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INTRODUCTION 
 

1.1 Purpose of This Document 
The following algorithm theoretical basis document (ATBD) provides a high level 
description of and the physical basis for a methodology to infer aircraft flight icing 
conditions using images taken by the Advanced Baseline Imager (ABI) flown on the 
GOES-R series of NOAA geostationary meteorological satellites. This document will 
describe the required inputs, the theoretical foundation of the algorithm, the sources and 
magnitudes of the errors involved, practical considerations for implementation, and the 
assumptions and limitations associated with the product and provide a high level 
description of the physical basis for the detection of the flight icing threat. 

1.2 Who Should Use This Document 
The intended users of this document are those interested in understanding the physical 
basis of the algorithm and how to use the output of this algorithm to assess the flight 
icing threat.  This document also provides information useful to anyone maintaining or 
modifying the original algorithm.   

1.3 Inside Each Section 
This document is broken down into the following main sections. 
 

• System Overview: Provides relevant details of the ABI and provides a brief 
description of the products generated by the algorithm. 

 
• Algorithm Description : Provides all the detailed description of the algorithm 

including its physical basis, its input and its output. 
 

• Assumptions and Limitations: Provides an overview of the current limitations of 
the approach and gives the plan for overcoming these limitations with further 
algorithm development. 

 

1.4 Related Documents 
This document relates to other GOES-R ABI product documents: 
 

• GOES-R ABI ATBD for Daytime Cloud Optical and Microphysical Properties 
(DCOMP) 

• GOES-R ABI ATBD for Nighttime Cloud Optical and Microphysical 
Properties(NCOMP) 

• GOES-R ABI ATBD for Cloud Mask  
• GOES-R ABI ATBD for Cloud Phase 
• GOES-R ABI ATBD for Cloud Height 
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1.5 Revision History 
• 12/2008 - Version 0.1 of this document was created by William L. Smith Jr. 

Version 1.0 represents the first draft of this document. 
• 08/2010 - Version 1.0 of this document was created by William L. Smith Jr. In 

this revision, version 0.1 was revised to meet 80 % delivery standards. 
• TBD - Version 2.0 of this document will be created by William L. Smith Jr. In 

this revision, version 1.0 will be revised to meet 100 % delivery standards. 
 

 

2 OBSERVING SYSTEM OVERVIEW 
 
 This section describes the products generated by the ABI flight icing threat 
algorithm and the requirements they place on the sensor. 

2.1 Products Generated 
The flight icing threat (FIT) algorithm utilizes ABI derived cloud products to make a 
determination of the potential existence and location for aircraft icing to the extent it can 
be detected from satellite observations under certain cloud conditions. The first 
component of the FIT is an icing mask, to identify which pixels are composed of clouds 
that pose an icing threat based on the presence of super-cooled liquid water (SLW) at 
cloud top and the magnitude of the clouds optical depth.  The icing mask, determined 
during the daytime and nighttime, also denotes which pixels contain no icing (‘none’) and 
pixels where icing is possible but undetectable from the satellite perspective (‘unknown’). 
In addition, the current icing threat design calls for a 2-category estimate of intensity 
during the daytime.  These categories are denoted as light and moderate or greater 
(MOG). Thus, during daytime the FIT has an additional component to determine the 
likelihood of icing and the potential intensity based on the satellite-derived cloud 
microphysical parameters.  During the nighttime, the product output is limited to the 
icing mask since the ABI infrared channels have little sensitivity to variations in liquid 
cloud microphysical properties for optically thick clouds and thus, the icing intensity can 
not be estimated. Thus, the formulation described here provides an icing mask at all times 
of day and daytime only estimates of the probability of icing occurring in two intensity 
categories.  
 

2.1.1 Product Requirements 
The F&PS spatial, temporal, and accuracy requirements for the GOES-R flight icing 
threat are shown below in Table 1. 
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Table 1: GOES-R flight icing threat product requirements. 

 

2.2 Instrument Characteristics  
The FIT algorithm will be executed for each pixel determined to have a high probability 
of SLW. Specifically, these are cloudy pixels with cloud top temperatures found by the 
ABI Cloud Height algorithm to be below freezing and that the ABI Cloud Phase 
algorithm has determined to be composed of water droplets or mixed phase. Table 2 
summarizes the ABI channels that will be used to generate the ABI cloud products 
needed to run the FIT algorithm. Because the FIT algorithm utilizes cloud products 
generated by other ABI cloud algorithms, any instrument-related artifacts in those 
products may be passed along to the FIT. The performance of the algorithm will be 
sensitive to such issues as sensor or imagery artifacts, instrument noise and imperfections 
in the knowledge of the sensor response functions to the extent that these affect the ABI 
cloud products. Calibrated observations are critical because in general, the ABI cloud 
product algorithms utilize the observed values in conjunction with calculations from a 
radiative transfer model where accurate radiances are assumed. 
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Channel Number Wavelength (µm) Used in Cloud Product 
Algorithms 

1 0.47  
2 0.64 � 
3 0.86  
4 1.38  
5 1.61  
6 2.26 � 
7 3.9 � 
8 6.15  
9 7.0  
10 7.4 � 
11 8.5 � 
12 9.7  
13 10.35  
14 11.2 � 
15 12.3 � 
16 13.3 � 

Table 2: ABI channel numbers and wavelengths. The channels used to generate the ABI cloud 
products used as input to the Flight Icing Threat algorithm are indicated in the right column. 

 

3 ALGORITHM DESCRIPTION 

3.1 Algorithm Overview 
The FIT algorithm is a straightforward formulation that utilizes a suite of GOES-R ABI 
cloud products in order to discriminate areas of possible aircraft icing. During the 
daytime, the probability of encountering icing in one of two intensity categories is also 
estimated.  The formulation is similar to that reported in Minnis et al. (2004a) but the 
algorithm coefficients and thresholds have been updated using a significantly expanded 
development dataset.  The ABI Cloud Phase and Cloud Optical Depth (COD) products 
form the basis for the icing mask by indicating the locations of optically thick clouds with 
tops composed of super-cooled liquid water (SLW).  The cloud liquid water path (LWP) 
is the primary indicator of icing intensity.  The cloud particle size (CPS) and LWP are 
used to estimate the icing probability. The FIT algorithm is classified as an “Option 2” 
algorithm within the GOES-R GS F&PS document. The algorithm requires the following 
input to determine the flight icing threat:  
 

• Cloud Phase 
• Cloud Optical Depth 
• Liquid Water Path 
• Cloud Particle Size 
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• Cloud Top Temperature 
• Cloud Top Height 
• GFS NWP Model Freezing Level 

 
The FIT algorithm derives the following ABI products listed in the F&PS: 

• Icing mask 
• 2-category icing intensity (daytime only) 
 

In addition, the algorithm determines the following products that are not included in 
F&PS: 

• Icing probability (daytime only) 
• Top and base altitude of icing layer  

 
 

3.2 Processing Outline 
The processing outline of the FIT algorithm is summarized in Figure 1. The current FIT 
algorithm is implemented within the NOAA/NESDIS/STAR GOES-R AIT framework 
(FRAMEWORK).  FRAMEWORK routines are used to provide all of the necessary ABI 
derived products and ancillary data.  
 

3.3 Algorithm Input 
This section describes the inputs needed to process the FIT algorithm. The algorithm is 
run at the pixel level. 
 

3.3.1 Primary Sensor Data 
The list below contains the primary sensor data used by the OT and ATC algorithm 
package.  By primary sensor data, we mean information that is derived solely from the 
ABI observations and geolocation information. 

 
• Solar zenith angle 
• Sensor viewing zenith angle 

 

3.3.2 Ancillary Data 
The following data lists and briefly describes the ancillary data required to run the FIT 
algorithm.  By ancillary data, we mean required data that is not directly provided by the 
ABI observations or geolocation data. 
 

• Numerical Weather Prediction (NWP) Freezing Level 
The freezing level is needed to provide a lower altitude boundary for the flight 
icing threat.  
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3.3.3 Derived Data 
Specific ABI cloud products developed by the cloud algorithm team (CAT) required to 
run the FIT algorithm include: 
  

• ABI cloud phase output (product developed by cloud team) 
• ABI cloud optical depth output (product developed by cloud team) 
• ABI cloud particle size output (product developed by cloud team) 
• ABI cloud liquid water path output (product developed by cloud team) 
• ABI cloud top temperature output (product developed by cloud team) 
• ABI cloud top altitude output (product developed by cloud team) 
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Figure 1: High level flowchart of the Flight Icing Threat algorithm illustrating the main processing 
sections. 

