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ABSTRACT

This Algorithm Theoretical Basis Document (ATBD)sdebes the procedures for developing
and using the Snow Depth (SD) algorithm for the GEHEAdvanced Baseline Imager (ABI). It
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includes a description of the method and the ds¢al @or deriving the SD algorithm, the product
validation methodology and the datasets, the rements and specifications of the SD product,
and specific information about the ABI that is k&let to the derivation of the SD product.

The approach for deriving the SD algorithm is basedhe correlation between pixel-area SD
and satellite-derived sub-pixel fractional snoweaoever non-forested and sparsely forested
areas. An analytical formula was empirically egsdt®d that approximates the statistical
relationship between pixel-area SD and snow fractalidation of the developed algorithm
was performed off-line through inter-comparisondeetn the GOES-based SD product and SD
measurements made at first-order synoptic statld8sCooperative Network stations and
Canadian climate stations. This validation includedulti-year dataset consisting of about ten
thousand pairs of collocated satellite and firsteorstations data. Based on this test dataset,
overall precision and bias of the SD product wasébto be 5 cm, and thus the product meets
the required specifications. A snow fraction retaleprecision of 10 % is assumed in all the
testing of the ATBD research. Framework validatiaas also performed with MODIS-derived
snow fraction using the GOES-R Snow Fraction prodatbedded into the mainframe. Finally,
practical matters such as computer resourcesuimstit performance and its effects on the
product are considered.



1 INTRODUCTION



1.1 Purpose of This Document

The GOES-R ABI Snow Depth Algorithm Theoretical Ba3ocument (ATBD) provides a high

level description of the physical basis (scientdicd mathematical) for the derivation of the
GOES-R snow depth product using observations froen Advanced Baseline Imager (ABI)

flown on the GOES-R series of NOAA geostationaryteomlogical satellites. GOES-R ABI

will be the first GOES imaging instrument makingsebvations in both the visible and in the
shortwave infrared spectral bands and thereforebeagffectively used to identify snow cover on
the ground. Similar to the current GOES Imagewilkt also be able to provide information on

the depth of the snow pack over plain non-foreareds.

1.2 Who Should Use This Document

The intended users of this document are thoseested in understanding the physical basis of
the snow depth retrieval algorithm. This documasb provides information useful to anyone
maintaining or modifying the original algorithm.

1.3 Inside Each Section

This document is divided into the following maircsens.

» Algorithm Description: Provides all the detailed description of the alpon including
the physical basis, input and output.

* Assumptions and Limitations Provides an overview of the current limitatiorfstioe
approach and the plan for overcoming these linoitati with further algorithm
development.

» System Overview Provides relevant details of the ABI and providesrief description
of the products generated by the algorithm.

1.4 Related Documents

This document currently does not relate to anyrotfteeument other than the GOES-R Ground
Segment Functional and Performance Specificati@®F&PS).

1.5 Revision History
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Version 0.1 of this document was created to accomghe code of the version 0.1 snow
mapping algorithm to be delivered to the GOES-R AWIGorithm Integration Team (AIT).

2 OBSERVING SYSTEM OVERVIEW

This section describes the products generateddyBi Snow Depth algorithm and the related
sensor requirements.

2.1 Product Generated

The Snow Depth algorithm will be applied to GOESARI pixels identified as snow covered
and will be used for to estimate the depth of thewspack over plain, non-forested areas. The
primary input to the algorithm is the map of snaaction generated from ABI data. The output
of the algorithm is the map of snow depth. Theewi rate of the product is defined as 60
minutes. The daily snow depth product will alsogeaerated.

Table 2.1 — Functional & Performance Specificatio(GS-F&PS) for ABI Snow Cover and
Snow Depth

Product
Product ;
Horizontal Mapping
Resolution Accuracy
Output Product (Product (Product Product Product Product Product
Format for | Product . o Pointing Measurem | Refresh Measure
Name Geographic Pointing/ Measurem
each Level ; Knowledge / ent Rate/Cove | ment
Coverage Mapping h ent Range . -
Coverage Mapping Accuracy rage Time Precision
Accuracy H
Uncertainty
for  Space for  Space
Weather) Weather)
Snow Depth NetCDF TaI_I 9"assy ! 5 km 1 km 0-27 cm 9cm 60 min 12cm
plains only

2.2 Instrument Characteristics

GOES-R ABI will provide full disk observations eyeb-10 minutes in 16 spectral bands at a
spatial resolution of 1-2 km. Availability of obs@tions in the visible, near infrared, shortwave
infrared and infrared spectral bands allow for aggpion of ABI data for the automated
identification of snow cover in the satellite imageObservations in ABI reflective spectral
channels will be used to estimate a sub-pixel soover fraction. The snow depth product will
be derived from the estimated snow cover fraction.
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3 ALGORITHM DESCRIPTION

This section presents a complete description ofatberithm to estimate the snow depth at the
current level of maturity (which may improve withah revision).

