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1 INTRODUCTION

Visibility is the greatest horizontal distance at which seteobjects can be seen and
identified. Reduced visibility often occurs duripgriods of heavy rain and snow and also
occurs when sunlight is scattered or absorbedrgstheric particles. Visibility is a
leading safety factor in determining aircraft flighles, pilot certification and aircraft
equipment required for taking off or landing. Fedekviation Regulations require that
aircraft operations at airports must be conductetkuInstrument Flight Rules (IFR)
when the prevailing visibility is below three statoniles (approximately 5km). In
addition to these important safely consideratioeguced visibility due to regional haze
also obscures the view in our nation’s parks. TleaCAir Act authorizes the United
States Environmental Protection Agency (EPA) tdgwbvisibility, or visual air quality,
through a number of different programs. The EPAégjiBnal Haze Rule calls for state
and federal agencies to work together to improgéility in national parks and
wilderness areas such as the Grand Canyon, Yosdhgt&reat Smokies and
Shenandoah.

Fog droplets and haze particles are small enougbatber and absorb sunlight, leading to
reduced visibility. The meteorological definitiohfog is a cloud (stratus) which has its
cloud base on or close to ground, and reducesilitigito less than 1 kmHaze is caused
when sunlight encounters tiny pollution particleghe air. More pollutants mean more
absorption and scattering of light, which redudegbility. The attenuation of light due to
scattering and absorption by atmospheric partislesferred to as extinction. In general,
scattering is the primary cause of light extinctaord therefore visibility reduction. The
smallest pollution particles (< 2.5microns) scastienlight more efficiently then larger
particles. Haze is primarily composed of sulfatgamic, elemental carbon, and nitrate
aerosols. Sulfur dioxide (SO2) emissions from pomlants, nitrogen oxide (NOXx)
emissions from motor vehicles, and secondary ocgagiosols of biogenic and wildfire
origin contribute the most to regional haze events.

The GOES-R Advanced Baseline Imager (ABI) visipitétrieval will provide a satellite
based estimate of boundary layer visibility to aegirexisting measurements from
Automated Surface Observing System (ASOS) extinaieasurements. The ability of
ABI to continuously monitor visibility over the ctnental US will allow smoke and fog
related transportation hazards to be monitore@ahtime, providing valuable
information to the Aviation Weather Center (AWChtidnal Weather Service (NWS),
Federal Aviation Administration (FAA), and Departmi@f Transportation (DOT). The
ability of GOES-R to continuously monitor visibititn remote regions of the US will
improve visibility monitoring within our Nationald?ks and provide useful information
to the regional planning offices responsible foveleping mitigation strategies required
under the EPA’s Regional Haze Rule.

1.1 Purpose of This Document

The primary purpose of this algorithm theoreticasis document (ATBD) is to provide a
high level description of the algorithms required the visibility product from the
Advanced Baseline Imager (ABI) onboard the GOESeRes of NOAA geostationary
meteorological/environmental satellites.



1.2 Who Should Use This Document

The intended users of this document are those whongerested in understanding the
theoretical basis of visibility product and how tse the product in a particular
application. It provides information useful to angomaintaining or modifying related
algorithms and software systems.

1.3 Inside Each Section

This document consists of the following main settio

* Product Overview: provides relevant details of the ABI and a bdes§cription of
the product generated by the algorithm.

* Product Requirement Description: provides the detailed requirements for the
visibility algorithm and software system.

* Algorithm Description: provides the details for product processing aoatli
input/output parameters and key algorithms.

* Test Data Sets, and Output: provides a description of the test data sets tsed
characterize the performance of the algorithmsauradity of the data products. It
also describes the results using test data sets.

* Practical Considerations: provides a description of the issues involving th
software system programming, quality assessmeagndstics, and exception
handling.

* Assumptions and Limitations: provides an overview of the current assumption
and limitations of the approach and a plan for cesting these limitations with
further algorithm development.

1.4 Related Documents

The visibility retrieval uses ABI Aerosol Opticakpth (AOD), Cloud Optical Thickness
(COT), fog/low cloud probability and thickness retals to estimate surface visibility.
Readers should refer to Suspended Matter/Aerostit@Depth and Aerosol Size
Parameter, Low Cloud and Fog, and Daytime Cloutic@lpand Microphysical
Properties (DCOMP) Algorithm Theoretical Basis Do@nts (ATBDs) for further
discussion of the visibility input products. The E®R ABI Ground Segment (GS)
Functional and Performance Specification (F&PS)udeent provides a summary of the
GOES-R ABI visibility specifications.



1.5 Revison History

The first draft of this document (dated Septemlizr2D08) was created by Tim Schmit
of NOAA/NESDIS/STAR, Wayne Feltz of CIMSS, and Briairce NOAA/NESDIS/
STAR and was reviewed by Shobha Kondragunta NOAANE/STAR. However, this
was prior to any algorithm development. Significarogress has been made since this
first draft and is included in this updated versitig intent is to accompany the delivery
of the version 1.0 algorithm to the GOES-R AWG Algan Integration Team (AIT).



2 PRODUCT OVERVIEW

This section describes the visibility product ahd tequirements it places on the system.