 

3.4 Theoretical Description  
Flight icing threat detection from satellite involves the detection of SLW pixels since 
SLW is a prerequisite for aircraft icing.  The FIT algorithm chosen for the GOES-R ABI 
is a theoretically based method since it utilizes theoretically based cloud parameters 
derived from satellite radiance data.  It is designed to work as a standalone algorithm 
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based solely on passive satellite data.  Not all SLW clouds can be detected from passive 
satellite techniques since they are sometimes obscured by higher cloud layers. 
 

3.4.1 Physics of the Problem 
It is natural for clouds to contain liquid water droplets at altitudes where the air 
temperature is below freezing. When SLW comes in contact with a hard surface such as 
the frame of an aircraft, it freezes, thereby icing the airframe as shown for example in 
Figure 2.  As ice accumulates on an aircraft it alters the airflow, which can increase drag 
and reduce the ability of the airframe to create lift, leading to control problems with 
potentially disastrous consequences.  A significant percentage of weather-related aviation 
accidents over the last half-century have been attributed to icing.  Typically, the flight 
icing threat to aircraft is reduced by either protecting the aircraft with de-icing and/or 
anti-icing equipment or by avoidance, particularly for unprotected aircraft.   However, 
severe icing can overwhelm an aircraft’s icing protection system.  Icing conditions can be 
highly variable, often occurring in small areas that cannot be resolved with current icing 
diagnosis and forecasting methods, which tend to overestimate the areal coverage of the 
flight icing threat.  Thus, avoidance can be expensive, resulting in significant increases in 
flight time or delays on the ground.  While there have been improvements in systems to 
mitigate aircraft icing, no phase of aircraft operations is immune to the threat. Icing 
severity is sensitive to temperature, the cloud liquid water content and the drop size 
distribution (Rasmussen et al., 1992).  Since it is possible to infer these parameters, or 
closely related parameters, from satellite data (Minnis et al., 1995, 1998, 2004b) and 
because SLW is often found to accumulate in the top several hundred meters of cloud 
layers  (Rauber and Tokay, 1991), satellite data can be used advantageously to diagnose 
icing conditions (Ellrod and Nelson, 1995, Smith et al., 2000, 2003, Ellrod and Bailey, 
2007).  Complicating its definition, however, is the fact that icing also depends on 
characteristics of the aircraft and other flight parameters such as the type and weight of 
the aircraft, the duration of exposure to SLW and the accretion rate of ice on the airframe.  
These aircraft-related factors can not be accounted for explicitly in a satellite-based icing 
algorithm.   

Although it can form anywhere, aircraft icing is most commonly found in two 
geographical regions over North America (Bernstein et al., 2006). The first includes the 
Pacific Northwest, western British Columbia, and Alaska. The second is from the 
Canadian Maritimes and stretching west and southwest to encompass the Great Lakes 
Region, Ohio River Valley, and Hudson Bay.  Much of this area is within the GOES 
observation domain. Currently, model forecasts and pilot reports (PIREPS) constitute 
much of the database available to pilots for assessing the icing conditions in a particular 
area.  Such data are often uncertain or sparsely available. The advanced design of GOES-
R provides the information needed to quantitatively estimate important properties of 
clouds, including those that help determine the flight icing threat, such as cloud  
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Figure 2:  Ice accreted from super-cooled water droplets on the wing leading edge of a research 
aircraft while in cloud (Left) and after ascending above cloud (Right). Photo credits: NASA Glenn 
Research Center. 
 

 
temperature, thermodynamic composition, vertically integrated liquid water content 
(LWP), and effective droplet size. These cloud products and others derived from GOES-
R satellite observations provide unique information about icing conditions and form the 
basis for the FIT algorithm.  The icing products being developed here using GOES-R 
data will provide improvements in the temporal and spatial coverage of icing diagnoses 
and prognoses and should contribute a substantial enhancement in aviation safety in 
regions susceptible to heavy super-cooled liquid water clouds. The following sections 
describe the rationale and procedures employed in the development of the FIT algorithm 
for in-cloud aircraft icing. 
 
 

3.4.2 Mathematical Description 
In this section, the methodology for determining the in-cloud flight icing threat for 
aviation is described.  The flight icing threat is partially determined by the presence and 
density of SLW, and the water droplet size distribution.  The FIT algorithm output is 
available at the pixel level and composed of three components; (1) the icing mask, 
available day and night, which discriminates regions of possible icing from regions icing 
is unlikely to occur and regions that icing cannot be determined from satellite due to the 
presence of high level clouds, (2) the icing probability, estimated during the daytime 
only, and (3) a two category intensity index which is also derived during the daytime 
only.  All three components are determined using a set of the theoretically based GOES-
R ABI cloud property retrievals as inputs to the FIT algorithm. The icing probability and 
severity are determined using empirical formulae based on correlations between satellite-
derived cloud parameters and icing reports from Pilots (PIREPS). Since PIREPS provide 
the most extensive aircraft icing information currently available, they are a significant 
element in the development and testing of the ABI FIT algorithm. Another key element 
in the FIT algorithm development is the use of satellite-derived cloud products produced 
at NASA Langley Research Center (LaRC) as a proxy for the ABI products.  The LaRC 
cloud retrieval algorithms are those developed for application to MODIS data as part of 



18 

 

the Clouds and the Earth’s Radiant Energy System (CERES) experiment (Minnis et al., 
1995, 1998).  The algorithms have been adapted for application to geostationary satellites 
and are routinely applied to GOES-11 and 12 data, Meteosat SEVIRI, and other satellites, 
thus providing a significant test-bed for the FIT algorithm. 

3.4.2.1 Icing Mask 
The first step in the FIT algorithm is to construct the icing mask for each geo-located 
pixel with valid GOES-R radiance data and for which the cloud algorithms have been 
properly executed and returned valid retrievals.  The purpose of the icing mask is to 
determine which cloudy pixels pose an icing threat to aircraft based on the retrieved 
cloud properties and to differentiate these pixels from clear and cloudy pixels that pose 
no icing threat, and from cloudy pixels for which the icing threat cannot be determined 
(e.g. optically thick pixels composed of high level ice phase clouds).  Thus, the output of 
the icing mask is an index that denotes each valid pixel to be either an icing, no icing, or 
unknown pixel.  The ABI cloud phase product and the cloud optical depth products from 
DCOMP (for solar zenith angles less than 82°) and NCOMP (for solar zenith angles 
greater than or equal to 82°) are used to construct the icing mask.  The logic is shown in 
Table 3.  In the current version, mixed phase clouds are considered to be an icing threat 
which is a conservative approach adopted until a better understanding is developed 
between the mixed phase radiative signals and aircraft icing.  This will be explored 
further when the ABI cloud phase product becomes available over regions where icing 
validation data are available. For SLW and mixed phase clouds, an optical depth 
threshold of 1.0 is chosen to eliminate the very thinnest clouds associated with very low 
LWC values from the icing threat. For ice phase topped clouds, an optical depth threshold 
of 6.0 is used to eliminate thin clouds from the icing threat that are unlikely to overlap 
SLW clouds, while the icing threat for thicker clouds, which may or may not overlap 
SLW clouds, is considered to be unknown. Descriptions of the theoretical basis for 
determining cloud phase and optical depth can be found in the appropriate ATBD’s 
developed by the GOES-R ABI CAT. An example of the icing mask is shown in Figure 3 
 
 

Cloud Phase Cloud Optical Depth Icing Mask 
Clear NA No Icing 
Water ALL No Icing 

SLW 
τvis  > 1.0 Icing 
τvis  ≤ 1.0 No Icing 

Mixed 
τvis  > 1.0 Icing 
τvis  ≤ 1.0 No Icing 

ICE 
τvis  ≤ 6.0 No Icing 
τvis  > 6.0 Unknown 

Table 3:  Logic table for mapping the ABI cloud phase and optical depth products to the icing mask. 
 
along with the cloud phase product derived from GOES-E and GOES-W using the NASA 
LaRC cloud algorithm at 1745 UTC on November 8, 2008.  For this case, a large area of 
clouds over the mid-western states, the Ohio valley and southern Canada, associated with 
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a mid-latitude cyclone, were found to contain SLW in the satellite analysis which 
contribute to the icing threat as depicted by the cyan colors in the icing mask image.  
Areas where there is no icing and that the icing threat cannot be determined are denoted 
by the gray and white colors, respectively.  It should be pointed out that a significant 
 

    
Figure 3: Cloud phase (Left) derived from GOES-E and GOES-W using the NASA LaRC cloud 
algorithm and the corresponding icing mask (Right) determined with the ABI FIT algorithm at 1745 
UTC on November 8, 2008 
 

advance in the accuracy of the icing mask will be realized with the GOES-R ABI due to 
the additional spectral information and sensitivity to cloud top phase not available on 
current GOES satellites, particularly at night and during the day/night transition. The fact 
that the ABI cloud phase algorithm is based on the use of infrared channels only offers 
consistency in the retrieval of cloud phase and the icing mask for all times of day, unlike 
methods designed for use with current GOES data which work best during the daytime 
using solar reflectance channels. 