3.1 Algorithm Overview

The objective of the Snow Depth algorithm is to tioely generate maps of snow depth
distribution over plain non-forested areas. Acouwydto the GOES-R Ground Segment
Functional and Performance Specification (GS-F&PB|-based snow depth map should be
produced at least every 60 minutes. The requiredracy of snow depth estimation is 9 cm and
precision is 12 cm.
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The snow depth is estimated for every pixel of AlBhge located over plain non-forested area
which is classified as snow-covered with the sn@wec algorithm. Estimation is based on an
empirical formula relating the observed subpixa@witover fraction with the pixel-area depth of
the snow pack. Snow depth algorithm is day-timey asgorithm requiring sufficient solar
illumination.

Snow depth is a level-2 product in the GOES-R ARIcgssing system. It relies on the external
cloud mask and on the snow fraction map that wellgenerated at the preceding step of ABI
data processing.

The physical basis of snow identification and tle¢aded description of the algorithm are given
below.

3.2 Theoretical Basis

The potential to estimate the depth of the snow
—— — pack from satellite observations in the reflective

e - i part of the Electromagnetic spectrum is limited.
P At these wavelengths, the photon penetration

sD [:mj :

into the snow pack does not exceed several
centimeters; therefore, there is practically no
direct physical relationship between the snow
depth and reflectivity of the snow pack.

However, because of the vegetation cover and

certain terrain roughness inherent to most
natural land surfaces, changing snow depth
causes a gradual change of the fraction of the
Fig. 3.1 Snow cover fraction parametrizations for land surface masked by snow (e.g., Baker et al,
grassland areas used within GCM and land surfacel991). Along with the snow fraction, the
models (Roesch and Roeckner, 2006). EM: Europareflectance of the land surface also increases
E’X‘%‘ﬁgﬁd%mgét I\E/‘I'(-Jvd t??gi)é éﬁg"ozni ";'t(;*R with the increasing snow depth up to some
(1993) sn%lz: Simple Biosphere Model (Sellérs et depth where the underlying Iar.ld surf_ace .IS
al., 1996), AMIP-Il (Frei et al., 2003). completely masked by snow. This relationship
between the snow depth and the surface
reflectance or the fractional snow cover is quitanpunced for thin to medium thick snow packs
and thus provides means for estimating snow dépftthout the tree canopy, which masks and
shadows the snow cover, the relationship betweerstiow depth and the snow reflectance (or
snow fraction) is the strongest. Therefore poténtiar estimating snow depth exist only over
plain areas with no or very little forest cover.

—— [ECHAM4 ..o EM — = ECHAMS (—> tanh)

_._.com2 — .- s AMIP

The relationship between the snow fraction andsti@wv depth is actively used in climate and
land surface models to predict the fractional sramwver when the depth of the snowpack is
known. Several examples of these parametrizatimngiaen in Fig.3.1.
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It is important, that models in Fig.3.1 have beewmdaloped to characterize the area ratio of snow
covered and snow free land over large areas ofttehsindreds square kilometers. Application

of these models to estimate the snow depth fronobserved snow fraction at much smaller

spatial scales should be justified. Besides thaiets predicting an asymptotical behavior of

snow fraction at large snow depths are not convengeuse in the inverse problem since even
small errors in the snow fraction cause large sriothe derived snow depth.

In order to establish the relationship betweensth@wv depth and the snow fraction suitable for
estimating snow depth from satellite data we hadepted an empirical approach where we
matched snow fraction derived directly from GOESgrmr observations with synchronous in
situ measurements of snow depth. The statistianaithed satellite and surface observations
was collected over Great Plains and Canadian Bsathiring four winter seasons from 1999 to
2003. The selected region presents the best testdare to its mostly flat terrain and little tree

. vegetation. Snow depth reports were obtained
from over 1400 locations within the study area
(see Fig. 3.2) where the forest cover fraction
was less than 20%. Information on the forest
e distribution was taken from the percentage tree
cover dataset prepared at the University of
Maryland (DeFries et al., 2000).

