 reports indicated icing, 8,951 indéchthat the heater was on so icing was
not detectable at that time and the rest indicétetl no icing was observed. When the
TAMDAR probe detects icing, it reports immediatagd then at a minimum of every
minute thereafter. During aircraft ascent and detsdbe probes report more frequently,
providing as many as 6 observations per minutehi@io vertical sounding profiles.
During level flight, the probes report every 3 ntesi Unlike the few PIREPS reports
that are reported (most of which are reported duidmg conditions), TAMDAR takes
continuous data. Therefore the TAMDAR reports ammihated by 95% no icing
indicator. Thus, the GOES and TAMDAR comparisortistias in the results will be
biased towards the TAMDAR no-icing category if dil6 are not properly applied to
remove insignificant reports (e.g. from cloud fezeas).

The pixel-level icing parameters derived from GO&8 averaged, by spatially
weighting the 4 closest pixels to each TAMDAR obsaéion taken within +/- 15 minutes
of the satellite observation. In order to compédie TAMDAR data with GOES without
biasing the results, only TAMDAR reports at altiégdwithin the GOES-derived cloud
base and top and in a cloudy condition as defineGOES were compared. The GOES
filters reduced the total number of daytime TAMDA@Dorts to 32,260 cases. Out of the
32,260 cases, TAMDAR reported 13% icing, 6% heatgrand 81% no ice flags while
GOES reported 26% icing, 22% no icing, and 52% omkn(or indeterminate).

Figure 16 shows an example of satellite-derivéagiendices compared with the
TAMDAR icing indicators on a Mesaba flight (with TADAR serial number 247) on 22
April 2005 between 18:00-18:30 UTC. This singledayase shows good agreement
between the satellite and TAMDAR. Satellite-deriabolud base and top (small squares)
and TAMDAR icing indices (large squares) are phbtés functions of altitude. During
the majority of the flight segment, the aircraftsMaside the GOES-defined cloud and
reported icing which corresponds well with the GCGEfalysis. During the descent below
cloud base, the TAMDAR no longer reported icing it OES still detected icing. This
illustrates the need to properly filter out repdhat would bias the TAMDAR and GOES
statistics. When TAMDAR detects icing, GOES alstedted icing 28% of the time.
When TAMDAR indicated no icing, the GOES detectean ining 26% of the time.
However, if we exclude the 52% of the GOES ‘unknbwases, and consider only cases
when TAMDAR detected icing conditions, the probaypilof a positive detection
(PODY) by GOES is 88%. When TAMDAR and GOES bothedi&d no icing, the
probability of a null detection (PODN) is 50%. Thu#f the 13% TAMDAR icing
detections, GOES missed the icing detection (fatsgative) in only 4% of these cases.
However, the GOES detected icing and TAMDAR detdcte icing (false positive) in
75% of the GOES icing cases or 19% of all case® fAigh false positive detection
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(75%) from GOES can be attributed to the error®@ated in the calculation of the
GOES cloud base and top. With an error standarchtiew of 1 km in the cloud base and
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Figure 16: Comparison of GOES-derived flight icingthreat to TAMDAR icing indicators. Large
squares represent the TAMDAR observations while th small squares represent GOES.

TAMDAR reports no icing

top heights, many of the TAMDAR no-icing reportst mo clouds are being included in
the statistics with the GOES icing detections. ©fhetors to consider include the impact
of multi-layered clouds and subsequent errors & dhtellite estimates of cloud base,
which are not being accounted for in the filter, vasll as the fact that the aircraft
observation is at a specific vertical level and¢heent satellite method provides a single
estimate of the icing threat for the entire layd@hus, we currently don’t have a method
to adequately determine the ABI FIT algorithm POBINFAR using TAMDAR. Further
research is needed to account for cases whenighésfare not in clouds. One possibility
is to use TAMDAR temperature and relative humiddaynclude only the reports that are
significant in producing icing conditions. This ¢dthelp alleviate some of the issues
reported here.