3.4.2.2 Icing Severity 
The potential for in-cloud aircraft icing and its severity depends on many factors related 
to the particular aircraft and the weather conditions. Some aircraft will accumulate ice in 
certain conditions while other aircraft will remain ice-free in the same cloud. These 
aircraft-related factors are not considered here.  Meteorological factors that contribute to 
icing severity include the concentration of super-cooled water droplets and the droplet 
sizes.  Generally, larger droplets, and/or larger concentrations of droplets or higher liquid 
water content (LWC) contribute to more severe icing.   The satellite-derived effective 
radius (Re) is sensitive to the cloud droplet sizes and the derived LWP is sensitive to the 
concentration since it is a measure of the vertically integrated LWC.  It may be possible 
to estimate the LWC profile from the liquid water path (LWP) and the cloud thickness 
(∆Z) but would require simplifying assumptions. This concept is being explored for a 
future version of the FIT algorithm and is described below in Section 6.3.  The current 
version of the FIT algorithm has been developed by assuming that LWP serves as a 
reliable proxy for LWC such that larger values of LWP are associated with larger values 
of LWC and thus, more severe icing.  Development of a two-category severity estimate 
for the FIT algorithm is based on correlations between satellite-derived cloud parameters 
and icing PIREPS.  The motivation for a two-category scheme is illustrated in figure 4, 
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which depicts the frequency distribution of icing PIREPS over the CONUS during two 
winter periods (Nov-Mar, 2006/2007 and 2007/2008).  Clearly, most icing reports fall 
into just a few of the nine icing intensity categories, and in fact most of the positive icing 
reports are either light or moderate in this dataset.  For this reason, the two-year winter 
season icing PIREPS dataset was reclassified from the nine categories into three (none, 

 
Figure 4: PIREPS icing intensity for two winter periods (Nov-Mar, 2006/2007 and 2007/2008) over 
the CONUS and motivation for two-category satellite severity estimate. 
 
light, and moderate or greater), as depicted in Figure 4, for correlation with the satellite-
derived cloud properties.  The icing PIREPS shown in Figure 4 were matched with the 
LaRC satellite-derived cloud parameters using GOES-11 and GOES-12 data taken over 
the CONUS to find relationships between icing and satellite-derived cloud properties.  
The satellite results were averaged in a 20km radius region centered at the location of 
each icing PIREP (~ 25 8-km pixels).   This analysis was restricted to overcast SLW 
scenes as determined by the LaRC cloud phase retrieval and to daytime (SZA < 82 deg) 
data.  Additionally, daily snow maps obtained from the National Snow and Ice Data 
Center (now available at the national Ice Center: http://www.natice.noaa.gov) were used 
to restrict the analysis to areas with no snow cover since the snow albedo was not 
accounted for in this version of the LaRC cloud analysis, which could bias the cloud 
microphysical property retrievals.  Figure 5 depicts the frequency of occurrence of 
‘none’, ‘light’ and ‘MOG’ icing reports as a function of the GOES-derived LWP.  There 
were 1,349 matches and the results are binned in increments of 100 g/m2.  As the LWP 
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increases, the number of negative and light icing reports decreases while the number of 
moderate or greater reports increases.  Despite the aforementioned uncertainties 
associated with icing PIREPS and the fact that they are superimposed on a highly 
variable cloud field such as the GOES-derived LWP, the results in Figure 5 are 
encouraging and physically realistic. 
 

 
Figure 5:  Relative frequency of icing vs GOES-derived LWP for two winter periods (Nov-Mar, 
2006/2007 and 2007/2008) over the CONUS. 
 

Tables 4a-4d list the results of a statistical analysis performed on the matched 
satellite and icing PIREPS dataset.  The mean and standard deviation for a number of 
satellite-derived cloud parameters is shown.  The values in Table 3(a) and (b) are 
computed with all the matched data (1,349 points), while the values in Table 3(c) and (d) 
are computed with a filtered dataset that attempts to reduce some of the ambiguity 
associated with temporal and spatial errors in the PIREPS data (1,139 points).  In the 
filtering procedure, a set of conservative LWP thresholds are set for specific PIREPS 
icing intensities based on the assumption that the two are positively correlated as shown 
in Figure 5.  Thus, in the filtered dataset, the matched data are eliminated for the 
following scenarios: (a) all positive icing reports if LWP < 50 g/m2, (b) all positive icing 
reports with moderate or greater icing intensity if LWP < 200 g/m2, (c) all icing reports if 
the intensity is less than light if the LWP > 750 g/m2, and (d) all light icing intensity 
reports if LWP > 1000 g/m2.  Only about 15% (210 points) of the original matched data 
is eliminated in the filtered dataset. The results in Table 3a ad other analyses (not shown) 
indicate that there is little dependency found between icing intensity PIREPS and Re.  It’s 
not yet clear weather this is natural behavior or a result of uncertainties in the Re 
retrievals.  The scattering phase function for cloud hydrometeors is extremely sensitive to 
droplet size when the solar angles and satellite viewing geometry are such that strong 
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backscatter occurs which results in larger uncertainties in the Re retrievals. This 
phenomenon may occur in the late morning (early afternoon) for GOES-E (GOES-W) 
over the CONUS in the fall and winter months when icing is most prevalent. More work 
is needed in this area, using other satellites and multiple-wavelength Re retrievals to better 
understand the relationship between Re and aircraft icing.  A stronger dependence is 
found for the LWP, but there is not much separation between the mean LWP found for 
 

 
 
Table 4(a)-(d): Mean and standard deviation found for satellite-derived cloud parameters matched 
with Icing PIREPS in three categories: (0 - no icing; 1 – light icing; 2 – moderate or greater icing).  
Results are shown for the entire matched dataset in (a) and (b) and for the filtered dataset in (c) and 
(d). 
 
the ‘light’ and ‘MOG’ categories when using all of the data.  Much stronger sensitivity to 
LWP is found in the filtered dataset (Table 3c).  Also note that the filtered dataset 
generally produces much lower LWP standard deviations, which implies that the 
correlation between the icing intensity and the LWP has increased. The weighted average 
of the mean LWP values shown in Table 3c for the light and MOG categories is found to 
be 488 g/m2.  Based on these results, the current version of the FIT algorithm uses this 
value as a threshold for icing severity and classifies pixels with LWP > 488 g/m2 as 
MOG.   Icing pixels with LWP ≤ 488 g/m2 are classified as light icing.  
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3.4.2.3 Icing Probability 
Using the data in Figure 5, the probability of icing was computed and is shown in Figure 
6 along with best fit curves for two values of Re intended to represent the upper and lower 
limits.  These relationships were developed by first normalizing the negative icing reports 
to account for the sampling bias relative to positive icing reports that is apparent in 
Figure 4. The fact that Pilot’s naturally lack the incentive to report ‘no icing’ is an 
inherent bias in icing PIREPS that must be accounted for in algorithm development and 
validation.  The probability of icing was then computed and binned as a function of LWP 
as in Figure 5.  Those values were multiplied by the probability of icing found from the 
data for values of Re = 5 µm (comprised of data with Re < 8 µm) and Re = 16 µm 
(comprised of data with Re ≥ 16 µm).  These two sets of data were then normalized to 
yield a 100% probability of icing at 1050 g/m2 for Re = 16 µm.  The results shown in 
figure 6 are consistent with our theoretical understanding of icing, indicating an increased 
likelihood of icing with increased LWP and Re.  Based on these results, the icing 
probability (IP) is formulated in the FIT algorithm as 
 

(1)  IP = 0.244ln(LWP) + 0.026, 
 
for Re = 5 µm, and 
 

(2)  IP = 0.32ln(LWP) + 0.034, 
 
for Re = 16 µm.  Linear interpolation between the results of (1) and (2) are used for pixels 
with Re between 5 and 16 µm.  Pixels with larger or smaller values of Re are assigned the 
appropriate extreme value.  Values of IP < 0.4 are classified as low probability.  For 
values between 0.4 and 0.7, pixels are classified as medium probability and values 
exceeding 0.7 are classified as high probability. 
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Figure 6:  Re-normalized probability of in-cloud aircraft icing as a function of satellite-derived LWP 
and model fit for two values of Re. 
 