2.1 Product Generated

The visibility product is produced using a numbgother ABI products. Other products
include the low-cloud/fog probability and depthras®l optical depth (AOD), and cloud
optical thickness (COT). It is important that thisibility algorithm obtain mature
AOD/COT/fog derived products for robust testing amghlementation. Fog detection is
typically associated with a visibility of less thdnkm; while haze is associated with
visibilities from 2-30 km. Heavy smoke or dust pksnmay be associated with
significantly lower visibilities. To determine tliange of visibilities associated with haze
the visibility product will use the ABI Aerosol Gpal Depth (AOD) retrieval. AOD is
the degree to which aerosols prevent the transonigsi light at a particular wavelength
and is the integrated extinction coefficient ovevestical column of unit cross section.
The extinction coefficient is the fractional dejdet of radiance per unit path length.
Under haze conditions the visibility algorithm mbstable to relate AOD (at a particular
wavelength) to horizontal visibility within the platary boundary layer. Primary
auxiliary inputs (in addition to AOD) are bounddayer depth from a model analysis.
Under low cloud and fog conditions the visibilitlgarithm must be able to relate visible
COT to horizontal visibility within the low cloudrdog layer. Primary auxiliary inputs
(in addition to COT) are fog probability and fogpdle.

2.2 Instrument Characteristics

ABI has 16 spectral bands designed for a variegpplication purposes. In fact, the ABI
band 1 was added to the ABI to support aviatioravi&nhanced visibility product. Table
2-1 summarizes the instrument central wavelengffatial resolution, and product
characteristics. fie instrument has two basic modes. One mode istleay 15 minutes
ABI will scan the full disk (FD), plus continentblnited States (CONUS) 3 times, plus a
selectable 1000 km x 1000 km mesoscale area e@esgnds. The second mode is that
the ABI can be programmed to scan the FD iterativBhe FD image can be acquired in
approximately 5 minutes (Schmit et al. 2005).

Band Central Spatial Product Used in visibility
N Waveength Resolution product
umber
(pm) (km)

1 0.47 1 aerosol X

2 0.64 0.5 aerosol X

3 0.86 1 - X

4 1.38 2 clouds X

5 1.61 1 snow X

6 2.26 2 - X

7 3.9 2 fog X




8 6.15 2 clouds X
9 7.0 2 clouds X
10 7.4 2 clouds X
11 8.5 2 - X
12 9.7 2 ozone X
13 10.35 2 surface X
14 11.2 2 surface X
15 12.3 2 surface X
16 13.3 2 clouds X
Table 2-1 GOES-R ABI instrument characteristice @patial resolution reflects the sub-
point value).

The visibility product could be on three scales: NOC5, FD, and mesoscaldhe
performance of the product is sensitive to any ienggartifacts or instrument noise,
calibration accuracy, and geolocation accuracyyelsas the quality of the intermediate
products.
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3 PRODUCT REQUIREMENT DESCRIPTION

The visibility requirements are summarized basedtloem GOES-R Series Ground
Segment (GS) Functional and Performance Speciticdf&PS) (NOAA/NASA 2008).
The software system that generates routine CMIP steeet the following requirements:

Threshold
Geographic
Coverage/Conditions FD FD
Primary Instrument ABI
Prioritization 02
Vertical Resolution N/A
Horizontal Resolution 10 km
CIeaLS]n)sz 30 unde_r_ the
Moderate (10 km c]?nldltlons
Measurement Accuracy | < Vis < 30 km) o! clear up _C_Off(—_:‘Ct
, through classification 80%
Low (ZOkizns) VIS | Gouds of
< 10 km);
Poor (vis < 2 km) only layer
Refresh Rate/ 60 mi .
. min 5 min
Coverage Time
M apping Accur acy 5 km 5 km -
Data L atency 806 sec 806 sec -
Temporal Coverage
Qualifier Day
Product Extent Quantitative out to at least 70 degrees LZA and
Qualifier qualitative at larger LZA
Cloud Cover Clear conditions down to feature of interest asged
Conditions Qualifier with threshold accuracy

Table 3-1 Visibility Requirements.
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4 ALGORITHM DESCRIPTION

This section describes visibility software systempbgessing outline, input/output
parameters, and key algorithms at the current lef/@haturity (will be improved with
each revision).

4.1 Overview

Visibility is the greatest horizontal distance at which seteobjects can be seen and
identified. Reduced visibility often occurs duripgriods of heavy rain and snow and also
occurs when sunlight is scattered or absorbedrgpstheric particledzog droplets and
haze particles are small enough to scatter andfalsalight, leading to reduced
visibility. The meteorological definition of fog & cloud (stratus) which has its cloud
base on or close to ground, and reduces visiltditgss than 1 knHaze is caused when
sunlight encounters tiny pollution particles in tie More pollutants mean more
absorption and scattering of light, which redudegbility. The attenuation of light due to
scattering and absorption by atmospheric partislesferred to as extinction. In general,
scattering is the primary cause of light extinctéord therefore visibility reduction.
Visibility is inversely proportional to extinctiowhich is a measure of attenuation of the
light passing through the atmosphere due to thitestay and absorption by aerosol
particles.For measurement of visibility in the daytime, Kosséder's Law [Kaufman
and Fraser, 1983] is used:

V =3.96 (1)

where V is the visibility (in km), and is the extinction coefficient (kif). The extinction
coefficient @) relates the intensity (I) of light transmitted tagh a layer of material with
thickness (x) relative to the incident intensity) @ccording to the inverse exponential
power law that is usually referred to as the Bemmbert Law:

| = 1ge™ (2)

Optical depthr is definedasox. Expressing visibility in terms af gives:
V = 3.9/@/x) (3)

Equation (3) forms the theoretical basis for theESR ABI Visibility algorithm.

