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ABSTRACT  
 

This document provides a high level description of the physical basis for the detection of 
sulfur dioxide (SO2) clouds within images taken by the Advanced Baseline Imager (ABI) 
flown on the GOES-R series of NOAA geostationary meteorological satellites.  The ABI 
SO2 detection algorithm utilizes spectral and spatial information to determine if SO2 is 
present.  The algorithm utilizes ABI channels 8 (6.2 µm) 10 (7.4 µm), 11 (8.5 µm), 14 
(11 µm), and 15 (12 µm), which are all infrared channels.  In lieu of brightness 
temperature differences, effective absorption optical depth ratios are used in the spectral 
tests.  Effective absorption optical depth ratios, allow for improved sensitivity to the 
presence of SO2, especially for optically thin clouds.  In addition, a series of cloud object 
based filters are applied to greatly reduce false alarms.  The validation analysis indicates 
that the algorithm will meet the accuracy requirements. 
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1 Introduction 

1.1 Purpose of This Document 
 
The SO2 algorithm theoretical basis document (ATBD) provides a high level description 
of and the physical basis for the detection of SO2 observed by the Advanced Baseline 
Imager (ABI) flown on the GOES-R series of NOAA geostationary meteorological 
satellites. 
  

1.2 Who Should Use This Document 
 
The intended user of this document are those interested in understanding the physical 
basis of the algorithms and how to use the output of this algorithm.  This document also 
provides information useful to anyone maintaining or modifying the original algorithm.   

1.3 Inside Each Section 
 
 This document is broken down into the following main sections. 
 

• System Overview: Provides relevant details of the ABI and provides a brief 
description of the products generated by the algorithm. 

 
• Algorithm Description : Provides all the detailed description of the algorithm 

including its physical basis, its input and its output. 
 

• Test Data Sets and Outputs: Provides a detailed description of the data sets used 
to develop and test the GOES-R ABI algorithm and describes the algorithm 
output. 

 
• Practical Considerations: Provides a description of algorithm programming and 

quality control considerations.  
 

• Assumptions and Limitations: Provides an overview of the current limitations of 
the approach and gives the plan for overcoming these limitations with further 
algorithm development. 

 

1.4 Related Documents 
 

• GOES-R Functional & Performance Specification Document (F&PS) 
• GOES-R ABI SO2 Product Validation Plan Document 
• Algorithm Interface and Ancillary Data Description (AIADD) Document 
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1.5 Revision History 
 

• 9/30/2009 - Version 0.1 of this document was created by Michael J Pavolonis 
(NOAA/NESDIS/STAR).  Version 0.1 represents the first draft of this document. 

 
• 7/31/2010 – Version 1.0 of this document was created by Michael J Pavolonis 

(NOAA/NESDIS/STAR).  In this revision, Version 0.1 was revised to meet 80% 
delivery standards. 

 
• 9/15/2010 – Version 1.0 of this document was revised by Michael J Pavolonis 

(NOAA/NESDIS/STAR).  In this revision, Version 1.0 was revised based on 
reviewer comments. 
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2 OBSERVING SYSTEM OVERVIEW  
 
This section will describe the products generated by the ABI SO2 Detection Algorithm 
(ABI-SO2) and the requirements it places on the sensor.  
 

2.1 Products Generated 
 
The ABI-SO2 is responsible for producing a SO2 detection (yes/no) flag for all pixels.  
This includes pixels that contain SO2 contaminated meteorological clouds.  Actually, 
most SO2 clouds also contain some ice/liquid water.  This is verified by the fact that these 
clouds are visible in 11-µm imagery.  A pure SO2 gas cloud would not be visible in the 
11-µm imagery.  
 

2.1.1 Product Requirements 
 
The F&PS spatial, temporal, and accuracy requirements for the GOES-R SO2 Detection 
product are shown below in Table 1. 
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Table 1: GOES-R SO2 Detection product requirements. The Geographic Coverage 
definitions are: M=Mesoscale, C=CONUS, and FD=Full Disk. 

2.2 Instrument Characteristics  
 
Table 2 shows the ABI channels used in the SO2 detection algorithm.  The ABI-SO2 
relies on infrared measurements.  Channels 10 (7.4 µm) and 11 (8.5 µm) both contain 
several SO2 absorption lines.  Channels 14 (11 µm) and 15 (12 µm) are not sensitive to 
SO2, but are sensitive to the presence of small hydrometeors, which are common in SO2 
contaminated clouds. 
 
The performance of the SO2 detection algorithm is sensitive to any imagery artifacts or 
instrument noise. Calibrated observations are also critical because the SO2 algorithm 
compares the observed values to those from a forward radiative transfer model.  The 
channel specifications are given in the F&PS section 3.4.2.1.4.0.  We are assuming the 
performance outlined in the F&PS during our development efforts. 
 

Channel Number Wavelength (µµµµm) Used in ABI-SO2 
1 0.47  
2 0.64  
3 0.86  
4 1.38  
5 1.61  
6 2.26  
7 3.9  
8 6.15 � 
9 7.0  
10 7.4 � 
11 8.5 � 
12 9.7  
13 10.35  
14 11.2 � 
15 12.3 � 
16 13.3  

Table 2: Channel numbers and wavelengths for the ABI. 
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3 ALGORITHM DESCRIPTION 
 
Below is a complete description of the algorithm at the current level of maturity (which 
will improve with each revision).  
 

3.1 Algorithm Overview 
 
Given the importance of monitoring SO2 for aviation interests, health interests, and 
climate, the ABI-SO2 serves an important role in the GOES-R ABI processing system.  
While a binary SO2 detection flag is required, an estimate of the SO2 loading is stored in 
the product quality flags. 
 
The ABI-SO2 derives the following product listed in the F&PS. 

• SO2 detection flag [yes/no] 
 
In addition, the ABI-SO2 derives the following products that are not included in the 
F&PS. 

• Quality Flags (defined in Section) 
• Product Quality Information (defined in Section) 
• Metadata (defined in Section) 

 

3.2 Processing Outline 
 
The processing outline of the ABI-SO2 is summarized in the figure below.  The ABI-
SO2 uses several spatial and spectral analysis routines. The ABI-SO2 requires multiple 
scan lines of ABI data due to the spatial analysis that is utilized in the algorithm.  
Complete scan line segments should consist of at least the minimum number of scan lines 
required by the Gradient Filter, which is described in detail in the AIADD.  While 
overlap between adjacent scan line segments is beneficial, scan line overlap was not used 
in the development and validation of this algorithm. 
  



 

 

Figure 1: High Level Flowchart of the ABI_SO2 illustrating the main processing 
sections. 
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3.3 Algorithm Input 
 
This section describes the input needed to process the ABI-SO2.  While the ABI-SO2 
operates on a pixel-by-pixel basis, surrounding pixels are needed for spatial analysis.  
Therefore, the ABI-SO2 must have access to a group of pixels.   In its current 
configuration, we run the ABI-SO2 on segments comprised of 200 scan-lines. The 
minimum scan line segment size required to implement the ABI-SO2 is driven by the 
minimum number of scan lines required to fully utilize the gradient filter routine (see 
AIADD Document for more details).  The following sections describe the actual input 
needed to run the ABI-SO2. 