3.5 Algorithm Output 
The final output of the flight icing threat (FIT) algorithm includes three sets of indices, 
which are shown in Tables 5 – 7.  The icing probability index and the icing intensity 
index shown in Tables 5 and 6 are combined into a single FIT index, shown in Table 7, 
which can be color coded for display purposes.  An example of the FIT index output in a 
McIDAS display is shown in Figure 7 for the same case shown in Figure 3, along with 
corresponding icing PIREPS near the same time, which confirms the ABI flight icing  

 

Icing Probability 
Index 

Description 

-7 No Retrieval/bad data 
0 No icing 

1 Icing Possible (Nighttime only:  SZA ≥ 82°) 
2 Low probability of icing (Daytime only: SZA < 82°) 
3 Medium probability of icing (Daytime only: SZA < 82°) 
4 High probability of icing (Daytime only: SZA < 82°) 

Table 5: Table describing the icing probability index output from the ABI FIT algorithm. 
 
 

Icing Intensity 
Index 

Description 
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-7 No Retrieval/bad data
0 No icing
1 Unknown
2 Light 
3 Moderate or greater (MOG) icing (Daytime only: SZA < 82

Table 6: Table describing the icing intensity index output from the ABI FIT algorithm.
 
 

FIT Index 

-7 No Retrieval/bad data
-9 Missing data/other
0 No icing
1 Unknown
2 Low probability of light icing (Daytime only: SZA < 82
3 Medium probability of light icing (Daytime only: SZA < 82
4 High probability of light icing (Daytime only: SZA < 82
5 High probability of MOG 
6 Icing Possible (Nighttime only:  SZA 

Table 7: Table describing the FIT index output from the ABI FIT algorithm.
 
threat.  Generally, there is good correspondence between the FIT output and the icing 
severity PIREPS. It’s apparent how much more information the current FIT product will 
provide during the daytime compared to a binary yes/no icing product (e.g. Figure 3). 
The current approach appears to resolve some of the natural variability in the flight icing 
threat to a significant degree, but of course needs to be validated to the extent possible.  
This will be discussed further in the validation section below.   In additi
described above, the icing layer boundaries will also be output and are planned to be 
included in the quality control flags since they are not specifically required in the F&PS 
requirements.   
 

Figure 7: The flight icing threat index at 1745 UTC, color coded in McIDAS (Left) and icing severity 
reported by Pilots (Right) from 16 

No Retrieval/bad data 
No icing 
Unknown 
Light icing (Daytime only: SZA < 82°) 
Moderate or greater (MOG) icing (Daytime only: SZA < 82

: Table describing the icing intensity index output from the ABI FIT algorithm.

Description 

No Retrieval/bad data 
Missing data/other 
No icing 
Unknown 
Low probability of light icing (Daytime only: SZA < 82
Medium probability of light icing (Daytime only: SZA < 82
High probability of light icing (Daytime only: SZA < 82
High probability of MOG icing (Daytime only: SZA < 82
Icing Possible (Nighttime only:  SZA ≥ 82°) 

: Table describing the FIT index output from the ABI FIT algorithm.  

.  Generally, there is good correspondence between the FIT output and the icing 
severity PIREPS. It’s apparent how much more information the current FIT product will 
provide during the daytime compared to a binary yes/no icing product (e.g. Figure 3). 

current approach appears to resolve some of the natural variability in the flight icing 
threat to a significant degree, but of course needs to be validated to the extent possible.  
This will be discussed further in the validation section below.   In additi
described above, the icing layer boundaries will also be output and are planned to be 
included in the quality control flags since they are not specifically required in the F&PS 

ight icing threat index at 1745 UTC, color coded in McIDAS (Left) and icing severity 
reported by Pilots (Right) from 16 – 20 UTC on November 8, 2008. 

Moderate or greater (MOG) icing (Daytime only: SZA < 82°) 
: Table describing the icing intensity index output from the ABI FIT algorithm.  

Low probability of light icing (Daytime only: SZA < 82°) 
Medium probability of light icing (Daytime only: SZA < 82°) 
High probability of light icing (Daytime only: SZA < 82°) 

icing (Daytime only: SZA < 82°) 

.  Generally, there is good correspondence between the FIT output and the icing 
severity PIREPS. It’s apparent how much more information the current FIT product will 
provide during the daytime compared to a binary yes/no icing product (e.g. Figure 3). 

current approach appears to resolve some of the natural variability in the flight icing 
threat to a significant degree, but of course needs to be validated to the extent possible.  
This will be discussed further in the validation section below.   In addition to the indices 
described above, the icing layer boundaries will also be output and are planned to be 
included in the quality control flags since they are not specifically required in the F&PS 

 
ight icing threat index at 1745 UTC, color coded in McIDAS (Left) and icing severity 
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4 TEST DATA SETS AND OUTPUTS 

4.1 Simulated/Proxy Input Data Sets 
The data used to test the ABI FIT algorithm include cloud parameters derived from 
current GOES, Aqua/Terra MODIS, and SEVIRI.  Ideally, the goal is to validate the 
algorithm using the cloud products produced by the ABI cloud algorithm team. SEVIRI 
provides the best source of proxy data for the ABI cloud algorithms since the spectral 
coverage is most similar to that of the ABI.  Unfortunately, there are few icing validation 
data available in the SEVIRI field of view.  MODIS is also a good proxy in terms of the 
spectral coverage but the temporal coverage is limited to just a few times per day.  Before 
this document is finalized, it is expected that a significant effort will be made to test the 
FIT algorithm on ABI cloud products derived from MODIS over the CONUS but it is 
uncertain if enough data for icing conditions will be made available to robustly quantify 
the algorithm performance.  To date, most of the quantitative validation of the FIT 
algorithm has been performed using cloud products derived from current GOES data with 
the NASA LaRC cloud algorithms over the CONUS where much more icing validation 
data is available.  The results of these efforts are reported here.  The LaRC cloud 
algorithms are also run routinely with SEVIRI data. In the event that a suitable sample of 
ABI cloud products derived from MODIS, coincident with icing observations, are not 
made available for quantifying the FIT algorithm uncertainties, we will have to rely on 
the uncertainty analyses conducted with the LaRC GDCP. In addition, the level of 
agreement between the LaRC and ABI cloud products will need to be quantified using 
SEVIRI data. The FIT algorithm will be run using the ABI cloud products from SEVIRI 
in the Framework and compared to the LaRC results to assure the algorithm is working 
properly and to test the output for consistency with the LaRC icing product. The FIT 
algorithm is validated using icing PIREPS, the Tropospheric Airborne Meteorological 
Data Reporting (TAMDAR) sensor, and data from the NASA Icing Remote Sensing 
System (NIRSS).  These datasets will be described briefly below. 

4.1.1 SEVIRI Data 
SEVIRI provides 11 spectral channels with a spatial resolution of 3 km and provides 
spatial coverage of the full disk with a temporal resolution of 15 minutes.  SEVIRI 
currently provides the best source of data for testing and developing the cloud parameter 
algorithms but its utility for validating the FIT algorithm is limited due to a lack of icing 
ground-truth data over Europe.  Figure 8 depicts a full-disk SEVIRI RGB image and the 
corresponding cloud top phase image derived using the ABI cloud phase algorithm from 
12 UTC on November 25, 2005.   SEVIRI data are readily available from the University 
of Wisconsin Space Science and Engineering Center (SSEC) Data Center. 
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Figure 8: SEVIRI RGB image (Left) and results from the ABI cloud phase algorithm (Right) from 12 
UTC on November 25, 2005 (courtesy of Michael Pavolonis, NOAA/NESDIS/STAR). 