Equation (3) shows that visibility is inversely postional to optical depth divided by the
thickness of the material layer. No legacy algonitkxists relating satellite derived
AOD/COT to boundary layer visibility measuremerdswever, feasibility studies have
been conducted using ground based AOD measurenkatesson et al. [1981] compared
6 years (August 1969-July 1975) of sunphotometeasmeements of decadic turbidity at
the Environmental Protection Agency (EPA) Resedirtaingle Park (RTP) Laboratory
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near Raleigh, NC with observer estimates of vigibitom the Raleigh Durham airport
(RDU). Decadic turbidity multiplied by a factor 8f3 is equal to the aerosol optical
depth. They considered four visibility classes raggrom <6, 7-8, 9-10, and >11 miles.
Their primary conclusion was that there was a puoced increase in turbidity for
visibility < 7 miles. Monthly correlation coefficits between turbidity and visibility
where large during the summer (-0.66 in June arkD- July) and small during the
winter (-0.02 in January and -0.03 in February)wdweer, when RDU visibility exceeded
7 miles observers tended to report 10 or 12 milebility exclusively. This would tend
to reduce the monthly correlation coefficientshie tinter since mean turbidities are
lowest during this time period. Kaufman and Fr4$683] used correlations between
transmissometer measurements of aerosol optic#h depol nepholometer measurements
of aerosol volume scattering coefficients [Charlsbal., 1969] to assess the feasibility
of using satellite based AOD measurements to prediface visibility. They compared
inverse visibility (V') measured at Baltimore, MD and Dulles airport$w#ioD
measurements at Goddard Space Flight Center (G@&HD)y 1980 and 1981. GSFC is
40 km south of Baltimore and 60 km northeast ofl@ulThey found strong correlations
between V* at Baltimore and Dulles in both 1980 and 19816@8d 0.91, respectively).
They found good correlations between GSFC AOD an@MBaltimore and Dulles
during 1980 (0.85 and 0.84, respectively) but anbderate correlations during 1981
(0.51 and 0.58, respectively).

From Equation (3), the ABI Visibility uses retrie@erosol Optical Depth (AOD) to
estimater under clear-sky conditions and uses retrieved COptical Thickness (COT)
to estimata under cloudy conditions when Fog or Low Clouds hiaeen detected. The
ABI Visibility algorithm uses NWS Planetary Boungldrayer (PBL) depth to estimate x
under clear-sky conditions and uses retrieved hoglaw Cloud depth to estimate x
under cloudy conditions when Fog or Low Clouds hagen detected. Measurement
requirements dictate the need to distinguish betw€tear (vis> 30 km), Moderate (10
km < Vis < 30 km); Low (2 knx vis < 10 km); Poor (vis < 2 km). A “blended” retval
approach is adapted. The blended visibility retries constructed using a weighted
combination of the non-bias corrected and biasecbed visibility estimates for both
aerosol and low-cloud/Fog visibilities. The comliioa of blended aerosol and blended
fog visibility estimates is referred to as the “ged” visibility product.

Bias correction look-up tables (LUT) for aerosotidag/low cloud visibilities are
obtained through statistical analysis of histori&8IOS visibilities versus satellite based
aerosol and fog/low cloud visibility estimatesthe Version 1.0 ABI aerosol visibility
algorithm the LUTs are based on Version 5 MODIS A@Dievals obtained from the
NASA Earth Observing System Data and Informatiost&y (EOSDISarchives and
NOAA Global Forecasting System (GFS) Planetary Blauy Layer (PBL) depths
obtained from the NOAA Comprehensive Large Arrajadatewardship System
(CLASS) archive. Version 1.0 ABI fog/low cloud Mgty algorithm LUTs are based on
GOES Fog/Low Cloud Optical Depths (COT) and Fog/l@wud depth retrievals
computed using the GOES-R AWG Cloud Team’s GEOC/RMmEwork. Optimal
weighting between non-bias corrected and bias ctadevisibility estimates for aerosol
and fog/low cloud visibility is determined basedassessment of required categorical
accuracy (percent correct classification), requpegtision (standard deviation of

13



categorical error), Heidke Skill Score (fractiomaprovement relative to chance), and
false alarm rate.

4.2 Processing Outline

Figure 4-1 provides a high level flowchart of thBIAvisibility algorithm. For each pixel
either aerosol or fog/low cloud retrievals are gassdepending on whether clouds are
present. If clouds are not present then a “firgsgll non-bias corrected aerosol visibility
is computed using Equation (3) and used to determvimat visibility classification (Clear,
Moderate, Low, Poor) should be used in the aerdddl to compute the bias-corrected
aerosol visibility. The blended aerosol visibilisycomputed based on a weighted average
of the first guess and bias corrected aerosolilityilestimates. If clouds are present an
additional check is performed to determine if fog/Iclouds are present using the
fog/low cloud probability product. If fog/low closdare present then a “first guess” non-
bias corrected fog/low cloud visibility is computesing Equation (3) and used to
determine what visibility classification (Clear, Bierate, Low, Poor) should be used in
the fog/low cloud LUT to compute the bias-corrediegl/low cloud visibility. The
blended fog/low cloud visibility is computed baseda weighted average of the first
guess and bias corrected fog/low cloud visibilgyirates. Finally, the aerosol and
fog/low cloud visibility retrievals are combined pooduce a final “merged” visibility

retrieval.
L Algorithm Dependences:
ABI Visibility Start Fog-low cloud detection

Fog-low cloud thicknes

/ Input From Framework / Fog-ow cloud probability
Aerosol Optical Depth (AQOD)
(ABI ADD, Low CloudiFog products, COT, NWP PB Cloud Dptical Thickness (COT)