3.3.1 Primary Sensor Data 
 
The list below contains the primary sensor data currently used by the ABI-SO2.  By 
primary sensor data, we mean information that is derived solely from the ABI 
observations and geolocation information. 

 
• Calibrated radiances for ABI channels 10 (7.4 µm), 11 (8.5 µm), 14 (11 µm), and 

15 (12 µm). 
• Calibrated brightness temperatures for ABI channels 8 (6.2 µm), 10 (7.4 µm), 11 

(8.5 µm), 14 (11 µm), and 15 (12 µm) 
• Sensor viewing zenith angle 
• L1b quality information from calibration for ABI channels 8, 10, 11, 14, and 15 
• Space mask (is the pixel geolocated on the surface of the Earth?) 
 

3.3.2 Ancillary Data 
 
The following data lists and briefly describes the ancillary data requited to run the ABI-
SO2.  By ancillary data, we mean data that requires information not included in the ABI 
observations or geolocation data. 

 
• Cloud frequency of occurrence look-up tables (LUT’s) 

The ABI-SO2 requires static look-up tables that contain a normalized frequency 
of occurrence of the joint combination of certain cloud emissivity and cloud 
microphysical relationships.  The look-up table was generated using a Spinning 
Enhanced Visible Infrared Imager (SEVIRI) based training data set that did not 
have any SO2 clouds.  The look-up table, which will be provided, is used to help 
identify pixels that are “spectrally anomalous,” possibly due to the present of SO2. 
 

3.3.3 Radiative Transfer Models 
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The following lists and briefly describes the data that must be calculated by a radiative 
transfer model and derived prior to running the ABI-SO2.  See the AIADD Document for 
a more detailed description. 
 

• Black cloud radiance profiles for channels 10, 11, 14, and 15 
The ABI-SO2 requires the radiance emitted upward by a black body surface and 
transmitted through a non-cloudy atmosphere, with gaseous absorption, to the top 
of the atmosphere as a function of the atmospheric level of the black surface.  The 
black cloud radiance is computed as a function of NWP grid cells and viewing 
angle (it is not computed at the pixel resolution), as described in detail in the 
AIADD Document. 
 

• Top-of-atmosphere clear-sky radiance estimates for channels 10, 11, 14, and 
15 
The ABI-SO2 requires knowledge of the top-of-atmosphere radiance ABI would 
sense under clear-sky conditions at each pixel. 
 

• Top-of-atmosphere clear-sky brightness temperature estimates for channels 
8, 10, 11, and 14 
The ABI-SO2 requires knowledge of the top-of-atmosphere brightness 
temperature ABI would sense under clear-sky conditions at each pixel. 
 

3.4 Theoretical Description  
 
The methodology described in this section is based on some of the physical concepts 
described in Pavolonis (2010a and 2010b). 

3.4.1 Physics of the Problem 
 
Figure 2 shows the impact of SO2 absorption on the infrared spectrum from 6.25 – 9.09 
µm.  SO2 absorption is not present or is negligible at higher wavelengths, so wavelengths 
higher than 9.09 µm are not shown.  The spectral bandwidth of ABI channels 10 (7.4 µm) 
and channel 11 (8.5 µm) are shown on the figure.  As can be seen, only channels 10 and 
11 are noticeably impacted by SO2.  As such, “spectral anomalies” due to SO2 absorption 
can be detected by inferring when the difference in cloud emissivity (or optical depth) 
between a channel that is sensitive to SO2 and a channel that is not sensitive to SO2 is 
anomalously large (compared to non-SO2 clouds). 
 
Previous imager based approaches developed for detecting SO2 rely largely on empirical 
relationships.  For instance, Prata et al. (2003) and Prata and Kerkmann (2007) spectrally 
interpolated the observed radiance at 6.2 (or 6.7 µm) and 11 µm to 7.4 µm (to estimate 
the thermal anomaly potentially induced by SO2), and applied some brightness 
temperature and brightness temperature difference constraints to detect SO2.  Doutriaux-
Boucher and Dubuisson (2008) showed that this empirical method is most effective at 
unambiguously detecting large amounts of SO2 (> 50 DU).  The GOES-R requirements 
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Assuming a satellite viewing perspective (e.g. upwelling radiation), a fully cloudy field 
of view, a non-scattering atmosphere (no molecular scattering), and a negligible 
contribution from downwelling cloud emission or molecular emission that is reflected by 
the surface and transmitted to the top of troposphere (Zhang and Menzel (2002) showed 
that this term is very small at infrared wavelengths), the cloudy radiative transfer 
equation for a given infrared channel or wavelength can be written as in Equation 1 (e.g. 
Heidinger and Pavolonis, 2009; Pavolonis, 2010a). 
 
 

Robs(λ) = ε(λ)Rac(λ) + tac(λ)ε(λ)B(λ,Teff) + Rclr(λ)(1−ε(λ))  (Eq. 1) 
 

 
In Equation 1, λ is wavelength, Robs is the observed top-of-atmosphere (TOA) radiance, 
Rclr is the TOA clear sky radiance.  Rac and tac are the above cloud to TOA upwelling 
atmospheric radiance and transmittance, respectively.  B is the Planck Function, and Teff 
is the effective cloud temperature.  The effective cloud emissivity (Cox, 1976) is given by 
ε.  To avoid using additional symbols, the angular dependence is simply implied.  
Equation 1, while commonly used, is derived step by step in Pavolonis (2010a), if 
interested. 
 
Equation 1 can readily be solved for the effective cloud emissivity as follows: 
 

ε(λ) =
Robs(λ) − Rclr(λ)

[B(λ,Teff)tac(λ) + Rac(λ)] − Rclr(λ)
  (Eq. 2) 

 
In Equation 2, the term in brackets in the denominator is the blackbody cloud radiance 
that is transmitted to the TOA plus the above cloud (ac) atmospheric radiance.  This term 
is dependent upon the effective cloud vertical location.  The cloud vertical location 
dependence will be discussed in detail in later sections.  Other than Robs(λ), the 
information needed to evaluate this expression is provided by the output from the clear 
sky radiative transfer model described in the AIADD Document. 
 
The cloud microphysical signature cannot be captured with the effective cloud emissivity 
alone for a single spectral channel or wavelength.  It is the spectral variation of the 
effective cloud emissivity that holds the cloud microphysical information.  To harness 
this information, the effective cloud emissivity is used to calculate effective absorption 
optical depth ratios; otherwise known as β-ratios (see Inoue 1987; Parol et al., 1991; 
Giraud et al., 1997; and Heidinger and Pavolonis, 2009).  For a given pair of spectral 
emissivities (ε(λ1) and ε(λ2)): 
 

βobs=
ln[1−ε (λ1)]

ln[1−ε (λ2)]
=

τabs(λ1)

τabs(λ2)
  (Eq. 3) 

 
 
Notice that Equation 3 can simply be interpreted as the ratio of effective absorption 
optical depth (τ) at two different wavelengths.  The word “effective” is used since the 
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cloud emissivity depends upon the effective cloud temperature.  The effective cloud 
temperature is most often different from the thermodynamic cloud top temperature since 
the cloud emission originates from a layer in the cloud.  The depth of this layer depends 
upon the cloud transmission profile, which is generally unknown.  One must also 
consider that the effects of cloud scattering are implicit in the cloud emissivity 
calculation since the actual observed radiance will be influenced by cloud scattering to 
some degree.  In other words, no attempt is made to separate the effects and absorption 
and scattering.  At wavelengths in the 10 to 13 µm range, the effects of cloud scattering 
for upwelling radiation are quite small and usually negligible.  But at infrared 
wavelengths in the 8 – 10 µm range, the cloud reflectance can make a 1 – 3% 
contribution to the top of atmosphere radiance (Turner, 2005).  Thus, it is best to think of 
satellite-derived effective cloud emissivity as a radiometric parameter, which, in most 
cases, is proportional to the fraction of radiation incident on the cloud base that is 
absorbed by the cloud.  See Cox (1976) for an in depth explanation of effective cloud 
emissivity. 
 
