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ABSTRACT

This land surface albedo (LSA) Algorithm TheorettiBasis Document (ATBD) provides
a high level description and the physical basistf@r estimation of LSA with images
taken by ABI onboard the Geostationary EnvironmieBigerational Satellite (GOES) R
series of NOAA geostationary meteorological sdesli LSA is defined as the ratio
between incoming and outgoing irradiance at ththeanface, which is a key component
of surface energy budget. Besides five spectratdamb and one broadband shortwave
albedo, the LSA algorithm also generates surfaibectance as byproducts. The frequent
temporal refreshment, fine spectral resolution &rdge spatial coverage make ABI a
unique data source for mapping LSA. The ABI LSAaaithm combines atmospheric
correction and surface BRDF modeling in one optatian step to estimate BRDF
parameters for each band. In order to improve coatipmal efficiency, the ABI LSA
algorithm is separated into offline mode and onhmade. The offline mode is carried out
at the end of each day, using a time series of-sleaobservations up to the current day
to estimate BRDF parameters for the next days’neninode. In the online mode, LSA
and surface reflectance products are producedhin time. The ABI LSA algorithm has
been tested and validated using satellite proxg dat simulated data. Comparison with
field measurements shows our algorithm can satls#yrequirements of the GOES-R
Ground Segment Functional and Performance SpeadicéF&PS).
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1 INTRODUCTION

The purpose, users, scope, related documents &isibrehistory of this document are
briefly described in this section. Section 2 giassoverview of the Advanced Baseline
Imager (ABI) Land Surface Albedo (LSA) algorithmra@tion objectives and operations
concept. Section 3 describes the baseline algoriftaninput data requirements, the
theoretical background, mathematical descriptions@utput of the algorithm. Some test
results will be presented in Section 4. Practicalsiderations are described in Section 5,
and followed by Section 6 on assumptions and lioites. Finally, Section 7 presents the
references cited.

1.1 Purpose of This Document

The LSA Algorithm Theoretical Basis Document (ATBprovides a high level
description and the physical basis for the estiomatif land surface albedo with images
taken by ABI onboard the Geostationary EnvironmieBigerational Satellite (GOES) R
series of NOAA geostationary meteorological sdtsli The LSA is a key parameter
controlling surface radiation and energy budgeAland land surface reflectance are
also needed by other algorithms, such as snow ageeand radiation flux products.

1.2 Who Should Use This Document

The intended users of this document are thoseestin in understanding the physical
basis of the algorithms and how to use the outpthis algorithm to optimize the albedo
estimate for a particular application. This docateso provides information useful to
anyone maintaining or modifying the original algm.

1.3 Inside Each Section
This document is subdivided into the following maettions:

» System Overview Provides relevant details of the ABI and a bdes$cription of
the products generated by the algorithm.

» Algorithm Description: Provides a detailed description of the algorithm
including its physical basis, its input, and it$pau.

» Test Data Sets and OutputProvides a description of the test data sets tsed

characterize the performance of the algorithm arality of the data products. It
also describes the results from algorithm procgsssing simulated input data.

15



* Practical Considerations Provides an overview of the issues involving in
numerical computation, programming and procedugeslity assessment and
diagnostics and exception handling.

* Assumptions and Limitations Provides an overview of the current limitatiors o
the approach and gives the plan for overcomingetHigsitations with further
algorithm development.

1.4 Related Documents

LSA is one product of ABI product streamlines. Taguirements of LSA products can
be found in the specifications of the GOES-R Groudelgment Functional and
Performance Specification (F&PS). LSA also requiker ABI products as the
algorithm input. The readers can refer to theseiBp@TBDs for more information:

. GOESR Algorithm Theoretical Base Document for ABI Aerosol Optical Depth

. GOES-R Algorithm Theoretical Base Document for ABI Cloud Mask

. GOESR Algorithm Theoretical Base Document for ABI Downward Shortwave

Radiation - Surface

More references about the algorithm details arergim  Section 5.

1.5 Revision History

Version 0.2 of this document was created by DrainBh Liang and Kaicun Wang of the
Department of Geography, University of Maryland,ll&€ge Park and Dr. Yunyue Yu of
NOAA NESDIS, Center for Satellite Applications arf@esearch, Camp Springs,
Maryland. According to the reviewers’ comments,si@n of 1.0 was updated by Drs.
Shunlin Liang and Dongdong Wang of the DepartmédnGeography, University of

Maryland, College Park, and Dr. Yunyue Yu of NOAA.