The snow fraction was derived from GOES
Imager observations in the visible spectral band
within a linear mixture approach with two end-
members corresponding to a completely snow
covered and a snow free land surface. Snow
Fig.3.2 Location of stations used in the studygear fraction estimates are made for pixels |§ientlf|ed
squares represent the primary locations used to as snow-covered in GOES-based daily snow
establish the snow fraction-snow depth relationship COVer maps. The latter maps are generated daily
Data from all other stations were used in the at NOAA NESDIS. A complete description of
validation of the derived relationship. the snow mapping and snow fraction retrieval
technique is given in Romanov and Tarpley

(2004).

The relationship between the snow depth and snaetiéin was established with the data for 139
primary locations in the study area (shown witlyéasquares in Fig.3.2) each having 50 or more
matched pairs of surface and satellite observatibasa from more than 1200 other stations
were used in the validation of the algorithm. Olletlae dataset accounted for over 40 000
matched observations. The statistics for primapations consisted of about 10 300 matched
observations. Fig. 3.3a presents an example ofligtebution of matched snow fraction and
snow depth data collected at°53’ N and 113 58’ W. The graph demonstrates an apparent
increasing trend in the reported snow depth witlhhdase in snow fraction. There is a substantial
scatter in snow depth values corresponding to @in@essnow fraction, which suggests that it is
impossible to relate the snow fraction unambiguptssithe snow depth. The primary reason for
the scatter is most probably a high spatial valitgbof the snow depth, along with a different
spatial resolution of the satellite and surface sneaments. When the snow fraction decreases
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below 50%, the station sometimes reports a ‘zamoinsdepth (or no snow on the ground), thus
giving an indication of a patchy snow cover.

A substantial scatter in the overall snow depthwsfraction statistics collected at all primary
locations is also obvious in Figure 3.3b, whichwefdrequency distributions of the snow depth

40 4
Lat: 53.30 Lon: 113.58

30 1

20 1

Snow depth, cm

10

20 40 60 80 100
Snow fraction, %
80

Snow fraction, %

occurence, %

I
o

. . 30 §
for a set of snow fraction binnei

into 10% ranges. The scatter i
the snow depth values increas

Best fit: Y=exp(aX)-1

substantially with an increase i LE> 20 a=0.033 y
the snow fraction. Average =
values of the snow deptl S
calculated for every 10% snov §
(2]

fraction interval exhibit a cleal
non-linear dependence on tr
snow fraction (see Figure 3.4
To represent the rela_tlonshl 20 0 o0 o0 100
between the snow fraction an Snow fraction, %

the snow depth analytically, w

adopted an exponential-typ Figure 3.4. Snow depth versus the observed snatidra Results
function: are averaged over 10% snow fraction bins. Therkpeesents the
best fit to the data with a single parameter exptakfunction.

D=
exp@F)-1 (1)

whereD (cm) is the snow depths (%) is the snow fraction and is a parameter. The best

approximation of the snow fraction/snow depth iefahip with Equation (2) is achieved wih
= 0.0333.
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The major factor that controls the snow depth wnsfraction relationship is protrusions of low-
level vegetation through the snowpack. Once snoxercmasks the vegetation cover completely,
the observed snow fraction becomes insensitiveftother increase in the snow depth. Equation
(2) yields a 100% snow fraction for a snow deptlam@iund 27 cm. The value of the snow depth
corresponding to a completely snow-covered lanthesarmay be interpreted as an upper limit of
the retrievable snow depth.

3.3 Processing Outline

The data processing system includes the blockgéhdtthe input data, calculate the snow depth
and generate the output map (see Fig. 3.5).

The primary input to the snow depth algorithm cetssin the snow fraction map. The snow
fraction map will be derived at the previous steGOES-R ABI data processing. For cloud
clear portions of the imagery over land surfacesti@wv fraction is converted to snow depth
using formula (1) above. Estimates made at higler(@@ degrees) satellite and solar zenith
angles, in the areas with forest cover fractio@@%o or with needle-leaf forest cover fraction of
over 10% and over and in mountainous areas withagte above 2000 m are flagged as
“unreliable”. Retrieval is not performed if theosm fraction is zero.