¥

o : . Ancillary Data:
Initialize variables and pointers Aerosol regression coefficients
¥ {AV, BY)
Read AOD and COT ;cég) regression coefficients (AC,
regression coefficients (AV, BY, AC,BC NWP Planetary Boundary Layer
¥ Depth (PBL)
[
l For each pixel in segment }
| i -
N Yes 8
< Cloud? a
o
!
Compute first guess aerosol visibility: Compute first quess fog visibility: Foa.l loud? &
Vis_0=39/(AODIPBL) Vis_0=3.9/(COTiFog thickness}) 0g-low clouds
¥ ¥
Determine first guess aerosol visibility Determine first guess fog visibility
Classification (c) Classification (c)
¥ ¥
Compute aerosol visibility regression: Compute fog visibility regression:
Vis_1=AV(c,month)+BV{c,month)*Vis_0 | | Vis_1=AC(c,month}+BC(c,month)*Vis_0
i %
Compute blended aerosol visibility: Compute blended fog visibility: -
Vis=0.4"Vis_0+0.6"Vis_1 Vis=0.4"Vis_0+0.6"Vis_1 ABI Visibility End
1 ]

X

/ Output to Framework /4 Nullify pointers and deallocate memory

Figure 4-1 High level flowchart for generating ‘idity.
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4.3 Algorithm Input

The ABI Visibility algorithm uses input productsanother static and dynamic ancillary
data. The input to the ABI Visibility algorithm ihales the following ancillary data:

» ABI Dynamic Data: Cloud Mask, Cloud Optical Thidss, Aerosol Optical Depth,
Fog and Low Cloud Probability, Fog and Low Cloudobe

* Non-ABI Static Data: Aerosol and Fog/Low Cloud Vaiity Bias LUT
* Non-ABI Dynamic Data: NWP planetary boundary lagiepth

Geolocation information and view zenith and relat@zimuth angles are extracted from
the rebroadcast data stream. In Version 1.0 oABieVisibility algorithm the aerosol
and fog/low Cloud LUTs include 12 monthly offseidascale factors for each of the 4
visibility categories for both aerosol and fog/loleud visibility retrievals.

4.4 Key Algorithms Description

441 Aerosol Product

The first step in constructing the aerosol LUT ilves collocation of raw (one-second)
ASOS extinction measurements with Version 5 MODISDAand 12hr GFS forecasted
PBL for 2007-2008. ASOS visibility sensors meadorevard scattering of light in a
mid-visible wavelength (550 nanometers) and converimeasured scattering to Sensor
Equivalent Visibility using Koschmieder’s Law. Atab of 93,873 ASOS/MODIS
coincident pairs were identified and used in subsagstatistical analysis. Figure 4-2
shows categorical histograms of the coincident Aa@&first guess MODIS aerosol
visibility derived using Equation (3). The firstggs MODIS aerosol visibility tends to
overestimate the frequency of Poor and Low vidipitiasses resulting in a 58%
categorical success rate for 2007-2008 ASOS cantipairs. This overestimate of low
and poor visibility relative to ASOS is most likedgsociated with increase in relative
humidity (RH) at the top of the planetary boundaner (PBL) under stable conditions.
Increased RH leads to increased aerosol extindtieto hydroscopic growth of
hydrophilic aerosols. Higher aerosol extinctionamtée top of the PBL lead to
overestimates in the frequency of Low and Poobiligy relative to ASOS since it
measures surface visibility.
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» rASOS MOD]S Visbility Categores: —1
| 1t Clear:  vis>30km 1
| 2 Moderate: 10kmevie<30km 1
3 Low: Kmevis<10km
10% 4P0OIL VS<2Km
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Figure 4-2Categorical Histogram (on-bias corrected MODI@ed) ant ASOS (green)
aerosol visibility for 20072008 coincident pairs.

Linear regression was performed to determine affd@as) and scale factor (slope)
best estimate of ASOS visibility for each visilyilitategory (clear, moderate, low, po
and month usingistorical (200-2008) ASOS/MODISoincident pair. This is referred
to as “biascorrected” aerosol visibili. Figure 4-3shows categorical histograms of -
coincident ASOS andias correcteMODIS aerosol visibilities. Thbias correcte:
MODIS aerosolisibility tends to undeestimate the frequency Bborand Low visibility
classedut the categorical success rate has increas78% for 20072008 ASOS
coincident pairs.
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Viebility Categones:

1 Clear:  vis»3ckm

2 Modsrate: 10km<vie<30km
3 Low: Kmevis<10km
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“EASOS MODIS
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Count
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Figure 4-3Categorical Histogram (bias corrected MODIS (red) a#®dBOS(green)
aerosol visibility for 20072008 coincident pairs.

Heidke Skill scoregBrier and Allen, 1952and False Alarm ratg®Ison, 1962)were
calculated for the nobtas corrected and bias corrected aerosol vigilfdit each
visibility category usin@007-2008 coincident pairgdeidke Skill scores measure t
fractional improvement in skill relative to char Results are summarized in Tes 4-1
and 4-2. They show thathile bias correctiomeduces false alarm rates for Modere
Low, and Poor aeroswlsibility bias correction alsreduces predictive skill for all
classes.

Heidke Skill Score (Hit Rate) for MODI S aer osol visibility

Visibility Category Non-Bias Corrected Bias Corrected
1 (Clear) 0.260837 0.128602

2 (Moderate) 0.130284 0.111972

3 (Low) 0.0615632 0.00000

4 (Poor) -0.000806477 0.00000

Table 441: Heidke Skill Scores for coincident ASOS and MGINor-Bias and Bias
Corrected aerosol visibility during 20-2008.