4.1.2 Current GOES Data 
Current GOES satellites (GOES-East at 75°W and GOES-West at 135°W) are a much 
better source of data for testing the FIT algorithm in terms of their correspondence with 
available icing ground truth data.  One limitation however is that the GOES-R ABI cloud 
phase algorithm cannot be run with current GOES satellite data due to their limited 
spectral coverage.  However, NASA LaRC has been routinely deriving cloud parameters 
from the current GOES imager data for nearly a decade.  The cloud retrieval methods 
were developed for application to MODIS for the Clouds and the Earth’s Radiant Energy 
System (CERES) global climate program and have been adapted for application to 
current GOES data beginning with GOES-8 in the late 1990’s.  These state-of-the-art 
techniques are described in Minnis et al., 2010a.  The LaRC cloud products have been 
rigorously validated for CERES with cloud parameters derived from ground-based 
remote sensing and in-situ data collected at the Department of Energy (DOE) 
Atmospheric Radiation Measurement (ARM) program sites (Dong et al. 2002, 2008, 
Mace et al. 2005, Smith et al. 2008, Xi et al. 2010, and others).  They have also recently 
been favorably compared to cloud parameters derived from active remote sensors aboard 
the ICESat, CALIPSO and CloudSat satellites (Minnis et al. 2008, 2010b).  The LaRC 
GOES-derived cloud products (GDCP) have been used extensively in the FIT algorithm 
development and validation because they can be easily matched with thousands of 
ground-truth data points from a variety of sources.  As the FIT algorithm is transitioned 
for application to the GOES-R ABI cloud products, it will be necessary to quantify the 
level of agreement between the ABI cloud retrieval algorithm and the LaRC algorithm, 
particularly in terms of the cloud phase and LWP estimates, and make any appropriate 
adjustments to the FIT algorithm.  Thus far, comparisons conducted for just a few cases 
indicate that the daytime LaRC retrievals and the GOES-R ABI proxy retrievals are in 
reasonably good agreement (provided the same sensor calibrations are used), which also 
justifies the utility of the LaRC products for the pre-launch ABI FIT algorithm 
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development and validation.  An example of the LaRC cloud products derived from 
current GOES-10 and GOES-12 is shown in Figure 9, which depicts the retrieved LWP 
and effective radius (Re).  Together, with the retrieved cloud phase shown in Figure 3, 
these parameters define the flight icing threat estimates shown in Figure 7. Current GOES 
data are readily available from the University of Wisconsin Space Science and 
Engineering Center (SSEC) Data Center.  The LaRC cloud products are readily available 
from NASA. 
 

 

 
Figure 9: Cloud liquid water path and effective radius derived from GOES-10 and GOES-12 on 
November 8, 2008 are critical inputs to the ABI FIT algorithm.  These data were derived using the 
LaRC cloud retrieval algorithm. 

4.1.3 MODIS Data 
The Moderate Resolution Imaging Spectroradiometer (MODIS) has been operating on 
the Terra satellite starting in late February 2000 from a Sunsynchronous orbit with a 
1030-LT equatorial crossing time. MODIS on the Aqua satellite became operational in 
July 2002 from a Sun-synchronous orbit with a 1330-LT equatorial crossing time. 
MODIS is a 36-channel radiometer with similar spectral coverage as the ABI and good 
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spatial coverage over the CONUS where most of the icing validation data have been 
collected.  Thus, MODIS is a suitable platform to serve as a proxy for testing the FIT 
algorithm with cloud products derived using the ABI cloud algorithms.  This effort is 
planned for the next version of this document and involves running the ABI cloud 
algorithm to generate the required cloud product inputs needed for testing the FIT 
algorithm against the validation data described below. MODIS data are available from 
the NASA Goddard Space Flight Center Distributed Active Archive Center. 

4.1.4 PIREPS Data 
Pilot reports (PIREPS) constitute the most widely available information on in-flight icing 
conditions, particularly over the CONUS, but have known deficiencies when used for 
validation (Kane et al. 1998).  They are spatially and temporally biased and the biases are 
not systematic. PIREPS include severity reports, which should be useful for validating 
the FIT algorithm severity estimates.  However, the severity reports are subjective, based 
on pilot experience, as well as airframe and flight characteristics, so their accuracy is 
difficult to characterize.  A typical distribution of icing severity PIREPS shown in Fig. 4 
for two winter periods over the CONUS indicates that most of the positive reports fall 
into only two of the eight possible severity categories and there are relatively few 
negative (‘no icing’) reports.  Icing PIREPS have been found to be particularly useful for 
validating icing detection (Smith et al. 2000) but are inappropriate to compute standard 
measures of over-warning, such as the False Alarm Ratio (FAR; Brown and Young 
2000).  Icing PIREPS used in the FIT algorithm development and validation, are easily 
acquired from the University of Wisconsin Space Science and Engineering Center 
(SSEC) Data Center. 

4.1.5 TAMDAR Data 
TAMDAR is the Tropospheric Airborne Meteorological Data Reporting sensor currently 
deployed on approximately 400 commercial aircraft operating over the CONUS, Alaska 
and Canada. TAMDAR is a low-cost sensor that was developed by AirDat, LLC for 
NASA. It is designed to measure and report winds, temperature, humidity, turbulence and 
icing from regional commercial aircraft (Daniels et al., 2002). The TAMDAR icing 
sensor contains two independent infrared emitter/detector pairs mounted on the probe to 
detect ice accretion. The accretion of at least 0.5 millimeters of ice on the leading edge 
surface will block the beams and result in a positive detection. When ice is detected, 
internal heaters mounted within the probe melt the ice and the measurement cycle 
repeats. The heaters are powered for at least one minute and the de-icing cycle occurs 
each time ice is detected. The icing data are given as yes (icing) or no (no icing) reports.  
Thus, TAMDAR provides a direct, objective measure of in-cloud icing. TAMDAR data 
are useful for validating icing detection but can not be used reliably to validate the null 
case or FAR due to difficulties in ascertaining whether the negative icing reports are in 
cloud or clear air since this is not specifically reported.   Attempts to use satellite-derived 
cloud boundaries matched with the aircraft altitude (which is reported with the icing data) 
have not sufficiently rectified this problem due to the inaccuracies in the satellite 
retrievals.  TAMDAR data can be acquired from AIRDAT, LLC.  Data collected during 
the Great Lakes Fleet Experiment (GLFE) in 2005 have already been obtained by NASA 
and are included in the current ABI FIT validation arsenal.  Figure 10 shows the Mesaba 
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Airlines regional jet routes for TAMDAR during the GLFE.  The current TAMDAR 
deployment has shifted to the western states and Alaska.  These data should also prove 
useful for validation. 
 
 
 

 
Figure 10: Depiction of the jet routes for the TAMDAR instruments deployed on MESABA Airlines 
regional jets in early 2005. 

4.1.6 NIRSS Data 
The NASA Icing Remote Sensing Experiment (NIRSS) has been collecting valuable 
information on icing conditions that can be used for FIT algorithm testing and validation.  
The NIRSS has been operating since 2005 at NASA Glenn Research Center in Cleveland, 
Ohio.  This location is well situated for observing icing conditions as it lies in the heart of 
a climatological icing bulls-eye (Bernstein et al. 2007). The NIRSS was developed to 
demonstrate a ground-based remote sensing system concept that could provide accurate 
detection and warning of in-flight icing conditions in the near-airport environment.  The 
system fuses data from radar, lidar, and multi-frequency microwave radiometer sensors to 
quantify the icing environment and compute the icing hazard (Reehorst et al. 2009) based 
upon the expected ice accretion severity for the measured environment (Politovitch 
2003).  Figure 11 shows an example of the icing hazard computed using NIRSS data over 
a six-hour period. Although the system does not measure icing directly, this remote 
sensing concept appears to be robust enough to use as a satellite validation tool.  For 
example, it appears that these unique data could also help quantify the FIT algorithm 
FAR, which cannot be done reliably with any other currently available validation data. 
Analyses of NIRSS data have just begun for FIT algorithm validation. 
 

Mesaba Airlines Regional Jet Routes 

Great Lakes Fleet 
Experiment (GLFE)  

-  Dec’04 to 
May’05 
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Figure 11:  Example of the icing hazard product produced using NIRSS data at Cleveland’s Hopkins 
International airport. 