16



2 OBSERVING SYSTEM OVERVIEW

This section describes the products generated byAtfBl LSA Algorithm and the
requirements it places on the sensor.

2.1 Products Generated

This albedo algorithm is responsible for LSA estiorafor clear sky pixels identified by
the ABI Cloud Mask (ACM) product. Using the ABI Amol Optical Depth (AOD)
product as the first guess, this algorithm upd#®€&$ and estimates AOD at points
where ABI AOD products are not available, and thetneves the parameters of the land
surface Bidirectional Reflectance Distribution Flioie (BRDF) and derive LSA and land
surface reflectance values. It also incorporatlesdad climatology from previous satellite
products (MODIS) as prior knowledge. Full disk albe for the solar zenith angle
smaller than 70° at five visible and near infranedirowbands and the shortwave
broadband are produced. As a byproduct, full diskase reflectances at these five bands
are generated as well.

The surface albedo/reflectance product requirendgftaed by the Mission Requirement
Document (MRD) and the Ground Segment Functiondl Rerformance Specification
(GS-F&PS) (NOAA 2009) are listed in Tables 2.1 2l

Table 2.1. GOES-R mission requirements for surédisedo product.

g Q. ” =) =2 3 g £
o (7] - = oD = >'c c —
T 5 | g | 89| ¢« |s8|E82| 82| ¢ g | 52| &g
S — = S 50 N 25| 58 == FC 7} & = =
2 3 | L [g3] 5§ |Sc|3=8|288 2 o = @3
g 2 - | 8o £ =< 3 <3 o < 3 o
Albedo: . 3236
. T FD | 2km| 2km| Oto 1 0.08 60 mins TBD | LZA <70
Full Disk secs
G C 1km [0.5km| Oto1 0.05 TBD | LZA <70

T=target, G=goal
2 C=CONUS, FD=full disk, H=hemisphere, M=mesoscale

Table 2.2. GOES-R mission requirements for surfaflectance product.

—_ (0]
o = o . ) i )
c o =) %) c © =
s || 8%| & |28 & | g8 | £ | & |§&| =g
= > o & [ 23| 2 52 g J 53 £
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8¢ 60 | = <1 2 = & 5 |-
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G | C |1km|05km| Oto2 | 005 TBD | LZA <70

T=target, G=goal
2 C=CONUS, FD=full disk, H=hemisphere, M=mesoscale
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As the key component of surface energy budget|lisatalbedo products can be used to
drive/calibrate/validate climatic, mesoscale atnmesiz, hydrological and land surface
models. Variation of LSA is also an important iradmr of land cover and land use
change. Analysis of long-term reliable albedo prtguwill help better understand the
human dimension of climate change and how the atigatalbedo-climate feedbacks
work. The land surface reflectance byproducts Wl the input to a number of other
high-level land surface products, such as thedaatisnow cover product.

2.2 Instrument Characteristics

The LSA product is produced from clear-sky pixelsserved by the ABI. The final
channel set is still being determined as the dlgms are developed and validated.
Table 2.3 highlights the ABI channels used by thedo algorithm.

Table 2.3.Spectral characters of Advanced Bas#iiager

Channel CSE Bandwidth Spatial
Wavelength .
Number (nm) Resolution
(1m)

1 0.47 0.45-0.49 1 km
2 0.64 0.59 - 0.69 0.5 km

3 0.86 0.85-0.89 1 km
4 1.38 1.37-1.39 2 km

5 1.61 1.58 — 1.64 1 km

6 2.26 2.23-2.28 2 km
7 3.9 3.80 — 4.00 2 km
8 6.15 5.77 — 6.60 2 km
9 7.0 6.75-7.15 2 km
10 7.4 7.24 —7.44 2 km
11 8.5 8.30 - 8.70 2 km
12 9.7 9.42-9.80 2 km
13 10.35 10.10 — 10.60 2 km
14 11.2 10.80 — 11.60 2 km
15 12.3 11.80 — 12.80 2 km
16 13.3 13.00 — 13.60 2 km

Shaded channels are used for Albedo derivation.

18



3 ALGORITHM DESCRIPTION

This section provides a complete description of algorithm at the current level of
maturity to be improved with each revision.