17




False Alarm Rate for MODI S aerosol visibility

Visibility Category Non-Bias Corrected Bias Corrected
1 (Clear) 0.113158 0.210274

2 (Moderate) 0.702888 0.400554

3 (Low) 0.958069 NA

4 (Poor) 1.00000 NA

Table 4-2: False Alarm Rate for coincident ASOS BI@DIS Non-Bias and Bias
Corrected aerosol visibility during 2007-2008.

The Heidke Skill Score tests show that while thesldorrection results in the highest
categorical success rates it results in a reduatipnedictive skill. This points to the
need to develop a “blended” aerosol visibility ietal that is a weighted combination of
the non-bias and bias corrected aerosol visikaiglymates. Optimal weighting for the
blended aerosol visibility retrieval is determirtgabed on assessment of Heidke Skill
Score (fractional improvement relative to chaneey false alarm rates.

Heidke Skill Score and False Alarm rates were dated for each visibility category
using the 2007-2008 coincident pairs. Weightingsvben the non-bias and bias
corrected aerosol visibility estimates varied b§dfdom 0% bias corrected to 100% bias
corrected visibilities. Figure 4-4 shows HeidkelSBcores and Figure 4-5 shows False
Alarm rates verses the percentage of the biasated@erosol visibility for each

visibility class. Results of Heidke Skill tests aRalse alarm rates show that a 60% bias
corrected weighting resulted in the largest improget relative to chance for both Clear
and Moderate aerosol visibility and minimizes fadetections for Low aerosol visibility.
Based on these tests, the Version 1.0 ABI aerasiikty blended retrieval uses a 40/60%
weighting of the non-bias and bias corrected aénosibility estimates.
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2007-2008 MODIS vs ASOS Visibility Statistics
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Figure 4-4: Resultef Heidke Skill Score tests for aerosol visibilgg a function of th
percentage bias corrected for each visibility ¢
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Figure 45: Results of False Alarm Rate tests for aerosibiity as a function of th
percentage bias corrected for eaisibility class.



Figure 4-6shows categorical histograms of the coincident A&@dblendecMODIS
aerosol visibilities. ThélendecMODIS aerosol visibility improves the estimates of L
visibility but still tends to undestimatethe frequency of Poor visibility classes. 1
categorical success rate of the blended aerosbllitisretrieval is 75%for 2007-2008
ASOS coincident pairs.

ID‘;‘E—ASOS MODIS ‘ Vishility Caisgo.fiss: ! —1
[ 1 Clear:  vies>30km ]
[ 2 Moderate: 10km<vis<30km 1

3 Low: Fmevisc10km

10° 4 Poor:  vE<2km

% cofrect (absolute) - 758837
Mean categorical error - 0.0142084

Computed Precision = 0.500387

Count

Vishilty Category

Figure 4-6Categorical Histogram (blended MODIS (red) andSOS(green) aerosol
visibility for 20072008 coincident pai.

4.4.2 Low cloud/fog Product

The first step in congicting the fog/low clou LUT involves collocation of raw (ol
second) ASOS extinction measurements \GOES fog/low cloud retrievafor 2007-
2008. A total 0fLl532 coincidenASOS/GOES&oincident pairs were identified and us
in subsequent statistical analysGOES data was used as proxy datgenerate th
Version 1.0 fog/low cloud LUT since the ABI fog/losloud algorithm has bee
implemented within the CIMSS GEOCAT framork and GEOCAT can not use MOD
proxy data at the time of this draft ATBCFigure 4-7shows categorical histograms
the coincident ASS and first guess GOES fog/low clovisibility derived using
Equation (3). Te first guess GOES fog/low clc visibility falls exclusively within the
Poor visibility classesulting¢in a 4.P6 categorical success rate for 2-2008 ASOS
coincident pairsThis overestimatin the frequency opoor visibility relative to ASOS i
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due to a relatively high minimum COT within the GE-R ABI cloud optical anc
microphysical retrieval when GOES proxy data isduJénis overestimate also likely to
beassociated with increase in relative humidity (RiHdhe top of the planetary bouny
layer (PBL) under stable conditiorFog anddw Clouds are more likely to form near 1
top of the PBL and may not reach surf,

10000 - ; - - ‘ : e
f VEbilily Categories:
ASOS GOES 1 Clear:  vis>30km
' 2 Moderate: 10km<vis<30km

3 Low: Hm<vis<10km

1000+ 4 Poor: vE<km

% Cofrect (asolute)
egoncal eror
Precision
1 2

- - -
Vishilty Category

=

Count

Figure 4-7Categorical Histogram of n-bias corrected GOEed) ant ASOS (green)
fog/low cloudvisibility for 2007-2008 coincident pairs.

Linear regression was performed to determine affd@as) and scale factor (slope)
best estimate of ASOS visibility for each visilyilitategory (clear, moderate, low, po
and month using historical (2C-2008) ASOS/GOES coincident paifis is referred to
as “bias correctedfog/low cloudvisibility. Since all of the first guess GOES fog/Is
cloud visibility retrievals fell within the Poor sibility category the offsets and sci
factors for the Clear, Moderate and Low vility classes are equal to z in the Version
1.0 ABI visibility fog/low cloud LUT. Figure 4-8hows categorical histograms of
coincident ASOS andias correcte GOES fog/low cloud visibilitiesThebias corrected
GOES fog/low cloudrisibility improves the prediction d@@lear, Moderate, and Lo
visibility classes but now underestimates the fegmy of Poor visibility. Categorici
success rates haurecreased t49% for 20072008 ASOS coincident pa.
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Figure 4-8Categorical Histogram (bias corrected GOES (red) aA80S(green)
fog/low cloudvisibility for 2007-2008 coincident pairs.