4.2.1.3Comparisons with NIRSS

As discussed earlier, the NIRSS uses ground-basadte sensing data to estimate the
flight icing threat over a single surface site.th®lugh icing is not measured directly, the
NIRSS provides an objective estimate using advaactde and passive remote sensors
and thus has the capability to provide verticabhat®on to the problem. We are in the
early stages of analyzing this dataset for the ggaef evaluating and improving the ABI
FIT algorithm. A preliminary analysis has beenawacted over a four-year period (2006-
2009) by matching the NIRSS icing to that derivsthg the ABI FIT algorithm applied
to the LaRC cloud parameters derived from GOES-t&@r cCleveland, Ohio. The
procedure includes satellite pixels within 20 kntlof site and all NIRSS data within +/-
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10 minutes of the time GOES-12 scans thru Clevelabantingency tables were
constructed as before, in order to evaluate thellgaticing detection and severity
estimates relative to NIRSS. For this dataseketherre 3,569 matches. PODY, PODN,
POFA and SS were found to be 0.82, 0.73, 0.27 &% €espectively. This analysis was
considerably less conservative than that done thithPIREPS data in that it included
partly cloudy conditions and mixed phase scenesaddition, there was a processing
error in the NIRSS analysis that didn’t properlyesn some bad data out of the analysis.
All together these factors probably contributette telatively low PODY and SS values
found here when compared to those found from PIRBR& TAMDAR. PODL and
PODM were found to be 0.86 and 0.63, somewhat tttéa that found in comparison
with icing PIREPS. The severity indices were matthusing the same categorical
partitioning shown in Figure 4 and by matching witle median value found in the
NIRSS vertical profiles over the 20-minute time danv. Certainly, these results are
encouraging but much more work is needed to refiese comparisons for next version
of this document.

4.2.2 Error Budget

Using the validation described above, the followitalple provides our preliminary
estimate of an error budget. The product measuremecuracy stated in the F&PS
document requires a 50% classification. That valae chosen to place a lower limit on
the acceptable uncertainty for the severity compboéthe FIT and it was chosen to be
conservative considering the uncertainties andcditfes associated with the validation
data. The results shown in Table 8 indicate thatRIT severity is meeting the required
specification for both PIREPS and NIRSS, althouga NIRSS results shown here
should be considered preliminary for the reasoatedtearlier. A specific requirement
for the accuracy of the icing mask is not specifiredhe F&PS. However, we typically
find PODY values greater than 90% versus PIREPS%(98r the 2-year dataset
presented here). The skill in positive icing datet (excludes no icing reports) is 87%,
75% and 60% for PIREPS, TAMDAR and NIRSS, respetyiv A processing error with
the NIRSS data led to the poor score (60%) thdthwilcorrected in the next version of
this document. All of the validation results sholgre exclude scenes where the icing
threat is unknown from the satellite perspective tlu obscuration by higher level ice
phase topped clouds.

Product - " Percent Correct
Product Skill in Positive e
Measurement . . Classification
Measurement Range Icing Detection .
Accuracy (Severity)
Day: None, Light. 50% correct PIREPS: 87% PIREPS (N=3703)
Moderate or greater classification (N=4455) Light: 53%
(MOG) MOG: 62%
TAMDAR: 75%
Night: None, Icing (N=12082) NIRSS (N=683)
Light: 85%
NIRSS: 60% MOG: 66%
(N=3454)




39

Table 11: Preliminary error budget for the ABI FIT algorithm when applied to the LaRC GDCP
using current GOES.

5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

The ABI FIT algorithm is implemented sequentialldecause it relies on the results of
other cloud algorithms, the cloud phase, and cloptital properties from DCOMP and
NCOMP, must be run before the FIT algorithm. Iniddd, an estimate of the freezing
level will be required to estimate the lower altikuboundary of the icing threat. That can
be obtained from an NWP analysis or forecast.