An appealing quality of βobs, is that it can be interpreted in terms of the single scatter 
properties, which can be computed for a given cloud composition and particle 
distribution.  Following Van de Hulst (1980) and Parol et al. (1991), a spectral ratio of 
scaled extinction coefficients can be calculated from the single scatter properties (single 
scatter albedo, asymmetry parameter, and extinction cross section), as follows. 
 

βtheo =
[1.0 −ω(λ1)g(λ1)]σext(λ1)
[1.0−ω(λ2)g(λ 2)]σext(λ2)

  (Eq. 4) 

 
In Equation 4, βtheo is the spectral ratio of scaled extinction coefficients, ω is the single 
scatter albedo, g is the asymmetry parameter, and σext is the extinction cross section for 
an assumed particle distribution.  At wavelengths in the 8 – 15 µm range, where multiple 
scattering effects are small, βtheo, captures the essence of the cloudy radiative transfer 
such that, 
 

βobs≈ βtheo  (Eq. 5) 
 
Equation 4, which was first shown to be accurate for observation in the 10 – 12 µm 
“window” by Parol et al. (1991), only depends upon the single scatter properties.  It does 
not depend upon the observed radiances, cloud height, or cloud optical depth.  By using 
β-ratios as opposed to brightness temperature differences, we are not only accounting for 
the non-cloud contribution to the radiances, we are also providing a means to tie the 
observations back to theoretical size distributions.  This framework clearly has practical 
and theoretical advantages over traditional brightness temperature differences.  Parol et 
al. (1991) first showed that Equation 5 is a good approximation.  Pavolonis (2010a) also 
showed that Equation 5 is a good approximation throughout the 10 - 13 µm window. 
Faster computers and improvements in the efficiency and accuracy of clear sky radiative 
transfer modeling have allowed for more detailed exploration of the β data space and 
computation of β-ratios on a global scale.  As such, Pavolonis (2010a) and Pavolonis 
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(2010b) showed that β-ratios offer improved sensitivity to cloud microphysical properties 
relative to brightness temperature differences for the same channel pair. 
 

3.4.1.2 Converting the Measured Radiances to Emissivities and ββββ-Ratios 
 
Given the measured radiances at 7.4, 8.5, 11, and 12 µm (ABI channels 10, 11, 14, and 
15) and estimates of the clear sky radiance, clear sky transmittance, and the temperature 
profile, Equations 2 and 3 are used to compute β for the following spectral pairs: (8.5, 11 
µm), (11, 12 µm), and (7.4, 11 µm).  Given these spectral pairs, the 11 µm emissivity is 
always placed in the denominator of Equation 3.  Hereafter, these β’s are referred to as 
β(8.5/11µm), β(12/11µm), and β(7.4/11µm), respectively.  The only missing piece of 
information is the effective cloud vertical level, which is needed in computing the cloud 
emissivity.  The effective cloud vertical level is the level where the temperature profile is 
equal to the extinction weighted cloud temperature.  As shown in Pavolonis (2010a) and 
Pavolonis (2010b), the sensitivity of β to the effective cloud vertical level is often small 
when “window” channel pairs are used. As such, cloud microphysical information can be 
gleaned even by assuming a constant effective cloud vertical level.  The retrieval of the 
actual effective cloud vertical level is unnecessary for this application and beyond the 
scope of this algorithm.  In addition, the cloud composition must also be known to 
properly constrain the cloud microphysics in a formal retrieval of the cloud vertical level.  
That is why the ABI-SO2 algorithm must work in the absence of cloud height 
information.  
 
The ABI-SO2 algorithm assumes a constant effective cloud level consistent with the 
thermodynamic tropopause given by Numerical Weather Prediction (NWP) data (see the 
AIADD Document for more information).  Equations 6a – 6g specifically show how this 
assumption is applied to Equations 2 and 3 for the channel pairs used in the ABI-SO2.  In 
these equations, εstropo(λ) is the spectral cloud emissivity computed using the single layer 
tropopause assumption, and βstropo(λ1/λ2) represents the β calculated from this type of 
cloud emissivity.  Ttropo is the temperature of the tropopause.  Rtropo(λ) and ttropo(λ) are the 
clear sky atmospheric radiance and transmittance, vertically integrated from the 
tropopause to the top of the atmosphere, respectively (the calculation of the clear sky 
radiance and transmittance are described in detail in the AIADD Document).  All other 
terms were defined previously. Pavolonis (2010a) showed that the top of troposphere 
cloud height assumption is mainly useful for “window” channels.  However, SO2 clouds, 
that can be sensed with the 7.4 µm channel, are often located near the tropopause, so the 
top of troposphere assumption is quite reasonable for the β(7.4/11µm), even though the 
7.4 µm channel is subject to significant water vapor absorption. 
 
 
 

εstropo(7.4µm) =
Robs(7.4µm) − Rclr(7.4µm)

[B(7.4µm,Ttropo)ttropo(7.4µm) + Rtropo(7.4µm)] − Rclr(7.4µm)
  (Eq. 6a) 
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εstropo(8.5µm) =
Robs(8.5µm) − Rclr(8.5µm)

[B(8.5µm,Ttropo)ttropo(8.5µm) + Rtropo(8.5µm)] − Rclr(8.5µm)
  (Eq. 6b) 

 

εstropo(11µm) =
Robs(11µm) − Rclr(11µm)

[B(11µm,Ttropo)ttropo(11µm) + Rtropo(11µm)] − Rclr(11µm)
  (Eq. 6c) 

 

εstropo(12µm) =
Robs(12µm) − Rclr(12µm)

[B(12µm,Ttropo)ttropo(12µm) + Rtropo(12µm)] − Rclr(12µm)
  (Eq. 6d) 

 

βstropo(8.5 /11µm) =
ln[1−εtropo(8.5µm)]
ln[1−εtropo(11µm)]

  (Eq. 6e) 

 

βstropo(12/11µm) =
ln[1−εtropo(12µm)]
ln[1−εtropo(11µm)]

  (Eq. 6f) 

 

βstropo(7.4 /11µm) =
ln[1−εtropo(7.4µm)]
ln[1−εtropo(11µm)]

  (Eq. 6g) 

 

3.4.1.3 Clouds in ββββ-Space 
 
As discussed in Section 3.4.1, pure SO2 gas clouds do not appreciably absorb infrared 
radiation outside of the 7.4 and 8.5 µm bands.  Thus, pure SO2 clouds cannot be sensed 
with the 11 and 12 µm channels.  However, clouds that contain SO2 generally also 
contain water (liquid and/or ice) and/or volcanic ash (water and ash absorb radiation 
throughout the infrared spectrum) or overlap lower level water (liquid and/or ice) or 
volcanic ash clouds.  Thus, the measured 11 and 12 µm channel radiance is generally 
smaller than the corresponding clear sky radiance, and the 11 and 12 µm cloud emissivity 
will be > 0.0 (resulting in numerically valid βstropo(12/11µm), βstropo(8.5/11µm), and 
βstropo(7.4/11µm) values).  “Pure” SO2 clouds do occasionally occur.  As described in 
Section 3.4.2.1.2, these clouds are spectrally identified using an alternative methodology, 
but most SO2 clouds can be identified using the various βstropo parameters. 
 