3.4 Algorithm Input

This section describes the input needed to prabesSnow Depth Product. The Snow Depth
Product will be derived with every generated snmetion map. It uses dynamic sensor data, a
derived ABI product and static ancillary data irgouthe
data in each of these categories are describedbelo

(_snow Depth start )

| Initialize variables | 3.4.1 Primary Sensor Data

Read ABI Snow The primary sensor data used by the snow depthuptod
fraction data X . . .
consists in the solar and satellite zenith angle of
: observations The angles are used to identify iainiel
Reze dz;‘:'”ary snow depth retrievals made at high observation and
illumination angles (above 70 Degrees)

Process data to derive
Sl DR 3.4.2 Derived Sensor Data

The derived sensor data include the GOES-R ABIllgour

snow fraction product.

Fig. 3.5 Flow chart of GOES-R ABI snow
depth processing
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3.4.3 GOES-R Product Precedence Data

The Snow Depth algorithm uses the snow fraction asagn input and should therefore run after
the snow fraction map is generated. .

3.4.4 Ancillary Data

Ancillary data are represented by static off-limeadfiles. The ancillary data sources used for the
GOES-R snow depth product include elevation, serfgpe, forest cover fraction and needle-
leaf forest fraction datasets. Each data set eflpriescribed below.

» Surface type/Land-water mask

The land water mask is based on the surface tgssitication produced by the
University of Maryland Department of Geography 898 (Hansen et al. 1998, 2000).
Imagery from the AVHRR satellites acquired betw&8B81 and 1994 were analyzed to
distinguish fourteen land cover classes (http:f/ghiacs.umd.edu/data/landcover/). This
product is available at three spatial scales: e @ kilometer and 1 kilometer pixel
resolutions. For the algorithm development andrtgst km data were aggregated in 4
km size grid cells. The 1 km resolution product Wwé used for GOES-R ABI products.

* Forest Cover Fraction and Needle-leaf forest covdraction

The percentage tree cover dataset and the needItest cover fraction dataset have
been developed by the University of Maryland Depearit of Geography (DeFries et al.,
2000). The first dataset reports the percent oaitka covered with forest, whereas the
second one reports the fraction of the area cowsittdneedle-leaf trees. The original
spatial resolution of both datasets is 1 km. Feralgorithm development and testing the
spatial resolution of both datasets were degraolddkim. One kilometer resolution data
set will be used for GOES-R.

» Digital Elevation

Elevation information for every pixel is used toesen high-elevation areas where snow
depth retrievals may be inaccurate. The elevataiase®t in the current version of the
algorithm is based on USGS GTOPO30 model dataofigeal 30’ spatial resolution
dataset will be used in the GOES-R processing sydter algorithm validation and
testing elevation data were averaged within 4 kich cglls.

3.5 Algorithm Output

The final output of the snow depth algorithm cotssef an output file denoting snow depth or
missing values, and a quality control (QC) outpgletdenoting the snow pixels that failed the
processing tests.
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Table 3.2 — Output and QC file format and naming cavention

Filename Format Contents
SnwDepthyyyydddhhmm One byte binary array | Snow depth in cm or
missing value

QC One byte binary array Quality flag

Table 3.3 — Output and QC File content
Output

Value Category

0-100  Snow depth in cm (minimum snow depth is set at 1 cm, zero
corresponds to snow free land or zero snow cover fraction)

128 Missing value

QC
0 Good value
10 Bad value - Water
20 Bad value - Clouds
30 Bad value - Dense forest
40 Bad value - High elevation
50 Bad value - Insufficient illumination (high solar zenith angle)
60 Bad value - High satellite zenith angle

In addition, the Snow Depth retrieval processintj &so produce some metadata describing
snow depth processing information, e.g., date/staenp, description of QC flag values, the
percentage of retrievals for each QC flag valuesamdmary snow depth retrieval statistics
(mean, max, min and standard deviation) for gotrieraals. Other sensor and snow cover
metadata information will be produced from the Sriractional Area GOES-R product.
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4 TEST DATASETS AND OUTPUTS

4.1 Simulated/Proxy Input Datasets

Snow fraction derived from the Imager instrumentbasrd Geostationary Operational
Environmental satellite (GOES) is used as a prawxyGOES-R ABI snow fraction in off-line
verification/validation of the snow depth algorithffiable 4.1). The snow depth derived from
GOES Imager data was compared to ground-based depitin observations and with snow
depth data generated within the SNODAS model at RS&.