3.1 Algorithm Overview

Three steps are typically required to estimate $weface albedo from satellite
multispectral TOA observations(Liang 2004; Schaafle2008):

(1) atmospheric correction,

(2) surface directional reflectance modeling,

(3) narrowband-to-broadband conversion.
The typical examples are the MODIS and VIIRS albedgorithms. The first step
converts TOA reflectance into surface directioreflectance, the second step converts
directional reflectance into spectral albedos (idlial ABI bands), and the last step
converts spectral albedos to a broadband albedwetts, this type of method is not
suitable for deriving ABI LSA because:

* This method requires the surface reflectance asirthet, while the surface
reflectance product of ABI will be the byproductldA product.

» The common surface reflectance algorithm requiré®Aas the input, while ABI
AOD algorithm works only at dark surfaces.

Instead, we propose an optimization method simdathe earlier Meteosat algorithm
(Pinty et al. 2000a, b) to directly retrieve sugaBRDF parameters, and then use the
derived BRDF parameters to calculate LSA and landase reflectance. A similar
strategy was also used to retrieve daily aerosdl sanface reflectance simultaneously
from the Spinning Enhanced Visible and Infrared deva(SEVIRI) on the Meteosat
Second Generation (MSG) (Govaerts et al. 2010; \&lagh al. 2010). Our proposed
algorithm combines atmospheric correction and serBRDF modeling together in one
optimizing code. The optimization process estimatas BRDF parameters by
minimizing a cost function considering both TOAleetance and albedo climatology.
Our revision over the previous methods mainly idefs

* AOD can vary over time;
» we use multiple ABI spectral channels enabling esteuproduction of shortwave
broadband albedo;

* we use a different formulation of the atmospheadiative transfer and surface
BRDF model; and

» we incorporate albedo climatology as the constm@fimptimization.

3.2 Processing Outline

19



The retrieval of BRDF parameters needs multipleeolagtions over varied observing
geometries. Since ABI is not a multi-angular sens@ achieve this by using a stack of
time series observations over each pixel withih@tsperiod time and assume the BRDF
parameters stay relatively stable during the comipgsperiod. The organization of time
series data and retrieval of BRDF parameters ima-tonsuming process. In order to
improve the code efficiency, we divide our algamtimto two parts: the offline mode and
the online mode. At the end of each day, an offtmede computation is carried out to
perform a full inversion of BRDF parameters usihg stacked time series data. The
calculated BRDF parameters are saved for the usfaile following day’s online mode.
In the online mode, the pre-calculated BRDF paramsedre used to derive full disk LSA
and surface reflectance products every 60 minutks. processing chains of the LSA
algorithm offline and online modes are shown infrgures 3.1 and 3.2, respectively.

Water Vapor

AReBloay

LW Y aN

Time series of clear-

Constrained
optimization method

RRNE fittinao

PP [
BRDE

Darameters

Figure 3.1. High level flowchart of the offline meaf ABI LSA algorithm, which is
executed once at the end of each day to estimatBRDF parameters.
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Optimizati

*

Narrowb .
- Broadba

Figure 3.2. High level flowchart of the online maafeABI LSA algorithm, illustrating
the main processing components.

The LSA algorithm will take the ABI AOD product ase input, however, the accuracy
and integrity of the AOD product may need to benowed for accurate LSA estimation.
For bright surface types or other conditions whére ABI AOD products are not
available, the AOD information will be solely obtad from the LSA algorithm. Thus,
the ABI AOD products are used as the “first-guesdlies. Our strategy is to estimate the
land surface BRDF parameters and update AOD infobomaimultaneously based on the
initial estimates of AOD and albedo climatologies.

The AOD and other atmospheric parameters (e.g.eoand water vapor), together with a
BRDF model, will facilitate a full inversion of BRIPparameters. After determining the
BRDF parameters, the integration over the entimwiig hemisphere produces the
spectral albedos, and the downward irradiance sadwe used for converting spectral
albedos to a broadband albedo. Given the BRDF patmam a full atmospheric
correction is then implemented one more time t@iobsurface reflectance, without need
for the Lambertian surface assumption.

3.3 Algorithm Input

This section describes the input required to exethg LSA algorithm. The offline mode
and online mode have different requirements. TaBl@ésand 3.2 list them, respectively.
Figure 3.3 shows the relationship between LSA ahdroABI data.