To illustrate how SO2 clouds differ from other types of clouds in β-space, example SO2, 
liquid water, ice, and dust clouds were manually selected from a SEVIRI full disk image, 
and the values of βstropo(12/11µm), βstropo(8.5/11µm), and βstropo(7.4/11µm) were 
examined.  The selected clouds, which were identified using false color multi-spectral 
imagery, are shown in Figure 3.  The 2-dimensional distributions of βstropo(12/11µm) vs. 
βstropo(8.5/11µm) and βstropo(8.5/11µm) vs. βstropo(7.4/11µm) for each selected cloud are 
shown in Figure 4 and Figure 5, respectively.  As Figure 4 and Figure 5 show, SO2 clouds 
generally have different joint βstropo signatures than other types of clouds.  The 
βstropo(7.4/11µm) is generally much larger for SO2 clouds compared to other clouds due to 
the strong SO2 absorption lines contained in this band.  The SO2 absorption significantly 
increases the 7.4 µm absorption cloud optical depth relative to the 11 µm absorption 
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cloud optical depth, resulting in a βstropo(7.4/11µm) that is much larger compared to other 
cloud types.  The same reasoning applies to the βstropo(8.5/11µm).  Accordingly, 
βstropo(8.5/11µm) also tends to be larger for SO2 compared to other cloud types, but is a 
bit more complicated to interpret when the SO2 cloud overlaps lower non-SO2 cloud 
layers, which, based on visual inspection of multi-spectral imagery, is a common 
occurrence.  The 8.5 µm channel has a weighting function that peaks in the lower 
troposphere, as such it is far more sensitive to the presence of low non-SO2 cloud layers 
than the 7.4 µm channel.  Lower non-SO2 cloud layers that lie beneath an SO2 cloud layer 
will generally act to decrease the difference in cloud optical depth between the 8.5 and 11 
µm channels compared to a single layer SO2 cloud, resulting in decreased 
βstropo(8.5/11µm) contrast (between SO2 features and non-SO2 features).  Further, the 
liquid water and dust clouds chosen in this scene reside well beneath the peak of the 7.4 
µm atmospheric weighting function and thus cannot be detected with this channel (which 
is relevant information since SO2 clouds generally can be detected with the 7.4 µm 
channel).  The βstropo(12/11µm) is not directly sensitive to SO2, but is very sensitive to the 
size of cloud water particles (e.g. Pavolonis 2010a).  SO2 clouds that contain liquid water 
or ice tend to be composed of small particles, which results in a larger βstropo(12/11µm) 
compared to most meteorological clouds.  Figure 4 shows that many pixels in the SO2 
cloud have larger values of βstropo(12/11µm) relative to the liquid water and ice clouds 
that were analyzed. 
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Figure 3: A false color SEVIRI image (September 30, 2007, 1500 UTC) indicating 
the location of the ice, liquid water, dust, and SO2 clouds selected to illustrate the 
multi-spectral microphysical signal exhibited by different cloud type. 
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Figure 4: The 2D distribution of ββββstropo(8.5/11µµµµm) and ββββstropo(12/11µµµµm) for 4 different 
cloud types (ice, liquid water, dust, and SO2) observed by SEVIRI on September 30, 
2007 at 1500 UTC. 

 
 

 

Figure 5: The 2D distribution of ββββstropo(8.5/11µµµµm) and ββββstropo(7.4/11µµµµm) for 4 
different cloud types (ice, liquid water, dust, and SO2) observed by SEVIRI on 
September 30, 2007 at 1500 UTC.  The absence of liquid water and dust data points 
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indicates that those clouds were too low in the atmosphere to be sensed by the 7.4 
µµµµm channel.  

 

3.4.1.4 Identifying a Pixel’s Local Radiative Center 
 
In regions where the radiative signal of a cloud is small, like cloud edges, the various β-
ratios are difficult to interpret since the cloud fraction, which is assumed to be 1.0, may 
be less than 1.0, or very small cloud optical depths may produce a signal that cannot be 
differentiated from noise.  With the spectral information limited, a spatial metric is 
needed to make a spatially and physically consistent SO2 determination for these types of 
pixels.  To address this problem, the gradient filter procedure, which is described in detail 
in the AIADD Document, is used to determine the Local Radiative Center (LRC) of each 
valid pixel.  A pixel is valid if it has a valid Earth latitude and longitude and has valid 
spectral data (based on the L1b calibration flags).  The εstropo(11µm) parameter described 
in Section 3.4.1.2 is used to compute the LRC.  The gradient filter inputs (which are 
described in detail in the AIADD Document) for this application are listed in Table 3. 
 
Gradient 
Variable 

Minimum Valid 
Value of Gradient 
Variable 

Maximum Valid 
Value of Gradient 
Variable 

Gradient 
Stop Value 

Apply Gradient Filter 
To 

εstropo(11µm) 0.0 1.0 0.7 All pixels with a valid 
Earth lat/lon and valid 
spectral data for ABI 
channels 10, 11, 14, and 
15 

Table 3: Inputs used in calculation of Local Radiative Center (LRC).  The gradient 
filter function used in the calculation is described in the AIADD document. 

 

The gradient filter allows one to consult the spectral information at an interior pixel 
within the same cloud in order to avoid using the spectral information offered by pixels 
with a very weak cloud radiative signal or sub-pixel cloudiness associated with cloud 
edges.  Overall, this use of spatial information allows for a more spatially and physically 
consistent product.  This concept is also explained in Pavolonis (2010b). 

 

3.4.1.5 Cloud Objects 
 
The SO2 detection is performed on a cloud object basis.  A cloud object is defined as a 
collection of spatially connected pixels that meet application dependent criteria (e.g. in 
the case of SO2, pixels that are characterized by large microphysical anomalies).  
Wielicki and Welch (1986) first used satellite derived cloud objects to study small-scale 
cumulus cloud properties.  In the SO2 detection algorithm, cloud objects are constructed 
from candidate SO2 pixels, which are objectively identified using spectral information.  A 
series of filters (simple logical tests) are applied to each cloud object, where various 
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cloud object statistics are used to filter out non-SO2 cloud objects.  Most true SO2 cloud 
objects will be composed of SO2 pixels that exhibit a non-ambiguous SO2 spectral 
signature as well as pixels that contain SO2 but exhibit a marginal SO2 spectral signature, 
which cannot be cleanly distinguished from all other non-SO2 features.  The cloud object 
procedure is very powerful because it provides a mechanism to accurately identify pixels 
that contain SO2, but do not have a totally unique spectral signature, on the basis that 
those pixels are spatially connected to pixels that do exhibit a robust spectral signature.  
The specific methodology for constructing cloud objects and the cloud object filtering 
will be described in detail in upcoming sections of this document. 
 