Maps of snow cover and snow fraction have beenywed daily from GOES-East and GOES-
West Imager data since 1999. The spatial resolutiomaps is about 4 km. The estimated
accuracy of snow fraction retrievals from the cotr@ OES Imager is about 10%, i.e. the derived
snow fraction satisfies the requirements for GOE&JR. Within the existing GOES data
processing system snow fraction maps are genecaiegl a day from daily composited images.
The maximum temperature compositing is applied éduce the cloud contamination. The
portion of the imagery centered on US Great Plaind Canadian Prairies was used in the
algorithm testing.

Snow fraction derived from MODIS sensor on board Trerra satellite is used as proxy for
GOES-R ABI framework verification/validation of tesmow depth algorithm. The GOES-R ABI
Snow Cover Algorithm was used to derive instantasesmow fraction from MODIS data, which
in turn was used as input to derive instantanenaw slepth.

Table 4.1 — Sensor channel mapping of off-line valation proxy data

Sensor Channel N¢ Wavelength Bandwidth
Center (um)
(Hm)
ABI 2 0.64 0.59 ~ 0.69
7 3.9 3.8~4.0
14 11.2 10.8 ~11.6
GOES-8 1 0.6 0.52~0.72
2 3.9 3.78 ~4.03
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4 10.7 10.2 ~11.2
GOES-10 1 0.6 0.52 ~0.72

2 3.9 3.78 ~4.03

4 10.7 10.2 ~11.2

4.2 Output from Simulated/Proxy Inputs Datasets

4.2.1 Precisions and Accuracy Estimates

Statistical assessment of product performance spaitarge and representative dataset shows
that overall, the mean product bias (accuracy)saddard deviation (precision) is 5 cm within
the product retrieval range of depths up to 27 amg thus the product meets the required
specifications.

Fig 4.1 presents an example of a snow depth mapedefrom GOES-East Imager data using

off-line snow depth algorithm. The enlarged portioihnthe map shows that there is a good
correspondence between the retrieved snow deptithanshow depth observed at ground-based
stations. Some difference between the two prodalotsy the snow cover boundaries may be due
to the combined effect of snowmelt and the timéed#ince of observations. Most of the stations
used in the comparison belong to the US Cooperatiggon network. Observations of snow

depth at these stations are performed once a didneiaarly morning. On the other hand, due to
the daily image compositing algorithm implementadpart of the processing system, satellite
retrievals tend to represent the snow cover and slepth conditions in the middle of the day.

] Snew—free land
Cloud
B Mo retrievals

Water

Snow depth {em)

T O

GOES-East [ 1o 2 » 40 50 and over

Jan 6, 2004
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Fig. 4.1 Left: an example of snow depth map overdBPlains derived from GOES Imager data. Rigilarged
portion of the snow depth map with surface obsé@matoverlaid.

Fig. 4.2 shows bias and correlation statisticaliltesof comparison of derived and observed in

situ snow depth at several stations in the studg.dt s shown that correlation between the snow
depth and snow fraction exceeds 0.7 in most casesbias and standard deviation are less than
5 cm. Consistent underestimates of the snow depth Ine caused by underestimated forest
cover fraction. A possible reason for persistergrestimates of snow depth consists in a very
small height of the grass cover.
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Fig. 4.2 Bias and correlation statistics of obsdrard derived snow depth at selected stations satnesGreat
Plains.

Figure 4.3 shows absolute bias variation as a imcif snow depth values up to 30 cm. The
mean absolute bias of all the cases analyzed ist &wom. The absolute bias increases with snow
depth, from 3—4 cm for shallow snow cover (belowcht) to 7-10 cm for snow depths of 20-30
cm.