5.2 Programming and Procedural Considerations
The ABI FIT algorithm is run at the pixel level.

5.3 Quality Assessment and Diagnostics
The following procedures are recommended for diagngpthe performance of the Al
FIT algorithm.
* Maintain database of Icing PIREPS in the GOES-Ryggzhic domain
» Apply signal detection theory using PIREPS as trotha weekly or monthly
basis.
* Maintain a close collaboration with the teams depiglg and validating the cloud
phase and cloud optical properties.

5.4 Exception Handling

The FIT algorithm will check the quality and vatigdiof the require cloud parameter
inputs before processing. The algorithm also etgpbe main processing framework to
flag any pixels with missing geo-location or viegigeometry information.

5.5 Algorithm Validation
See section 4 above.

6 ASSUMPTIONS AND LIMITATIONS

The following sections describe the current limdas and assumptions in the current
version of the ABI FIT algorithm.

6.1 Performance

The following assumptions have been made in deusjpopand estimating the
performance of the ABI FIT algorithm. The followgnlist contains the current
assumptions (numbered) and proposed mitigatiotesgjiiess (lettered).
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1. GOES-R ABI cloud parameters are validated and wiilar quality as the
NASA LaRC cloud parameters used in the FIT develampm

a. Develop new algorithm coefficients and thrédgfidoased on icing PIREPS
correlations with GOES-R ABI cloud parameters

6.2 Assumed Sensor Performance

We assume the sensor will meet its current spetifics. However, because instrument
dependence by the FIT algorithm will be solely deieed by the cloud parameter

dependencies, the cloud parameter ATBD’s shoulcbibsulted for possible performance
issues.

6.3 Pre-Planned Product Improvements

Despite the fact that the current FIT algorithmmegeting accuracy requirements as
specified in the F&PS document, there are a fewsabeing explored that could be used
to improve the algorithm. One possible issue indheent algorithm formulation is the
lack of any temperature dependence or a methoartiipn the S-LWP from the total
water path derived from GOES. A better understapdif the uncertainties in the
detection and impact of mixed phase clouds on ligatficing threat is also needed.
These issues are briefly discussed below. In amditvery little feedback has been
obtained from the user community regarding theitytdf the FIT product. The best
feedback has come from NCAR forecasters who haweeessfully used the GOES-
derived LWP to (1) direct research aircraft intovgcconditions for scientific purposes
and (2) direct general aviation aircraft into icingnditions for the purpose of icing
certification (Bernstein et al., 2006). Since @& index is largely a mapping of LWP
for SLW topped clouds to the icing threat, thisegiwus some confidence in the utility of
the product but much more feedback is neededhdrall of 2010, the product will be
tested at the Aviation Weather Center over a twekwveeriod as part of the Aviation
Weather Experiment within the GOES-R Proving Ground

6.3.1 Estimating the Super-cooled Fraction of Total LWP

One potential flaw in the current algorithm forntida is the dependence on the
assumption that icing severity correlates with tbial LWP. Although, icing PIREPS
weakly support this assumption as shown earliareikpected that since the LWP is the
vertically integrated LWC, and LWC is known to vamth altitude, larger values of
LWP may be associated with either larger valuesBWf or cloud geometric thickness,
or some combination of the two. Furthermore, dhfy/super-cooled portion of the cloud
will impact the flight icing threat. This is curdy not accounted for in the FIT
algorithm. For example, in the current formulatitime severity estimate is identical for
two clouds having different top temperatures (880K and 271K) but the same LWP,
even though it is likely that in most cases theR@&bud contains more SLW and is a
more significant icing threat. An estimate of teger-cooled fraction of the total LWP
or even a retrieval of the super-cooled LWC profitem satellite data could provide a
more robust estimate of the icing severity. Regerltechnique has been developed to
estimate cloud water content profiles from passatellite data. Cloud water content
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profiles for ice and liquid clouds derived from tioud Profiling Radar (CPR) on