3.4.1.6 Median Spatial Filter 
 
The emissivity and β calculations described in Section 3.4.1.2 can, at times, be noisy, 
especially near cloud edges, in areas of broken clouds, and for very small cloud optical 
depths.  In order to minimize the occurrence of “salt and pepper” noise, a standard 3 x 3 
median filter is applied to certain key variables (εstropo(7.4µm), εstropo(11µm), and the 
cloud object membership flag variables).  The median filter simply replaces the value at 
each pixel with the median value of a 3 x 3 pixel array centered on that pixel.  The 
generic median filter procedure is described in the AIADD Document. 
 

3.4.2 Mathematical Description 
 
While Section 3.4.1 focused on describing the physical basis of the SO2 detection 
algorithm, this section is dedicated to describing the logic needed to implement the ABI-
SO2. 
 

3.4.2.1 Cloud Object Membership Criteria 
 
Before the cloud objects can be constructed, a cloud object mask must be created to 
identify pixels that meet the object membership criteria. In the ABI-SO2, two sets of 
cloud objects are created.  One set of cloud objects is formed from pixels that exhibit a 
rare cloud microphysical signal determined from a frequency of occurrence look-up table.  
The first set of objects will be referred to as “beta objects.”  The second set of cloud 
objects is composed from pixels that have a weak cloud signal, inferred from cloud 
emissivity variables and brightness temperature differences, in non-SO2 absorption 
channels (e.g. 11 µm).  The second set of objects will be referred to as “btd objects.”  The 
methodology of Wielicki and Welch (1986) is used to construct cloud objects and the 
object membership criteria are described in the sections below. 
 

3.4.2.1.1 “Beta Object” Membership Criteria 
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Using a SEVIRI based offline training data set that did not contain any detectable SO2 
clouds, the joint frequency of occurrence is determined for two different βstropo pairs, 
(βstropo(8.5/11µm), βstropo(12/11µm)) and (βstropo(8.5/11µm), βstropo(7.4/11µm)).  The 
frequency of occurrence look-up tables, which are based on 8 full disks of SEVIRI (1 x 
108 pixels), are three dimensional.  The 8 SEVIRI full disks include data from each 
season at 00 and 12 UTC.  The first look-up table (LUT1) has the following physical 
dimensions: εstropo(8.5 µm) x βstropo(8.5/11µm) x βstropo(12/11µm).  The second look-up 
table (LUT2) has the following physical dimensions: εstropo(7.4 µm) x βstropo(8.5/11µm) x 
βstropo(7.4/11µm).  The look-up tables are visualized in Figure 6 and Figure 7.  In both 
look-up tables, the frequency of occurrence is defined as the count in each 2D histogram 
bin divided by the maximum bin count in the entire table.  Since we are only interested in 
spectral anomalies associated with SO2 absorption, the borders of the look-up tables are 
constrained.  For LUT1, a valid cloud frequency of occurrence is retrieved from the look-
up table if εstropo(8.5 µm) > 0.05, βstropo(8.5/11µm) and βstropo(12/11µm) have valid (non-
missing) values, and the 11 – 12 µm brightness temperature difference is greater than 
0.50 K.  For LUT2, a valid cloud frequency of occurrence is retrieved from the look-up 
table if εstropo(8.5 µm) > 0.01, εstropo(7.4 µm) > 0.01, βstropo(8.5/11µm) and 
βstropo(7.4/11µm) have valid (non-missing) values, and the 8.5 – 11 µm brightness 
temperature difference is less than 0.00 K.  The brightness temperature difference 
constraints assure that any low frequency of occurrence is more likely to be associated 
with SO2 rather than some other feature.  The final frequency of occurrence assigned to 
each pixel is the minimum valid frequency of occurrence retrieved from LUT1 and 
LUT2.  If the final pixel frequency of occurrence is valid and less than 0.01, then the 
“beta object” membership requirements are fulfilled and that pixel is used to construct 
“beta objects;” otherwise the pixel cannot be used to construct “beta objects.” 
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Figure 6: The normalized joint frequency of occurrence of ββββstropo(8.5/11µµµµm) and 
ββββstropo(12/11µµµµm) for three different εεεεstropo(8.5 µµµµm) bins. 
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Figure 7: The normalized joint frequency of occurrence of ββββstropo(8.5/11µµµµm) and 
ββββstropo(7.4/11µµµµm) for three different εεεεstropo(7.4 µµµµm) bins. 
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3.4.2.1.2 “Btd Object” Membership Criteria 
 
A second separate set of objects is constructed using alternative criteria for object 
membership, with the goal of detecting “pure” SO2 clouds.  The object membership 
criteria are satisfied if at least one of two sets of conditions is true.  The two sets of 
conditions are defined below in pseudo-code form. 
 
First set of conditions: 
 
IF  (εstropo(7.4 µm) > 0.04 AND εstropo(11 µm) < 0.05) THEN  
  -object membership criteria met 
 
Second set of conditions: 
 
New variable definitions: 
BTD(8.5-11 µµµµm) = the observed 8.5 µm – 11 µm brightness temperature difference 
BTD_CLR(8.5-11 µµµµm) = the calculated clear sky 8.5 µm – 11 µm brightness 
temperature difference 
BTD(7.4-6.2 µµµµm) = the observed 7.4 µm – 6.2 µm brightness temperature difference 
BTD_CLR(7.4-6.2 µµµµm) = the calculated clear sky 7.4 µm – 6.2 µm brightness 
temperature difference 
  
IF  ((εstropo(7.4 µm) > 0.01 OR εstropo(8.5 µm) > 0.01) AND 
      (εstropo(7.4 µm) > εstropo(11 µm) OR εstropo(8.5 µm) > εstropo(11 µm)) AND 
      (BTD(8.5-11 µm) < -3.0 K) AND 
      (BTD(7.4 – 6.2 µm) < BTD_CLR(7.4 – 6.2 µm) – 1.0 K) AND 
      (BTD(8.5 – 11 µm) < BTD_CLR(8.5 – 11 µm) – 1.0 K)) THEN  
  -object membership criteria met 
 

3.4.2.1.3 Cloud Object Statistics 
 
As object eligible pixels are sorted into cloud objects, object statistics are tabulated for 
use in the object filtering.  For each set of cloud objects (“beta objects” and “btd 
objects”), a set of statistics is generated.  These statistics are described below. 
 