Heidke Skill scoresind False larm rates were calculated for the naias corrected ar
bias corrected fog/low cloud visibility feach visibility category ursg 200°-2008
coincident pairsResults are summarized in Tabl-3 and 44. They show thewithout
bias correction the GOES fog/low cloud visibilitstienates have no skill relative
chance. Since all of the n-bias corrected GOES fog/low cloud vidityi estimates fal
into the Poor visibility class the False Alarm Rfethe nor-bias corrected GOE
fog/low cloud visibility is not applicable (NABias correctionncreases predictive skill
for all classes but also increases false alarns atee ther classes are now predict
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Heidke Skill Score (Hit Rate) for GOES fog/low cloud visibility

Visibility Category Non-Bias Corrected Bias Corrected
1 (Clear) 0.00000 0.137946

2 (Moderate) 0.00000 0.0436189

3 (Low) 0.00000 0.0274707

4 (Poor) 0.00000 -0.00254687

Table 4-3: Heidke Skill Scores for coincident AS@® GOES Non-Bias and Bias
Corrected fog/low cloud visibility during 2007-2008

False Alarm Rate for GOESfog/low cloud visibility

Visibility Category Non-Bias Corrected Bias Corrected
1 (Clear) NA 0.375000

2 (Moderate) NA 0.513781

3 (Low) NA 0.578947

4 (Poor) 0.953003 1.00000

Table 4-4: False Alarm Rate for coincident ASOS &WES Non-Bias and Bias
Corrected fog/low cloud visibility during 2007-2008

Following the same procedure used to construdblgreded aerosol visibility retrieval we
construct a “blended” fog/low cloud visibility regwal using a weighted combination of
the non-bias and bias corrected fog/low cloud wigftestimates. Optimal weighting for
the blended fog/low cloud visibility retrieval itrmined based on assessment of
Heidke Skill Score (fractional improvement relatieechance), and false alarm rates.
Heidke Skill Score and False Alarm rates were dated for each visibility category
using the 2007-2008 coincident pairs. Weightingsvben the non-bias and bias
corrected fog/low cloud visibility estimates varieg 10% from 0% bias corrected to 100%
bias corrected visibilities. Figure 4-9 shows Heidkill Scores and Figure 4-10 shows
False Alarm rates versus the percentage of thecbrascted fog/low cloud visibility for
each visibility class. Results of Heidke Skill geshowed that a 50% bias corrected
weighting resulted in the largest improvement redato chance. False alarm rates show
that a 70% bias correction minimizes false detestior Low visibility. Based on these
tests, the Version 1.0 ABI fog/low cloud visibilibjended retrieval uses a 40/60%
weighting of the non-bias and bias corrected fag/toud visibility estimates. This
balances the improvement in Heidke Skill and Falaem rates under Low visibility
conditions.
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Heidke Skill Score

2007-2008 GOES vs ASOS Visibility Statistics
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Figure 49: Results of Heidke Skill Score tests for fog/loud visibility as a functiol
of the percentage bias corrected for each visjldss
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Figure 410: Results of False Alarm Rate tests for fog/ldeud visibility as a finction
of the percentage bias corrected for each visjldss

24



Figure 441 shows categorical histograms of the coincide®®& and blended GOE
fog/low cloud visibilities. The blendeGOES fog/low cloudiisibility improves the
estimates oModerate anLow visibility but underestimatethe frequency oClear and
Poor visibility classesl'he categorical success rate of blended fog visibility estimate
is 44.5% for 20072008 ASOS coincident pa.

1000077 T T J T ‘ T T T T —
VEbiiity Categories:

ASOS GOES 1 Clear:  vis>30km

3 Low: Hmevis<10km

1000 4 Poor: viE<Zkm

% cofrect (gsolute)
egoncal error

100

Count

Vishilty Category

Figure 4-11Categorical Histogram blended GOES (red) adSOS(green) fog/low
cloud visibility for 20072008 coincident pai.

443 Merged Aerosol and Fog/Low Cloud Product

The combination of blended aerosol and blendedrigigility estimates is referred to .
the “merged” visibility produt. Figure 4-1%hows categorical histograms of -
coincident ASOS andherged MODIS aerosol aiGOES fog/low cloucblended
visibilities. A 40/60% nor-bias/bias corrected weighting is used in both bdendsibility
estimatesThe merged aerosol pllow-cloud/fog visibility retrieval results in a 75.4
categorical success eafior 200-2008 coincident pairs. The merged aerosol low-
cloud/fog visibility retrieval results captures tliequency of clear and moder:
visibility very well but underestimates the freqagmof low and poor visibility.
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Figure 4-12Categorical Histogram (Merged MODIS/GOES (red) a ASOS (green)
aerosol plus fog/low clouvisibility for 2007-2008 coincident pairs.

Heidke Skill scoresnd False larm rates were calculated fttre merged aerosol pli
fog/low cloud visibility foreach visibility category using 20@808 coincident pai.
Results & summarized in Table-5 and 4-6. The GOES-R ABherged visibility
retrieval shows lower Skill and increased Falsenalates as visibility degrades frc
Clear to Poor.