Table 3.1. Summary of all inputs for ABI LSA algbiin offline mode.
Sensor input | TOA reflectance at five bands |

21



(Two weeks’ time series)

Viewing zenith angle

Solar zenith angle

Relative azimuth angle

Geolocation

Level 1b Quality Control (QC) flags

Aerosol optical depth and aerosol type

dynamic data

el Cloud mask
Ancillary . Surface albedo climatology
. Non-ggtlastatlc LUT
(Time series) Land/ocean mask
Non-ABI Water vapor content

Table 3.2. Summary of all inputs for ABI LSA algihwin online mode.

Sensor input

TOA reflectance at five bands

Viewing zenith angle

Solar zenith angle

Relative azimuth angle

Geolocation

Level 1b QC flags

Aerosol optical depth

Downward shortwave radiation(

Al et DSR) - surface
_ Cloud mask
Ancillary Surface albedo climatology
data Non-ABI static data LUT

Land/ocean mask

Non-ABI dynamic data

Pre-calcualted BRDF parameters

Water vapor content

Basically, the offline mode algorithm needs timeeseof all types of input data and the
online mode involves only the data sets at theecirobservation time. Different from

the offline mode, the online mode needs the dowdwghortwave radiation to calculate
the ratio of diffuse radiation. Accordingly, the lme mode needs the pre-calculated
BRDF parameters as the input. For one particulta dat, the online mode and offline

mode share the same data details, which are givéireifollowing subsections.
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TOA Radiance

y y

Cloud Mask AOD

y A 4

Downward Shortwave
Radiation- Surface

\ 4 ¢ A 4

Land Surface Albedo and Reflectancg

Figure 3.3 ABI products map showing relationshipsaeen the ABI LSA product and
other ABI data

3.3.1 Primary Sensor Data

Primary sensor data is information that is derigetkly from the ABI observations. The
primary sensor data used by the LSA algorithm idelboth the TOA radiance values
and relevant ancillary information (angles, geotmraand data quality).

Table 3.3. Input list of primary sensor data.

Name Type Description Dimension
Chi input| Calibrated ABI level 1b radiance at channgbtid (xsize, ysize
Ch2 input| Calibrated ABI level 1b radiance at channel|2grid (xsize, ysize
Ch3 input| Calibrated ABI level 1b radiance at channel|3grid (xsize, ysize
Ch5 input| Calibrated ABI level 1b radiance at channel|5grid (xsize, ysize
Ché input| Calibrated ABI level 1b radiance at channel|6grid (xsize, ysize

Latitude | input Pixel latitude grid (xsize, ysize
Longitude | input Pixel longitude grid (xsize, ysize
Solar zenith input ABI solar zenith angles grid (xsize, ysize
Solarazimutl} input ABI solar azimuth angles grid (xsize, ysize
View zenith| input ABI view zenith angle grid (xsize, ysize
a\z/ilrivl:lth input ABI view azimuth angle grid (xsize, ysize
QC flags | inputf ABI quality control flags with level 1b data | grid (xsize, ysize

23



3.3.2 Derived Sensor Data

There are three ABI derived sensor data produgsimed by the LSA algorithm: 1) the
ABI Cloud Mask (ACM) product, which indicates foaloudiness states for each pixel:
clear, probably clear, probably cloudy, and cloualyd 2) the ABI AOD product and 3)
the ABI Downward Shortwave Radiation — Surface (pffduct.

Table 3.4. Input list of derived sensor data.

Name Type Description Dimension
Cloud mask| input ABI cloud mask product grid (xsiysize)

AOD input ABI AOD product grid (xsize, ysize)

DSR input ABI DSR product grid (xsize, ysize)

3.3.3 Ancillary Data

Ancillary data are data other than the ABI sensut derived data (Table 3.6). The
following lists and briefly describes the ancillatgta required to run the LSA algorithm.

Land/water mask
The ABI LSA products are generated over land pixelly. Land/water mask is
used to mask water pixel.

Water vapor content

The atmospheric water content information is usadatmospheric corrections
and the coefficients stratification of the algonithIf such information is not
available from the ABI derived sensor data, the RGEhour forecasting data
will be applied.

LSA Climatology

The albedo climatology includes the mean and vedaf land surface spectral
and broadband albedos. The albedo climatology véllused as the background
values in the albedo estimation. Multiple years’ MIS albedo products are
averaged and used as climatology.

Look-Up table
In order to improve the computational efficienclie tatmospheric parameters
have been pre-calculated using the 6S simulatidrstored into the look-up table
(LUT). LUT is a type of static input to the algdmih and all codes share the same
set of LUT. The parameters in the LUT include:

» Atmospheric intrinsic reflectance

» Total global gas transmittance

» Downward total scattering transmittance
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» Upward total scattering transmittance
» Total spherical albedo

» Optical dep
* Direct irradi

th
ance ratio

After a sensitivity analysis, we select the entésour LUT by balancing the
accuracy and the computational efficiency (Tab%.3.