3.4.2.1.3.1 “Beta Object” Statistics 

 
The statistics listed in Table 4 need to be generated in order to filter out false alarm “beta 
objects.” 
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Object Statistic Purpose 
Maximum value of 
εstropo(7.4 µm) 
[εεεεstropo(7.4 µµµµm)_max] 

If SO2 is present this variable is an indication of the strength of 
the SO2 absorption at 7.4 µm 

90th percentile value of 
εstropo(7.4 µm) 
[εεεεstropo(7.4 µµµµm)_p90] 

This variable is used in conjunction with the 10th percentile 
value of εstropo(7.4 µm) to infer information about the width of 
the εstropo(7.4 µm) distribution 

10th percentile value of 
εstropo(7.4 µm) 
[εεεεstropo(7.4 µµµµm)_p10] 

This variable is used in conjunction with the 90th percentile 
value of εstropo(7.4 µm) to infer information about the width of 
the εstropo(7.4 µm) distribution 

95th percentile value of 
βstropo(8.5/11µm) 
[ββββstropo(8.5/11µµµµm)_p95] 

The purpose of this metric is to determine if at least some 
pixels have very large values of βstropo(8.5/11µm) 

95th percentile value of 
βstropo(7.4/11µm) 
[ββββstropo(7.4/11µµµµm)_p95] 

The purpose of this metric is to determine if at least some 
pixels have very large values of βstropo(7.4/11µm) 

Number of pixels in the 
object that have a Local 
Radiative Center (LRC) 
pixel that meets the 
“beta object” criteria 
[lrc_count] 

This statistic is used to help eliminate false alarms that can 
occur at the edges of meteorological clouds 

Number of pixels in the 
object that have a 
εstropo(11 µm) > 0.0 
[εεεεstropo(11 µµµµm)_count] 

This metric is used to infer how many pixels in the object may 
contain “pure” SO2, which does not absorb at 11 µm 

Table 4: The object statistics needed to filter out false alarm “beta objects.”  The 
symbols used to denote the individual statistics is shown in bold in the first column. 

 

3.4.2.1.3.2 “Btd Object” Statistics 

 
The statistics listed in Table 5 need to be generated in order to filter out false alarm “btd 
objects.” 
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Object Statistic Purpose 
Maximum value of 
εstropo(7.4 µm) 
[εεεεstropo(7.4 µµµµm)_max] 

If SO2 is present this variable is an indication of the strength 
of the SO2 absorption at 7.4 µm 

95th percentile value of 
βstropo(8.5/11µm) 
[ββββstropo(8.5/11µµµµm)_p95] 

The purpose of this metric is to determine if at least some 
pixels have very large values of βstropo(8.5/11µm) 

95th percentile value of 
βstropo(7.4/11µm) 
[ββββstropo(7.4/11µµµµm)_p95] 

The purpose of this metric is to determine if at least some 
pixels have very large values of βstropo(7.4/11µm) 

Minimum value of the 
observed 8.5 – 11 µm 
brightness temperature 
difference 
[BTD(8.5-11 µµµµm)_Min] 

True SO2 clouds will have at least some pixels that have 
strongly negative values of BTD(8.5-11 µm)  

Table 5: The object statistics needed to filter out false alarm “btd objects.” The 
symbols used to denote the individual statistics is shown in bold in the first column. 
 
 

3.4.2.1.4 Cloud Object Filters 
The “beta objects” and “btd objects” are each separately filtered to eliminate non-SO2 
objects.  Each object that survives the filtering is considered an SO2 cloud, meaning that 
the SO2 detection mask is set to true (SO2 is present) for all pixels that compose the 
objects that are not filtered out.  Whether an SO2 cloud is detected using “beta objects” or 
“btd objects” or both does not matter, as long as it is detected in at least one of the objects 
sets.  A detailed description of the object filters is given in the following sections. 
 

3.4.2.1.4.1 “Beta Object” Filters 

 
The “beta objects” are subjected to five simple logical tests.  If all five tests are passed 
(return “true”), then all of the pixels in the object are deemed to contain SO2.  The logical 
tests are expressed in the table below.  All symbols used in the logical tests were defined 
previously (see Table 4 and Section 3.4.1).  The threshold values used in the logical tests 
were chosen based on the analysis of a set of training objects. 
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Test 
Number 

Test Logic 

1 IF  ((εstropo(7.4 µm)_max > 0.20) OR 
      (εstropo(7.4 µm)_max > 0.14 AND βstropo(8.5/11µm)_p95 > 2.16 AND 
       βstropo(7.4/11µm)_p95 > 2.16)) THEN 
  Result = true 

2 IF  ((βstropo(8.5/11µm)_p95 > 2.16) OR 
       (βstropo(8.5/11µm)_p95 > 1.60 AND εstropo(7.4 µm)_max > 0.30) THEN 
  Result = true 

3 IF  ((βstropo(7.4/11µm)_p95 > 2.16) OR 
       (βstropo(7.4/11µm)_p95 > 2.15 AND εstropo(7.4 µm)_max > 0.30) THEN 
  Result = true 

4 Let, ε_ratio = [εstropo(7.4 µm)_p90 - εstropo(7.4 µm)_p10] / εstropo(7.4 µm)_p90 
IF (ε_ratio > 0.25) THEN  
  Result = true 

5 Let, lrc_ratio = lrc_count / εstropo(11 µm)_count 
IF (lrc_ratio > 0.50) THEN  
  Result = true 

Table 6: The logical tests used to determine if a “beta object” is an SO2 cloud are 
shown.  If all five logical tests return “true,” then the object is deemed to be SO2; 
otherwise it is filtered out. 

 

3.4.2.1.4.2 “Btd Object” Filters 

 
The “btd objects” are subjected to four simple logical tests.  If all four tests are passed 
(return “true”), then all of the pixels in the object are deemed to contain SO2.  The logical 
tests are expressed in the table below.  All symbols used in the logical tests were defined 
previously (see Table 5 and Section 3.4.1).  The threshold values used in the logical tests 
were chosen based on the analysis of a set of training objects. 
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Test 
Number 

Test Logic 

1 IF  (εstropo(7.4 µm)_max > 0.20) THEN  
  Result = true 

2 IF  ((βstropo(8.5/11µm)_p95 > 2.15) OR 
       (βstropo(8.5/11µm)_p95 > 2.12 AND εstropo(7.4 µm)_max > 0.40) THEN 
  Result = true 

3 IF  (βstropo(7.4/11µm)_p95 > 2.16) THEN  
  Result = true 

4 IF (BTD(8.5-11 µm)_min < -5.0) THEN  
  Result = true 

Table 7: The logical tests used to determine if a “btd object” is an SO2 cloud are 
shown.  If all four logical tests return “true,” th en the object is deemed to be SO2; 
otherwise it is filtered out. 

3.4.3 Algorithm Output 
 

3.4.3.1 Product Output 
 
The ABI-SO2 derives the following ABI products listed in the F&PS. 

• SO2 Detection Mask [SO2 present = 1 or SO2 not present = 0] 
 
 

3.4.3.2 Quality Flag (QF) Output 
 
The ABI-SO2 produces quality flags.  Table 8 describes the SO2 detection QF flags. 
 
Byte Bit Name Values 
1 1 Overall QF 0 – High Quality 

1 – Low Quality 
1 2 Invalid Data QF 0 – High Quality 

1 – Low Quality 
1 3 SatZenith QF 0 – High Quality 

1 – Low Quality 
1 4-5 SO2 Loading 0 – Low Loading 

1 – Intermediate Loading 
2 – Heavy Loading 

Table 8: SO2 Detection Quality Flag (QF) description.  The Ash Detection QF Flags 
are bit packed byte variables.  The byte column identifies the byte number(s) the QF 
is stored in and the Bit column lists the bit(s) the flag encompasses within the 
byte(s).  The name of the each flag is included, along with possible values; the bold 
values are the initialized values. 
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3.4.3.3 Product Quality Information (PQI) 
 
The ABI-SO2 produces Product Quality Information (PQI).  Table 9 describes the PQI. 
 