Heidke Skill Score (Hit Rate) for merged aerosol plusfog/low cloud visibility

Visibility Category Merged retrieval
1 (Clear) 0.345980

2 (Moderate) 0.305405

3 (Low) 0.113883

4 (Poor) -4.12233e-05

Table 45: Heidke Skill Scores for coincident ASOS and neerylODIS aerosol an
GOES fog/low cloud visibility during 20(-2008.
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False Alarm Rate for merged aer osol plusfog/low cloud visibility

Visibility Category Merged retrieval
1 (Clear) 0.153365

2 (Moderate) 0.548148

3 (Low) 0.661224

4 (Poor) 1.00000

Table 4-6: False Alarm Rate for coincident ASOS areiged MODIS aerosol and
GOES fog/low cloud visibility during 2007-2008.

4.5 Algorithm Output

The primary output of this algorithm is an estimatéhe visibility for a given pixel.

Output Name

Description

Visibility

The estimated visibility (km)

Aerosol Visibility

The blended visibility (km) due aerosol
extinction

Fog and Low Clou
Visibility

The blended visibility (km) due to fog and Ig
cloud extinction

W

First Guess Aeros
Visibility

The first guess visibility (km) due to aerosol
extinction

First Guess Fog a

The first guess visibility (km) due to fog and

Low Cloud low cloud extinction
Visibility
Quality Flags Fog probability indicator, Aerosol t@@gl

|[Pepth and Cloud Optical Depth quality

Table 4-7 Fields in visibility output.
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5 TEST DATA SETSAND OUTPUTS
5.1 Simulated/Proxy Input Data Sets

5.1.1 MODIS

The capabilities offered by ABI onboard GC-R are similar to thenultispectral
observationgurrently provided bthe Moderate Resolution Imaging Spectroradiom
(MODIS) flown on the NASA Earth Observing SystenOE) satellite Terra and Aqua
and therefore MODIS Version 5 AOD retrievals areduas proxy data to generate
Version 1.0 aerosol visibility LUTFigure 51 shows a composite of MODIS AC
(MODO04) and COT (MODOG6) retrievals over the Contite¢ US on August 31, 200
Heavy aerosol loading (AOD> .extends throughout eastern Colorado, western Ke
and western Nebraska northward into eastern pakg/oming and central Montar due
to transport of smoke fro the Station Fire, near Los Angeles, CA.
MODIS (Terra) 2009 08 31

Figure 5-1 MODIS/TERRAo0N August 31, 2009A0D: aerosol optical depth at 550,
COT cloud optical thickness 650 nm
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5.1.2 Current GOESdata

The fog product wilbe produced for each pixel observed by the ABIThe fog
algorithm is designed to work when only a-set of the expected channels is provic
When running on GOES 12, the fog algorithm is ablatilize nor-ABI cloud algorithms
and account for the ¢& of Channel 118.5um). Figure 52 shows an example of the f
probability product compared to ASOS surface vigibfor 7:45 UTC December, 1.
2009. During arly morning on December 13, 2009 a plane crastiel® attempting tc
land at the Alva Muni@al Airport in Alva, OK Dense fog was reported limitir
visibility to ~200 feet.The GOE-R fog algorithm shows with greater detail area$
the greatest threat for low visibility due to .

GECCAT0.70 GOES—12 2008-12—-13 07:45:00 GECCATO.70 GOES-12 2009-12-13 07:45:00

Surfoce Visibility [mi] Fog Probability [%]

]

200 050 1.00 1.50 200 250 300 350 4.00 450 500 0.0 20.0 40.0 ton 20.0 100.0
. +

+

Figure 5-2RGB image (R = 3.um emissivity, G = 1um BT, B = 11um BT) of the
US on December 13, 2009 at 7:45 UTC (1:45 am CSih) feg probability from the
GOESR fog algorithm contoured on tc (Figure provided by Corey CalveCIMSS -
UW Madison andVlichael Pavoloni, NOAA/NESDIS/STAR)

5.1.3 Simulated GOES-R ABI data

Currently extensive efforts are underway to devettgmonstrate, recommend and
standards for a broad range of capabilities dedigmenake optimal use of the GC-R
data when it becomes available. One of thesetsffaddressed hereinvolves the
generation of high temporal and spatial resolufidmanced Baseline Imager (AE
proxy datasets to be used by a variety of G-R team members for algorith
developmat and demonstration activities [Schaack et al920digh resolution aerod

28



and ozone data sets have been created over theergat US to augment the curre
GOESR Algorithm Working Group Weather Research and Ease(WRF) mode
[(Skamarock et al. 2001, 20(] ABI proxy data capabilities. These data sets Hzaen
generated with WREEhem [Grell et al., 2005] air quality simulatiorsupled to globa
chemical and aerosol analyses from the -time Air Quality Modeling Syster
(RAQMS) [Pierce et al., 2007]. Both W-Chem and RAQMS include -line aerosol
modules from the Gathrd Global Ozone Chemistry Aerosol Radiation arah3$pori
(GOCART) model [Chin et al., 2002]. The additiona@rosoand ozondistributions
into the WRF proxy data set allows generation ofenmealistic synthetic (prox)
radiances for all ABI bandssing the forward visible and infrared radiance niiode
capabilities from the Joint Center for Satellitea®Assimilation (JCSDA) Communit
Radiative Transfer Model (CRTM) [Han et al., 20t Synthetic WRFCHEM radiances
have been used as input into trOESR AOD algorithm to generate high horizontal ¢
temporal resolution GOE-R ABI AOD retrievals for algorithm development. Grg -3
shows GOERR ABI AOD retrievals based on WI-CHEM/CRTM radiances at 15:?
UTC on August 24, 2006. The GO-R ABI AOD retrieval is dominated by heay
aerosol loading associated wsmoke in Northern Rocky Mountain states and redi
haze in MidAtlantic, Southeast, and Mississippi Valley Reg

AOD Retrieval (ABI) 2006.08.24.153000
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Figure 53: Simulated GOE-R ABI AOD 15:30 UTC August 24, 2006 (CONL
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5.2 Output from Simulated/Proxy Inputs Data Sets

52.1 Visibility

August 3%, 2009 aeroscvisibility retrievals based on MODIS AOD measurertsefover
Denver at 10:45am Mountain Standard Tirare shown in Figure 8: A broad area of
reduced visibility extends throughout eastern Cador western Kansas and west
Nebraska northward into eastern parts of Wyomirdyantral Montar and is associated
with heavy aerosol loading from the Station Fir€mifornia (see Ficre 5-1).