4.2 Output from Simulated/Proxy Input Data Sets 
Examples of proxy data taken from current GOES data using the LaRC GDCP are shown 
in Figures 3 and 7.  MODIS results using the ABI cloud products are forthcoming and 
will be presented in the next version of this document.  In this section, we show the 
results of a Framework demonstration of the ABI FIT algorithm using SEVIRI data taken 
at 1400 UTC on October 18, 2009. Since the LaRC algorithms are being run routinely 
over Europe using SEVIRI data, a direct comparison is made between the ABI and LaRC 
cloud products and the subsequent icing analyses.  Figure 12 depicts the cloud top phase 
comparison for this case.  In general, the LaRC and AWG/ABI retrievals are very 
consistent.  The AWG/ABI retrieval has a little more ice cloud than the LaRC retrieval 
and also has a mixed phase category for pixels with ice and water radiative signals that 
are difficult to differentiate.  For this case there is a significant amount of SLW over 
northeastern France, northern Germany and areas to the north for which to test the FIT 
algorithm.  Figures 13 and 14 show the Re and LWP comparisons.  The level of 
agreement found for the Re retrievals is somewhat mixed.  Accounting for the slight   
 

 
Figure 12:  Cloud top phase derived from SEVIRI data taken at 1400 UTC on October 19, 2009 using 
the LaRC algorithm (Left) and the AWG ABI cloud algorithm (Right). 
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Figure 13: Cloud Effective Radius (Re) derived from SEVIRI data taken at 1400 UTC on October 19, 
2009 using the LaRC algorithm for liquid clouds (Left) and the AWG ABI cloud algorithm for all 
clouds (Right). 
 
differences in the color bars, it appears there is good agreement in some areas and less 
agreement in others.  We will attempt to understand these differences better as we make 
more comparisons. In the current algorithm formulation, Re has only minor direct impact.  
However, because Re is used to compute the LWP from the COD, these differences may 
impact the derived flight icing threat indirectly since the FIT output does depend to 
significant degree on LWP.  The LWP comparison is shown in Figure 14 and the 
differences found to be quite large.  The primary reason for this has been traced to the 
calibration being used for the SEVIRI visible channel in the Framework where the 
AWG/ABI cloud products are generated.  In this case, the nominal calibration was used.  
In the LaRC system, a more accurate calibration is used that accounts for the post launch 
degradation of the SEVIRI visible channel.  That calibration was derived using MODIS  
 

 
Figure 14: Cloud water path derived from SEVIRI data taken at 1400 UTC on October 19, 2009 
using the LaRC algorithm for liquid clouds (Left) and the AWG ABI cloud algorithm for all clouds 
(Right). 
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data for which the visible channel is well characterized using on-board calibration targets.  
This explains why the AWG/ABI cloud LWP values are considerably lower than those 
derived using the LaRC algorithm.  Also note that this version of the AWG/ABI cloud 
algorithm (DCOMP) was not run for SZA > 70°.  A future version will run this out to 82° 
since that is the current plan for operations by the CAT.  The flight icing threat derived 
from the two sets of cloud products is shown in Figure 15.  As expected, there are 
significant differences but this is primarily due to the calibration issue.  There were a few 
icing PIREPS near the same time as this analysis that confirm the satellite-derived flight 
icing threat.  Icing PIREPS are not normally reported over Europe, however these were 
obtained from Dr. Thomas Hauf at the University of Hannover in Germany as part of a 
special operations field campaign being conducted by European icing research teams. 
Despite the differences found between the ABI and LaRC cloud products, this exercise 
indicates that the ABI FIT algorithm is working as expected in the Framework.  The 
Framework version should yield results that are much more consistent with the LaRC 
results once the nominal calibration for the visible channel on SEVIRI is replaced with 
something more accurate, such as the LaRC calibration.  In another offline study, COD 
values from the AWG/ABI algorithm have been compared to the LaRC values for liquid 
clouds over the eastern Pacific ocean and found to agree quite well. Thus, it appears that 
the LaRC GDCP could serve as a suitable proxy for characterizing the FIT algorithm 
uncertainties in lieu of the ABI cloud products should they not be made available with 
coincident icing observations for testing with MODIS before the GOES-R launch. 
Clearly, more work is needed to understand the cloud product differences and the 
possible impacts on the accuracy of the FIT algorithm. 
 

 
Figure 15: The ABI flight icing threat derived from SEVIRI data taken at 1400 UTC on October 19, 
2009 using the LaRC cloud products (Left) and the AWG ABI cloud products (Right). 
 

4.2.1 Precision and Accuracy Estimates 
To estimate the precision and accuracy of the FIT algorithm, icing information from 
PIREPS, TAMDAR and NIRSS are used.  They each have unique advantages and 
disadvantages as described briefly in Section 4.1. It’s important to emphasize again that 



34 

 

aircraft icing is not just a meteorological phenomenon, but also depends on 
characteristics of the airframe, flight trajectory, residence time, and other factor’s.  The  

 Observed 

D
ia

g
n

os
ed

 

 Yes No Total 

Yes YY YN YY+YN 
No NY NN NY+NN 

Total YY+NY YN+NN YY+NY+YN+NN  
Table 8: Two-by-two contingency table used to estimate FIT algorithm skill. 
 
validation data sources each have associated uncertainties as well, which may not be well 
understood in some cases.  Thus, FIT algorithm validation is extremely difficult. Field 
experiment data could be useful, but to date, no icing related field campaign has been 
designed with satellite algorithm development and validation as a goal. There has been a 
wealth of icing information collected from NASA Glenn’s airborne icing research 
program during previous field campaigns that remains largely unexplored for satellite 
validation, primarily due to a lack of resources. For now, the primary verification method 
for the ABI FIT algorithm is to match the satellite product with icing information 
extracted from PIREPS, TAMDAR, and NIRSS data.  Two-by-two contingency tables 
are constructed to help quantify the inter-comparisons.  Each cell in the table provides the 
frequency with which a particular observation or estimate occurs at a specific threshold. 
For the contingency table shown in Table 8, the thresholds are ‘Yes’ or ‘No’ icing. The 
observed values represent the validation sources and the diagnosed values represent the 
satellite estimates.  Ideally, in order to determine the true skill in the satellite method, 
both the probability of detecting icing conditions (PODY) the probability of detecting 
non-icing conditions (PODN) and the probability of false alarm (POFA, also known as 
FAR) should be determined.  These can be computed from the contingency table as:  
 

PODY = YY/(YY+NY) 
 

PODN = NN/(YY+NY) 
 

POFA = YN/(YY+YN) 
 
Assuming that the observations are accurate and that the statistical sample is relatively 
uniform, the true skill score (TSS) can be estimated as: 
 

TSS = PODY + (1 – PODN) 
 
 However, as alluded to earlier for the validation datasets used here, ‘no icing’ 
observations are likely to be biased or unreliable relative to ‘yes icing’ observations.  In 
those cases, and to offer a consistent measure of skill using the various validation data, a 
skill score that excludes the ‘no icing’ observations (SS) is estimated as: 
 
    SS = (YY – NY)/(YY + NY) 
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4.2.1.1 Comparisons with Icing PIREPS 
A two-year dataset matching the icing threat derived from GOES-10 and GOES-12, using 
the LaRC cloud products during the daytime, with icing PIREPS collected between 
November 1 and March 31, 2006/2007 and 2007/2008 was analyzed.  In this preliminary 
analysis, all pixels within 20 km and +/- 30 minutes of the icing PIREP were matched 
under the condition that each of the satellite pixels was composed of SLW as determined 
by the cloud phase algorithm.  This approach was taken to reduce any ambiguity in the 
satellite retrievals that might arise in partly cloudy conditions or due to possible 
contamination by higher level ice clouds.  It also imposes some level of uniformity to the 
matched dataset and eliminates pixels where the icing threat is unknown or known not to 
exist (e.g. in clear conditions or warm clouds).  Thus, the purpose of this exercise is to 
validate the ABI FIT algorithm only in icing conditions as determined from the satellite 
perspective. This strategy resulted in 4,455 matches.  The skill in detecting icing 
conditions was determined from the contingency table shown in Table 9.  PODY, PODN 
and SS are 93%, 32%, and 87%, respectively, for this dataset.  False detections (N=328) 
are common, but comprise only a small percentage of the total (POFA=.08).  However, 
‘no icing’ reports in the PIREPS are nearly an order of magnitude less frequent than ‘yes 
icing’ reports, and as Brown and Young, 2000 have noted, POFA is an inappropriate 
measure considering  
 

 PIREPS 

A
B

I 
F

IT
  Yes No Total 

Yes 3703 328 4031 
No 273 151 424 

Total 3976 479 4455 
Table 9:  Frequency of yes/no icing reports found for matched GOES/PIREPS dataset constructed 
over two winter seasons. 
 
since the value depends on the relative number of samples.  A similar contingency table 
is formed to test the two-category severity component of the FIT algorithm and is shown 
in Table 10.  The probability of detecting light (PODL) and moderate or greater (PODM) 
icing conditions are 53% and 62%, respectively.  Considering the uncertainties associated 
with icing PIREPS and the difficulties in accurately matching the reports to satellite data, 
these comparisons are reasonably good. 
 