 
Byte Bit Name Values 
1 1 Pixel is part of 

“Beta Object” 
0 – False 
1 – True 

1 2 Pixel is part of 
“BTD Object” 

0 – False 
1 - True 
 

Table 9: SO2 detection PQI Flag description.  The SO2 detection PQI Flags are bit 
packed byte variables.  The byte column identifies the byte number(s) the PQI is 
stored in and the Bit column lists the bit(s) the flag encompasses within the byte(s).  
The name of the each flag is included, along with possible values. 

 
 

3.4.3.4 Metadata 
 
The metadata produced by the ABI-SO2 are described in Table 10. 
 

Metadata Output 
Fraction of pixels that meet “Beta Object” membership criteria 
Fraction of pixels that meet “BTD Object” membership criteria 
Fraction of pixels detected as SO2 

Fraction of pixels with “low” SO2 loading 
Fraction of pixels with “intermediate” SO2 loading 
Fraction of pixels with “heavy” SO2 loading 

Table 10: A description of the SO2 detection metadata. 

 

4 TEST DATA SETS AND OUTPUTS 

4.1 Simulated/Proxy Input Data Sets 
 
As described below, the data used to test the ABI-SO2 consists of SEVIRI and MODIS 
observations.  Both SEVIRI and MODIS have observed several SO2 clouds.  The rest of 
this section describes the proxy and validation data sets used in assessing the 
performance of the ABI-SO2. 



 

 34

 

4.1.1 SEVIRI Data 
 
SEVIRI provides 11 spectral channels with a spatial resolution of 3 km and provides 
spatial coverage of the full disk with a temporal resolution of 15 minutes.  SEVIRI is a 
good proxy source for testing and developing the ABI-SO2.  The SEVIRI to ABI channel 
mapping is shown in Table 11.  Figure 8, shown below, is a full-disk SEVIRI image 
from 12 UTC on November 24, 2006.   SEVIRI data are readily available from the 
University of Wisconsin Space Science and Engineering Center (SSEC) Data Center. 
 
 
SEVIRI 

Band 
Number 

SEVIRI 
Wavelength 
Range (µµµµm) 

SEVIRI 
Central 

Wavelength 
(µµµµm) 

ABI Band 
Number 

ABI 
Wavelength 
Range (µµµµm) 

ABI 
Central 

Wavelength 
(µµµµm) 

5 5.32 – 7.15 6.20 8 5.70 – 6.60 6.15 
6 6.85 – 7.85 7.30 10 7.30 – 7.50 7.40 
7 8.30 – 9.10 8.70 11 8.30 – 8.70 8.50 
9 9.80 – 11.80 10.80 14 10.80 – 11.60 11.20 
10 11.00 – 13.00 12.00 15 11.80 – 12.80 12.30 

Table 11: The SEVIRI bands used to test the ABI SO2 detection algorithm is shown 
relative to the corresponding ABI bands. 
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Figure 8: SEVIRI RGB image from 12 UTC on November 24, 2006. 

 

4.1.2 MODIS Data

MODIS provides 36 spectral channels with a spatial resolution of 1 km and provides 
global coverage in low Earth orbit.  MODIS has observed many volcanic eruptions.  The 
MODIS to ABI channel mapping is shown in Table 12.  An example MODIS false color 
image is shown in Figure 9 

 

MODIS 
Band 

Number 

MODIS 
Wavelength 
Range (µµµµm) 

MODIS 
Central 

Wavelength 
(µµµµm) 

ABI Band 
Number 

ABI 
Wavelength 
Range (µµµµm) 

ABI 
Central 

Wavelength 
(µµµµm) 

27 6.535 – 6.895 6.715 8 5.70 – 6.60 6.15 
28 7.175 – 7.475 7.325 10 7.30 – 7.50 7.40 
29 8.400 – 8.700 8.550 11 8.30 – 8.70 8.50 
31 10.780 – 11.280 11.03 14 10.80 – 11.60 11.20 
32 11.770 – 12.270 12.02 15 11.80 – 12.80 12.30 
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Table 12: The MODIS bands used to test the ABI volcanic ash algorithm is shown 
relative to the corresponding ABI bands. 
 
 

 
Figure 9: MODIS RGB image from 14 UTC on May 5, 2008. 
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4.1.3 OMI Data 
 
With the launch of the Ozone Mapping Instrument (OMI) into the EOS A-train, the 
ability to monitor SO2 on a global scale increased significantly.  Currently, we are using 
OMI SO2 loading retrievals to validate the ABI-SO2.  OMI uses high spectral resolution 
ultra-violet (UV) measurements to retrieve the total column SO2 loading, and is sensitive 
to very small loadings (< 1 DU).  As such, OMI is much more sensitive to SO2 than the 
ABI.  An example OMI SO2 product is shown in Figure 10. 
 
 

 
Figure 10: The OMI SO2 loading product shows an SO2 plume associated with an 
eruption of Jebel al-Tair in Yemen on October 1, 2007. 

 

4.2 Output from Simulated/Proxy Inputs Data Sets  
 
The ABI-SO2 was tested on many SEVIRI and MODIS scenes.  Example SEVIRI results 
are shown in Figure 11 for an eruption of Nyamuragira and example MODIS results are 
shown in Figure 12 for an eruption of Kasatochi.  The SEVIRI full disk results show that 
the false alarm rate is very low, as the actual SO2 cloud is the only feature in the full disk 
that is flagged as SO2.  The SO2 clouds appear yellowish-green in the false color images, 
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and the SO2 detection results for both SEVIRI and MODIS closely match the location of 
the SO2 in the false color imagery. 
 
 

 
 
 

 

Figure 11: Example results from the ABI-SO2 are shown for a Met-8 SEVIRI 
observed eruption of Nyamuragira in central Africa on November 29, 2006 at 12:45 
UTC.  The full disk results are shown in the top row (false color on left, SO2 
detection in red on the right).  A zoomed in view is shown in the bottom row, 
including an estimate of the SO2 loading, which is stored in the quality flags. 
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Figure 12: Example results from the ABI-SO2 are shown for a Aqua-MODIS 
observed eruption of Kasatochi in the Aleutian Islands on August 11, 2008 at 22:05 
UTC.  The SO2 detection results are overlaid as white contours on a false color 
image on the left panel and the estimated SO2 loading is shown in the right panel. 

 
 

4.2.1 Precisions and Accuracy Estimates 
 
To estimate the precision and accuracy of the ABI-SO2, we will primarily compare the 
ABI results to the OMI (Ozone Monitoring Instrument) SO2 products.  OMI, which is on 
the Aura spacecraft, is a UV spectrometer that can detect SO2 loading of less than 1 DU, 
hence it is far more sensitive to the presence of SO2 than the ABI.  Given the sensitivity 
of the OMI, the ABI-SO2 probability of detection and probability of false alarm can 
readily be diagnosed by comparing to the official OMI SO2 product.  Another advantage 
of using OMI is that the total column SO2 amount is retrieved.  Thus, we can characterize 
the ABI-SO2 as a function of OMI SO2 loading.  One disadvantage of the OMI data is 
that the measurements are only valid during the day, but the ABI-SO2 only utilizes 
infrared channels (e.g. it works the same day and night) so this should not be an issue. 
 