15 —
= 10
5 i
= i
5 i
- .
| 5 —
O T T T T T ]

0 10 20 30
Observed snow depth, cm

Fig 4.3 Mean absolute bias of the derived snowtdapta function of the observed snow depth. Solitidashed
lines present the results for stations in compjateh-forested area and in partially forested @essss than 20% of
forest cover), respectively.
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Figure 4.4 depicts retrieved instantaneous snowhdepm MODIS data on Terra satellite on
March 15, 2009 at 17:50 Z. Granule size was 1352030. Instantaneous snow fraction was
estimated from the GOES-R Snow Cover Algorithm,alihivas used as input to GOES-R Snow
Depth Algorithm (both imbedded into the mainfrart@jetrieve snow depth. Subjective analysis
of the map depicting retrieved snow depth and pminfiace observations shows reasonable
retrievals. Additional testing and a quantitativaleation are needed to assess robustness of the
integrated snow algorithms.

Snow—free land
Cloud

No retrievals
Woter

Figure 4.4 Retrieved Snow Depth from MODIS datehvpibint surface observations overlain

Snow depth {om)

a & 10 16 20 25
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5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

The snow depth is a product derived through simpplel-by-pixel computation. Ancillary data
need to be applied to identify land pixels wherevedepth retrievals are possible and reliable.

5.2 Programming and Procedural Considerations

The algorithm is straight-forward and easy to impdat.

5.3 Quality Assessment and Diagnostics

The following procedures will be implemented totinaly assess the quality of the product.

* Snow depth retrievals will be matched with synclousobservations of snow depth. The
accuracy of snow depth retrievals will be asse#isenligh their comparison with in situ
measurements.

* Qualitative comparison will be performed between dlerived snow depth and snow
depth maps generated within SNODAS system at NPHRSC

5.4 Exception Handling

The GOES-R snow depth algorithm will check theustadf the required input data and
availability of ancillary data. If any of the inpdata are unavailable the corresponding quality
control flag will be set and the algorithm will €xiThe QC flags will be sent back to the
framework and the processing will continue to otgorithms.

A more detailed quality control of input data (inding the snow fraction data) will be
implemented in the subsequent version of the algori
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5.5 Other Considerations

Other considerations include the following:

The meaning of snow fraction in the current GOESB MRD is not clearly defined. It
is not clear whether the snow fraction will chaesizte the fraction of snow as seen by
the satellite instrument (i.e. it will exclude snavasked by vegetation) or it will
characterize the snow cover on the ground (i.d.atteémpt to estimate the snow cover
beneath the canopy).

Snow depth retrievals are limited in terms of tbeusacy, the range of the derived values
as well as in terms of the geographical area cgeera
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6 ASSUMPTIONS AND LIMITATIONS

The following sections describe limitations anduasgtions in the current version of the snow
depth algorithm.

6.1 Assumptions

The following assumptions have been made in devrgdogind estimating the performance of the
snow depth algorithm:

The error in the derived snow cover fraction idwmtlimits specified for GOES-R ABI
(10%)

The algorithm implicitly assumes the same charasties of low level vegetation across
the whole area of snow depth retrievals.

There is no masking or shadowing of snow coverdg vegetation.

Snow is not moved or removed. This assumption is/alid in densely populated
regions therefore snow depth retrievals in urb@asare not accurate.

All subresolution water bodies are frozen. Unactedmpen water reduces the apparent
snow fraction and results in an underestimatiosnaiw depth.

6.2 Assumed Sensor Performance

Errors in navigation from image to image will ndfeat the performance of the snow
depth algorithm but will cause spurious temporaiateons in the derived snow depth.

Inadequate sensor performance will not affect taity of the product directly.
However it may cause errors in the derived snowatifva which would reduce the
accuracy or prevent from deriving the snow depbimfisnow fraction.

6.3 Limitations

The following limitations are identified and cautex for the snow depth algorithm and product:

No snow cover/snow depth retrievals will be conddan cloudy conditions and at night
time.

Efficiency of snow identification and mapping ispexted to depend on illumination
conditions and the satellite zenith angle. Retiease expected to be less accurate at
very low solar elevation and high, above 70 deglbi@ zenith angle.
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6.4 Pre-Planned Product Improvements

In the next version of the algorithm a detailedlgyaontrol of the input snow fraction
map will be implemented. Identification of both elts and the snow cover will be tested
and new flags will be set if the previous classifion is found inaccurate.

The domain of snow depth retrievals may be expanmttednoderately forested regions
by introducing proper corrections to the retriesglorithm (Romanov and Tarpley,
2007). Additional statistics on snow fraction andw depth over partially forest covered
areas will be collected and a refined algorithm & established.
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