CloudSat are used to develop climatological prsfiler vertical profile shape factors, for
different cloud types. The shape factors are te#d to distribute the GOES-derived
cloud water path in the vertical, which resultsiretrieval of the vertical profile of cloud

water content. Examples of the shape factors d#rfireen CloudSat for clouds assumed
to be composed of SLW between 250K and 273K aresshio Figure 17 as a function of

cloud thickness and water path. With knowledgéheffteezing level
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Figure 17: Mean cloud water content shape factorsetived from CloudSat data taken over the
CONUS as a function of altitude below cloud top andor different CWP’s and cloud thicknesses.
The profiles were derived during the months of Noveaber-April in 2007/2008 and 2008/2009 for
clouds with top tmperatures between 253K and 273K.

obtained from an NWP analysis, these profiles ctwldised to scale the satellite-derived
total water path to estimate the S-LWP. The Figoathm could then be reformulated
using the S-LWP in the same manner it was origgnaéveloped using the total LWP,
and re-evaluated to determine if the accuracy leas mproved. This is being explored
for a future version of the ABI FIT algorithm. Faermore, this profiling concept for
GOES has some similarity to the NIRSS concept whih main exception being that
NIRSS uses coincident radar observations to hedpacterize the vertical distribution of
cloud water, whereas this satellite method uses limamwlogy from CloudSat.
Climatologies from other radar and aircraft basédeoving programs are also being
explored for use with this method. NIRSS also &esurate observations of the cloud
base from a ceilometer while the passive satdllie GOES) method utilizes a cloud
thickness parameterization to estimate cloud bidsgertheless, early inter-comparison
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studies between the GOES-derived profiles and thiesdved from CloudSat are

encouraging. Additionally, this satellite methahde extended to the icing problem by
using the same conversion factors that map thersugméed liquid water content to the

icing threat (Politovitch 2003) in the NIRSS aldbm. An example is shown in Figure

18 for the Nov 8, 2008 case, which depicts theenurversion 3 ABI FIT output on the

left and a cross-section of the passive satellitédilng product on the right. The cross
section extends from the lllinois/Indiana bordewa&od the northeast into southern
Canada. A 3-D rendition for the region in the dnalmox and centered over the Ohio
valley is shown in Figure 19. Because the methadbmapplied to GOES data at high
temporal resolution, a 4-D description of the ftigting threat is possible. The concepts
described here for application to GOES-R are adgtainique and could add value to
satellite based icing products. They also have adeantage of providing some

consistency with the NIRSS approach being develdpeterminal area icing, but much

more work is needed, the new products need to leated, and feedback from the user
community regarding their utility would be extremélelpful.

Nov. 8, 2008 (1745 UTC)

Distance along tronsect [k
None Unknown LGT LOT d

Figure 18: The flight icing threat at 1745 UC orNovember 8, 2008 derived using the current
(version 3) ABI FIT algorithm (Left) and a new profiling concept being considered for version shown
as a cross-section (Right).
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Figure 19: A McIDAS-V 3-D rendition of icing seveity profiles derived from GOES-12 at 1745 UTC
on Nov. 8, 2008.

6.3.2 Mixed Phase Cloud Effects on the Flight Icing Threat

As noted earlier, many clouds are found in natuth & layer of SLW at the top and thus
satellites are uniquely suited to detect theseddgorovided high level clouds are not
obscuring their view. It is also common, particlyan winter, for SLW topped clouds to
be snowing. Thus, there is some transition fraquitl droplets to ice crystals within the
vertical dimension of some clouds that undoubtédiyacts the flight icing threat since it
is well known that the presence of ice in clouds @pidly deplete the available SLW.
The current algorithm does not account for mixedgghcloud effects and little is
currently known about how these effects might bpaating the algorithm performance.
Fortunately, the current GOES-R ABI cloud phaseoriligm has a ‘mixed phase’
category but it has not yet been validated. We eq@oring the use of microwave
radiometer data, taken from satellite and grourgetdesensors, including the NIRSS, as
well as other spectral channels on the ABI, to eglpntify the impact of mixed phase
clouds on the flight icing threat. These and ofldeas are being explored to the extent
possible with the available resources.
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