 PIREPS 

A
B

I F
IT

  Yes No Total 

Yes 3703 328 4031 
No 273 151 424 

Total 3976 479 4455 
Table 10:  Frequency of two-category icing severity index found for matched GOES/PIREPS dataset 
constructed over two winter seasons. 
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4.2.1.2 Comparisons with TAMDAR 
Daytime GOES-12 data from April 1-26, 2005 were analyzed with the LaRC cloud 
algorithm and compared to TAMDAR data taken during the GLFE (Nguyen et al. 2006). 
The TAMDAR icing data consist of six indices: “I” signifies that icing is occurring and 
the probe heater is on; “F” indicates an ice-detector fault; “D” means that no icing is 
indicated; ”H” signifies no icing and the probe heater is on; “L” indicates that icing is 
occurring and the heater is about to turn on; and “C” means that the heater has shut-off 
and the probe is cooling down. The post-processed April 2005 data obtained from AirDat 
contains only the “I”, “D”, and “H” indicators. There were 440,542 observations, of 
which 13,321 reports indicated icing, 8,951 indicated that the heater was on so icing was 
not detectable at that time and the rest indicated that no icing was observed. When the 
TAMDAR probe detects icing, it reports immediately and then at a minimum of every 
minute thereafter. During aircraft ascent and descent, the probes report more frequently, 
providing as many as 6 observations per minute to obtain vertical sounding profiles. 
During level flight, the probes report every 3 minutes. Unlike the few PIREPS reports 
that are reported (most of which are reported during icing conditions), TAMDAR takes 
continuous data. Therefore the TAMDAR reports are dominated by 95% no icing 
indicator. Thus, the GOES and TAMDAR comparison statistics in the results will be 
biased towards the TAMDAR no-icing category if filters are not properly applied to 
remove insignificant reports (e.g. from cloud free areas).  
 The pixel-level icing parameters derived from GOES are averaged, by spatially 
weighting the 4 closest pixels to each TAMDAR observation taken within +/- 15 minutes 
of the satellite observation. In order to compare the TAMDAR data with GOES without 
biasing the results, only TAMDAR reports at altitudes within the GOES-derived cloud 
base and top and in a cloudy condition as defined by GOES were compared. The GOES 
filters reduced the total number of daytime TAMDAR reports to 32,260 cases. Out of the 
32,260 cases, TAMDAR reported 13% icing, 6% heater on, and 81% no ice flags while 
GOES reported 26% icing, 22% no icing, and 52% unknown (or indeterminate).  
 Figure 16 shows an example of satellite-derived icing indices compared with the 
TAMDAR icing indicators on a Mesaba flight (with TAMDAR serial number 247) on 22 
April 2005 between 18:00-18:30 UTC. This single-layer case shows good agreement 
between the satellite and TAMDAR. Satellite-derived cloud base and top (small squares) 
and TAMDAR icing indices (large squares) are plotted as functions of altitude. During 
the majority of the flight segment, the aircraft was inside the GOES-defined cloud and 
reported icing which corresponds well with the GOES analysis. During the descent below 
cloud base, the TAMDAR no longer reported icing while GOES still detected icing. This 
illustrates the need to properly filter out reports that would bias the TAMDAR and GOES 
statistics. When TAMDAR detects icing, GOES also detected icing 28% of the time. 
When TAMDAR indicated no icing, the GOES detected no icing 26% of the time. 
However, if we exclude the 52% of the GOES ‘unknown’ cases, and consider only cases 
when TAMDAR detected icing conditions, the probability of a positive detection 
(PODY) by GOES is 88%. When TAMDAR and GOES both detected no icing, the 
probability of a null detection (PODN) is 50%. Thus, of the 13% TAMDAR icing 
detections, GOES missed the icing detection (false negative) in only 4% of these cases. 
However, the GOES detected icing and TAMDAR detected no icing (false positive) in 
75% of the GOES icing cases or 19% of all cases. The high false positive detection 
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(75%) from GOES can be attributed to the errors associated in the calculation of the 
GOES cloud base and top. With an error standard deviation of 1 km in the cloud base and 

 
Figure 16: Comparison of GOES-derived flight icing threat to TAMDAR icing indicators.  Large 
squares represent the  TAMDAR observations while the small squares represent GOES. 
 
top heights, many of the TAMDAR no-icing reports not in clouds are being included in 
the statistics with the GOES icing detections. Other factors to consider include the impact 
of multi-layered clouds and subsequent errors in the satellite estimates of cloud base, 
which are not being accounted for in the filter, as well as the fact that the aircraft 
observation is at a specific vertical level and the current satellite method provides a single 
estimate of the icing threat for the entire layer.  Thus, we currently don’t have a method 
to adequately determine the ABI FIT algorithm PODN or FAR using TAMDAR. Further 
research is needed to account for cases when the flights are not in clouds. One possibility 
is to use TAMDAR temperature and relative humidity to include only the reports that are 
significant in producing icing conditions. This could help alleviate some of the issues 
reported here. 

4.2.1.3 Comparisons with NIRSS 
As discussed earlier, the NIRSS uses ground-based remote sensing data to estimate the 
flight icing threat over a single surface site.  Although icing is not measured directly, the 
NIRSS provides an objective estimate using advanced active and passive remote sensors 
and thus has the capability to provide vertical resolution to the problem.  We are in the 
early stages of analyzing this dataset for the purpose of evaluating and improving the ABI 
FIT algorithm.  A preliminary analysis has been conducted over a four-year period (2006-
2009) by matching the NIRSS icing to that derived using the ABI FIT algorithm applied 
to the LaRC cloud parameters derived from GOES-12 over Cleveland, Ohio.  The 
procedure includes satellite pixels within 20 km of the site and all NIRSS data within +/- 
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10 minutes of the time GOES-12 scans thru Cleveland. Contingency tables were 
constructed as before, in order to evaluate the satellite icing detection and severity 
estimates relative to NIRSS.  For this dataset there were 3,569 matches.  PODY, PODN, 
POFA and SS were found to be 0.82, 0.73, 0.27 and 0.64, respectively.  This analysis was 
considerably less conservative than that done with the PIREPS data in that it included 
partly cloudy conditions and mixed phase scenes.  In addition, there was a processing 
error in the NIRSS analysis that didn’t properly screen some bad data out of the analysis.  
All together these factors probably contribute to the relatively low PODY and SS values 
found here when compared to those found from PIREPS and TAMDAR. PODL and 
PODM were found to be 0.86 and 0.63, somewhat better than that found in comparison 
with icing PIREPS.  The severity indices were matched using the same categorical 
partitioning shown in Figure 4 and by matching with the median value found in the 
NIRSS vertical profiles over the 20-minute time window.  Certainly, these results are 
encouraging but much more work is needed to refine these comparisons for next version 
of this document. 

4.2.2 Error Budget 
Using the validation described above, the following table provides our preliminary 
estimate of an error budget.  The product measurement accuracy stated in the F&PS 
document requires a 50% classification.  That value was chosen to place a lower limit on 
the acceptable uncertainty for the severity component of the FIT and it was chosen to be 
conservative considering the uncertainties and difficulties associated with the validation 
data.  The results shown in Table 8 indicate that the FIT severity is meeting the required 
specification for both PIREPS and NIRSS, although the NIRSS results shown here 
should be considered preliminary for the reasons stated earlier.  A specific requirement 
for the accuracy of the icing mask is not specified in the F&PS.  However, we typically 
find PODY values greater than 90% versus PIREPS (93% for the 2-year dataset 
presented here).  The skill in positive icing detection (excludes no icing reports) is 87%, 
75% and 60% for PIREPS, TAMDAR and NIRSS, respectively.  A processing error with 
the NIRSS data led to the poor score (60%) that will be corrected in the next version of 
this document.  All of the validation results shown here exclude scenes where the icing 
threat is unknown from the satellite perspective due to obscuration by higher level ice 
phase topped clouds. 
 
 

Product 
Measurement Range 

Product 
Measurement 

Accuracy 

Skill in Positive 
Icing Detection 

Percent Correct 
Classification 

(Severity) 
Day: None, Light. 
Moderate or greater 
(MOG) 
 
Night: None, Icing 

50% correct 
classification 

PIREPS: 87% 
(N=4455) 
 
TAMDAR: 75% 
(N=12082) 
 
NIRSS: 60% 
(N=3454) 

PIREPS (N=3703) 
   Light: 53% 
   MOG: 62% 
 
NIRSS (N=683) 
   Light: 85% 
   MOG: 66% 
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Table 11: Preliminary error budget for the ABI FIT algorithm when applied to the LaRC GDCP 
using current GOES. 
 