MODIS Visibility (km) 2009 08 31

Figure 5-4: GOER ABI eosol visibility (km) using MODIS VersionAOD retrievals
on August, 31, 2009. MODIS COT is indicated by the grey sc

ASOS measurements show that visibility at the Dehviernational Airpor(KDEN)
was abrugy reduced from near . km to less than Bm (~2 miles) at 4:00am ar
remained below &m until 7:00am due to smoke from the Station (Figure 5-5).
MODIS aerosol visibility estimates of 15 km aregmod agreement with ASC
measurementst the Denvelnternational Airport (KDENYuring the MODIS overpas
at 10:45am.
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Denver International Airport (KDEN)
(August 31, 2009)

25 MODIS overpass

N
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Figure 55: ASOS aerosol visibility (km) at Denver Intermatal Airport (KDEN) on
August 31, 2009. The GOIR ABI aerosol visibility retrieval at KDEN is indited by
the red diamond at ¢hMODIS overpass time (10:45a

6 PRACTICAL CONSIDERATIONS

6.1 Numerical Computation Considerations
The Visibility algorithm is implemented sequentyalBecause it relies on the results
other algorithms, the cloud mask, cloud opticalperties, the aerosol optical depth, :

fog products must be run before the visibility altfon. The computatiorime is very
economic.

6.2 Programming and Procedural Considerations

The Visibility algorithm is run at the pixel levélemporal information is not necess.



6.3 Requirements

The GOES-R ABI visibility algorithm F&PS requirentda an 80% correct classification.

6.4 Other Issues
TBV.

6.5 Quality Assessment and Diagnostics

To be completed. This section describes how thditguaf the output products is
assessed, documented, and any anomalies diagnosed.

6.6 Exception Handling

If the retrieval is not performed, the retrievedgmeters are set to a missing value and
the quality flags are set to the lowest qualityueallf the AOD or Fog products are not
available, the retrieval is not performed.

6.7 Algorithm Validation

Algorithm is validated using independent (not usethe LUT regression) ASOS
visibility measurements and available ground aratspased cloud and aerosol
extinction measurements. Merged GOES-R ABI vidipiietrievals using MODIS
(aerosol) and GOES (fog/low cloud) proxy data hiaeen validated against ASOS
visibility measurements during May-June 2010. Fegb#l shows categorical histograms
of the coincident ASOS and merged MODIS aerosol@&dS fog/low cloud blended
visibilities. The merged aerosol plus low-cloud/fagibility retrieval results in a 72.8%
categorical success rate for 3804 coincident AS@HMNG plus 202 coincident
ASOS/GOES measurement pairs during May-June 20&0nérged aerosol plus low-
cloud/fog visibility retrieval captures the frequgrof clear, moderate and poor visibility
relatively well but underestimates the frequenciowaf and poor visibility.

34



10— - - oo

Count

ASOSMerged

Visbilty Category

Vibility Categories:

1Clear:  vie>30km

2 Moderate. 10KmM<viS<30Km
3 Low: AHmevis<10km

4 Poor: ve<2km

% corect = 727908
Mean cateqorical eror = 00614079

Computed PrecBion = 0539720

Figure 6-1.Categorical Histogram (Merged MODIS/GOES (red) a ASOS (green)
aerosol plus fog/low clouvisibility for May-June 201@oincident pair.

Heidke Skill scoresnd False larm rates were calculated fttre merged aerosol pli
fog/low cloud visibility foreach visibility category using Malane 201(coincident pairs.
Results are summarized in Table1 and 6-1. The GOES-R ABhergedvisibility
retrieval shows lower Skill and increased Falsenalates as visibility degrades frc

Clear to Poor.

Heidke Skill Score (Hit Rate) for merged aerosol plusfog/low cloud visibility

Visibility Category Merged retrieval
1 (Clear) 0.324869

2 (Moderate) 0.230516

3 (Low) 0.180768

4 (Poor) -0.000449528

Table 641: Heidke Skill Scores for coincident ASOS and neerylODIS aerosol an
GOES fog/low cloud visibility during Me-June 2010.



False Alarm Rate for merged aer osol plusfog/low cloud visibility

Visibility Category Merged retrieval
1 (Clear) 0.190461

2 (Moderate) 0.556522

3 (Low) 0.763636

4 (Poor) 1.00000

Table 6-2: False Alarm Rate for coincident ASOS areiged MODIS aerosol and
GOES fog/low cloud visibility during May-June 2010.

36



7 ASSUMPTIONSAND LIMITATIONS

7.1 Assumed Performance
Algorithm performance requires accurate aerosataptiepth and cloud optical
thickness retrievals and accurate fog probabiligy #og depth retrievals. The aerosol

visibility performance requires accurate NWP estasaf PBL heights and assumes that
all aerosols are located within the PBL

7.2 Pre-Planned Product I mprovements

To be completed.
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