4.2.1.1 OMI Analysis 
 
According to the F&PS, the ABI-SO2 must detect SO2 with a (Peirce-Hanssen-Kuipers) 
skill score of at least 0.70 when 10 DU or more of SO2 is present.  In order to determine 
the probability of false alarm and the probability of detection, and hence calculate a skill 
score, we co-located OMI SO2 retrievals and the ABI SO2 detection results from Aqua 
MODIS in time and space.  The OMI flies aboard the Aura spacecraft, which is in a very 
similar orbit as Aqua, so the time difference between the measurements is very small.  A 
total of 35 MODIS scenes (270,000 MODIS pixel match-ups) containing SO2 clouds 
were used in the validation analysis.  Prior to comparing the OMI and ABI-SO2 results, 
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the OMI quality flags were used to filter out low quality OMI retrievals.  Finally, the 
validation results were computed as a function of the OMI derived SO2 loading.  Those 
results are shown in the next section 

4.2.2 Error Budget
 
Figure 13 shows the ABI SO2 detection skill score as a function of the OMI SO2 loading.  
Over 270,000 data points went into this analysis.  The results indicate that the ABI-SO2 
achieves the required skill score of 0.70 when 11.5 DU or more of SO2 is present.  This is 
very close (within the OMI loading error bar) to the required 0.70 skill score when 10 DU 
or more of SO2 is present.  Prior to the 100% delivery of the ABI-SO2, several 
incremental improvements will be made, which should increase the skill score. 
 
 
 

 

Figure 13: The ABI SO2 detection skill score is shown as a function of the OMI SO2 
loading in blue.  The false alarm rate is shown in gray, and the required SO2 
detection skill score is shown in dashed red.  The required detection skill score only 
applies to SO2 loadings of 10 DU or greater.  This analysis was constructed using 
over 270,000 data points. 
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5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 
 
Prior to converting cloud emissivity to optical depth, the cloud emissivity must be 
checked to ensure that it is greater than 0.0 and less than 1.0 to prevent an illegal natural 
logarithm operation. 

5.2 Programming and Procedural Considerations 
 
The ABI-SO2 makes heavy use of clear-sky radiative transfer calculations.  Our current 
system computes the clear-sky atmospheric transmittances at low spatial resolution and 
with enough angular resolution to capture sub-grid variation path-length changes.  This 
step is critical, as performing clear-sky atmospheric transmittance calculations for each 
pixel requires extensive memory and CPU time, but does not produce significantly better 
scientific results.  The AIADD Document describes this procedure in detail. 
 
NWP data is heavily utilized in the ABI SO2 detection algorithm.  The algorithm can 
tolerate the use NWP data for forecasts ranging from 0 to 24 hours. 
 
The ABI SO2 detection algorithm can provide usable results out to a viewing angle of 80 
degrees (the F&PS minimum requirement is 70 degrees). 

5.3 Quality Assessment and Diagnostics 
 
It is recommended that clear sky radiance biases are regularly monitored and that the 
validation exercises described earlier are applied routinely.  Further, algorithm 
performance issues are best diagnosed by examining the β-ratios used to detect 
microphysical anomalies. 

5.4 Exception Handling 
 
Prior to use, the ABI-SO2 checks to make sure that each channel falls within the expected 
measurement range and that valid clear sky radiance and transmittance profiles are 
available for each channel.  The ABI-SO2 is only applied to a given pixel if all channels 
used in the algorithm contain valid data (according to the L1b calibration flags); 
otherwise the algorithm output is flagged as missing.  The science of the ABI-SO2 
algorithm does not allow for a graceful degradation of the products at this time.  The 
algorithm, however, can tolerate the use NWP data for forecasts ranging from 0 to 24 
hours. 
 

5.5 Algorithm Validation 
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We recommend that manual analysis along with the OMI analysis shown in Section 4.2.2 
be adopted as the main validation tool.  Since hyperspectral UV measurements, like those 
from OMI, are needed to monitor the stratospheric ozone layer, these measurements are a 
very high priority in the international community and will be available for the foreseeable 
future. 
 

6 ASSUMPTIONS AND LIMITATIONS 
 
The following sections describe the current limitations and assumptions in the current 
version of the ABI-SO2 
 

6.1 Performance 
 
The following assumptions have been made in developing and estimating the 
performance of the ABI-SO2.  The following lists contain the current assumptions and 
proposed mitigation strategies. 
 

1. NWP data of comparable or superior quality to the current 6 hourly GFS 
forecasts are available.   (Mitigation: Use longer-range GFS forecasts or 
switch to another NWP source – e.g. ECMWF). 

 
2. Top-of-atmosphere clear sky radiances are available for each pixel and 101 

level profiles of clear sky atmospheric transmittance and radiance are 
available at the NWP data horizontal resolution. (Mitigation: Use reduced 
spatial resolution top-of-atmosphere clear sky radiances.  The profiles of 
transmittance and radiance must be present at, at least, the NWP spatial 
resolution and 101 vertical levels). 

 
3. All of the static ancillary data are available at the pixel level. (Mitigation: 

Reduce the spatial resolution of the surface type, land mask and or coast 
mask). 

 
4. The processing system allows for processing of multiple scan lines at once for 

application of important spatial analysis techniques.  (Mitigation: No 
mitigation is possible). 

 
In addition, the clear sky radiance calculations are prone to large errors, especially near 
coastlines, in mountainous regions, snow/ice field edges, and atmospheric frontal zones, 
where the NWP surface temperature and atmospheric profiles are less accurate.  The 
impact of these errors on the SO2 detection depends on the cloud optical depth.  For 
optically thick clouds (infrared optical depth of about 1.0 or greater), these errors have a 
small impact on the calculation of the effective absorption optical depth ratios since the 
difference between the observed and black cloud radiance approaches zero as the cloud 
optical depth increases.   This is not the case for optically thin clouds, where inaccurate 
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NWP data can have serious impacts.  The ABI-SO2 utilizes the Local Radiative Center 
(LRC) (see Section 3.4.1.4 for details) concept to minimize these impacts, but 
improvements in NWP fields should lead to additional improvements in the ABI-SO2. 
 

6.2 Assumed Sensor Performance 
 
We assume the sensor will meet its current specifications.   However, the ABI-SO2 will 
be dependent on the following instrumental characteristics. 
  

• Unknown spectral shifts in some channels will cause biases in the clear-sky RTM 
calculations that may impact the performance of the ABI-SO2.  Clear sky 
radiance biases need to be monitored throughout ABI’s lifetime. 

 

6.3 Pre-Planned Product Improvements 
 
We expect in the coming years to focus on the following improvements. 

6.3.1 Incorporation of second water vapor channel 
 
The 7.0-µm water vapor channel, which is not very sensitive to SO2, can be compared to 
the 7.4-µm water vapor channel, which is sensitive to SO2.  This comparison may result 
in improvements since both channels have somewhat similar weighting functions. 
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