 

5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 
The ABI FIT algorithm is implemented sequentially.  Because it relies on the results of 
other cloud algorithms, the cloud phase, and cloud optical properties from DCOMP and 
NCOMP, must be run before the FIT algorithm. In addition, an estimate of the freezing 
level will be required to estimate the lower altitude boundary of the icing threat.  That can 
be obtained from an NWP analysis or forecast.   

5.2 Programming and Procedural Considerations 
The ABI FIT algorithm is run at the pixel level. 

5.3 Quality Assessment and Diagnostics 
The following procedures are recommended for diagnosing the performance of the AI 
FIT algorithm. 

• Maintain database of Icing PIREPS in the GOES-R geographic domain 
• Apply signal detection theory using PIREPS as truth on a weekly or monthly 

basis.   
• Maintain a close collaboration with the teams developing and validating the cloud 

phase and cloud optical properties. 

5.4 Exception Handling 
The FIT algorithm will check the quality and validity of the require cloud parameter 
inputs before processing.  The algorithm also expects the main processing framework to 
flag any pixels with missing geo-location or viewing geometry information.    

5.5 Algorithm Validation 
See section 4 above. 
 

6 ASSUMPTIONS AND LIMITATIONS 
The following sections describe the current limitations and assumptions in the current 
version of the ABI FIT algorithm. 

6.1 Performance 
The following assumptions have been made in developing and estimating the 
performance of the ABI FIT algorithm.  The following list contains the current 
assumptions (numbered) and proposed mitigation strategies (lettered). 
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1. GOES-R ABI cloud parameters are validated and of similar quality as the 

NASA LaRC cloud parameters used in the FIT development. 
 
a.   Develop new algorithm coefficients and thresholds based on icing PIREPS    
correlations with GOES-R ABI cloud parameters 

6.2 Assumed Sensor Performance 
We assume the sensor will meet its current specifications.   However, because instrument 
dependence by the FIT algorithm will be solely determined by the cloud parameter 
dependencies, the cloud parameter ATBD’s should be consulted for possible performance 
issues. 

6.3 Pre-Planned Product Improvements 
Despite the fact that the current FIT algorithm is meeting accuracy requirements as 
specified in the F&PS document, there are a few areas being explored that could be used 
to improve the algorithm. One possible issue in the current algorithm formulation is the 
lack of any temperature dependence or a method to partition the S-LWP from the total 
water path derived from GOES. A better understanding of the uncertainties in the 
detection and impact of mixed phase clouds on the flight icing threat is also needed.  
These issues are briefly discussed below. In addition, very little feedback has been 
obtained from the user community regarding the utility of the FIT product. The best 
feedback has come from NCAR forecasters who have successfully used the GOES-
derived LWP to (1) direct research aircraft into icing conditions for scientific purposes 
and (2) direct general aviation aircraft into icing conditions for the purpose of icing 
certification (Bernstein et al., 2006).  Since the FIT index is largely a mapping of LWP 
for SLW topped clouds to the icing threat, this gives us some confidence in the utility of 
the product but much more feedback is needed.  In the fall of 2010, the product will be 
tested at the Aviation Weather Center over a two-week period as part of the Aviation 
Weather Experiment within the GOES-R Proving Ground. 

6.3.1 Estimating the Super-cooled Fraction of Total LWP 
One potential flaw in the current algorithm formulation is the dependence on the 
assumption that icing severity correlates with the total LWP. Although, icing PIREPS 
weakly support this assumption as shown earlier, it’s expected that since the LWP is the 
vertically integrated LWC, and LWC is known to vary with altitude, larger values of 
LWP may be associated with either larger values of LWC or cloud geometric thickness, 
or some combination of the two.  Furthermore, only the super-cooled portion of the cloud 
will impact the flight icing threat.  This is currently not accounted for in the FIT 
algorithm. For example, in the current formulation, the severity estimate is identical for 
two clouds having different top temperatures (e.g. 260K and 271K) but the same LWP, 
even though it is likely that in most cases the 260K cloud contains more SLW and is a 
more significant icing threat.  An estimate of the super-cooled fraction of the total LWP 
or even a retrieval of the super-cooled LWC profile from satellite data could provide a 
more robust estimate of the icing severity. Recently, a technique has been developed to 
estimate cloud water content profiles from passive satellite data.  Cloud water content 



41 

 

profiles for ice and liquid clouds derived from the Cloud Profiling Radar (CPR) on 
CloudSat are used to develop climatological profiles, or vertical profile shape factors, for 
different cloud types.  The shape factors are then used to distribute the GOES-derived 
cloud water path in the vertical, which results in a retrieval of the vertical profile of cloud 
water content. Examples of the shape factors derived from CloudSat for clouds assumed 
to be composed of SLW between 250K and 273K are shown in Figure 17 as a function of 
cloud thickness and water path. With knowledge of the freezing level  

  
Figure 17: Mean cloud water content shape factors derived from CloudSat data taken over the 
CONUS as a function of altitude below cloud top and for different CWP’s and cloud thicknesses.  
The profiles were derived during the months of November-April in 2007/2008 and 2008/2009 for 
clouds with top tmperatures between 253K and 273K. 
 
obtained from an NWP analysis, these profiles could be used to scale the satellite-derived 
total water path to estimate the S-LWP.  The FIT algorithm could then be reformulated 
using the S-LWP in the same manner it was originally developed using the total LWP, 
and re-evaluated to determine if the accuracy has been improved.  This is being explored 
for a future version of the ABI FIT algorithm. Furthermore, this profiling concept for 
GOES has some similarity to the NIRSS concept with the main exception being that 
NIRSS uses coincident radar observations to help characterize the vertical distribution of 
cloud water, whereas this satellite method uses a climatology from CloudSat.  
Climatologies from other radar and aircraft based observing programs are also being 
explored for use with this method.  NIRSS also has accurate observations of the cloud 
base from a ceilometer while the passive satellite (i.e. GOES) method utilizes a cloud 
thickness parameterization to estimate cloud base. Nevertheless, early inter-comparison 

∆Z > 3 km ∆Z=1-2 km ∆Z=2-3 km ∆Z=0-1 km 

Mean Water Content Shape Factor 
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studies between the GOES-derived profiles and those derived from CloudSat are 
encouraging.  Additionally, this satellite method can be extended to the icing problem by 
using the same conversion factors that map the super-cooled liquid water content to the 
icing threat (Politovitch 2003) in the NIRSS algorithm.  An example is shown in Figure 
18 for the Nov 8, 2008 case, which depicts the current version 3 ABI FIT output on the 
left and a cross-section of the passive satellite profiling product on the right.   The cross 
section extends from the Illinois/Indiana border toward the northeast into southern 
Canada.  A 3-D rendition for the region in the drawn box and centered over the Ohio 
valley is shown in Figure 19. Because the method can be applied to GOES data at high 
temporal resolution, a 4-D description of the flight icing threat is possible. The concepts 
described here for application to GOES-R are certainly unique and could add value to 
satellite based icing products. They also have the advantage of providing some 
consistency with the NIRSS approach being developed for terminal area icing, but much 
more work is needed, the new products need to be validated, and feedback from the user 
community regarding their utility would be extremely helpful.  
 

 
Figure 18:  The flight icing threat at 1745 UTC on November 8, 2008 derived using the current 
(version 3) ABI FIT algorithm (Left) and a new profiling concept being considered for version shown 
as a cross-section (Right).  
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Figure 19:  A McIDAS-V 3-D rendition of icing severity profiles derived from GOES-12 at 1745 UTC 
on Nov. 8, 2008. 

6.3.2 Mixed Phase Cloud Effects on the Flight Icing Threat 
As noted earlier, many clouds are found in nature with a layer of SLW at the top and thus 
satellites are uniquely suited to detect these clouds provided high level clouds are not 
obscuring their view.  It is also common, particularly in winter, for SLW topped clouds to 
be snowing.  Thus, there is some transition from liquid droplets to ice crystals within the 
vertical dimension of some clouds that undoubtedly impacts the flight icing threat since it 
is well known that the presence of ice in clouds can rapidly deplete the available SLW.  
The current algorithm does not account for mixed phase cloud effects and little is 
currently known about how these effects might be impacting the algorithm performance.  
Fortunately, the current GOES-R ABI cloud phase algorithm has a ‘mixed phase’ 
category but it has not yet been validated.  We are exploring the use of microwave 
radiometer data, taken from satellite and ground based sensors, including the NIRSS, as 
well as other spectral channels on the ABI, to help quantify the impact of mixed phase 
clouds on the flight icing threat.  These and other ideas are being explored to the extent 
possible with the available resources.
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