Table 3.5 Entries of LUT.

Entries to LUT

Values

Solar Zenith Angle 0.,5.,10.,15.,20.,25.,30.,35,4®,50.,55.,60.,65.,70.,75., 80.
Sensor Zenith Angle 0.,5.,10.,15.,20.,25.,30.,8544.,50.,55.,60.,65.,70.,75., 80.
0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100.,110.,

Relative Azimuth Angle

120.,130.,140.,150.,160.,170.,180.

Aerosol Optical Depth

.01,.05,.1,.15,.2,.3,.4,.6,.8.5,2.,3.,4.

BRDF parameters

BRDF parameters are useful for integrating albedd @&orrecting surface
reflectance. The parameters are the output of fiieeomode code and also the

input of the online

mode code.

Table 3.6 Input of ancillary data.

Name Type

Description

Dimension

Land/water mas

Kinput

A land-water mask

grid (xsize, ysize

Water vapor

inpyt NCEP water vapor 6-hour forecast datg

| grid (xsize, ysize

~"

Albedo
climatology

input

MODIS multiple years’ mean

grid (xsize, ysize

~"

Atmosphere LUT

Seven atmospheric parameters as functig

input

aerosol model, aerosol optical depth, AH
channel and observing geometry

nofl7x 17 x 19 x
14 x 5)*

Chlf iso inpuf BRDF isotropic component parameter at €igtid (xsize, ysize
Chlf vol inpuy BRDF volumetric kernel parameter at CHigrid (xsize, ysize
Chlf geo input BRDF geometric kernel parameter at Chigrid (xsize, ysize
Ch2f iso inpuf BRDF isotropic component parameter at €ig#id (xsize, ysize
Ch2 f vol inpuy BRDF volumetric kernel parameter at CHyrid (xsize, ysize
Ch2f_geo input BRDF geometric kernel parameter at CHayrid (xsize, ysize
Ch3f iso inpuf BRDF isotropic component parameter at €iy8id (xsize, ysize
Ch3 f_vol inpuj BRDF volumetric kernel parameter at CH3yrid (xsize, ysize
Ch3f _geo input BRDF geometric kernel parameter at CH3yrid (xsize, ysize
Ch5f _iso inpuf BRDF isotropic component parameter at Cgsid (xsize, ysize
Ch5 f_vol inpuj BRDF volumetric kernel parameter at CH5rid (xsize, ysize
Ch5f _geo input BRDF geometric kernel parameter at CHgrid (xsize, ysize
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Ch6 f_iso inpuf BRDF isotropic component parameter at Chéid (xsize, ysize
Ché6 f vol inpul BRDF volumetric kernel parameter at CHegrid (xsize, ysize
Ch6 f_geo input BRDF geometric kernel parameter at CH&yrid (xsize, ysize

* num_solar_zenith_angle * num_sensor_senith_anglart_relative_azimuth_angle *
num_aerosol_optical_depth * num_bands

3.4 Theoretical Description

After analyzing existing albedo algorithms, we pyspd an ABI LSA algorithm similar
to the earlier Meteosat (Pinty et al. 2000a, b) BISG/SEVIRI approach (Govaerts et al.
2010; Wagner et al. 2010). The albedo algorithnmfrthe geostationary Meteosat
observations combined atmospheric correction andBRitting by assuming one
unknown constant AOD for the whole period of tingaily). Here, we made several
major revisions. For example, AOD can vary overgimand multiple ABI spectral bands
enable production of multiple broadband albedosadidition, the formulation of the
atmospheric radiative transfer and surface diraeticeflectance model are also different.
Typically, our algorithm includes the following fosteps:

1. Deriving BRDF parameters. We directly obtain BRDy rinimizing the cost
function considering both prior knowledge and obatons.

2. Calculating spectral albedo, involving angular gregion of surface reflectance

3. Converting narrowband albedos to broadband albedo

4. Correcting surface reflectance by considering BRO#s surface reflectance will
be used as the surface reflectance product.

3.4.1 Calculation of BRDF parameters

The critical step of retrieving LSA and land sudaeflectance is to estimate the surface
BRDF parameters. In order to obtain these parasietge need to carry out the
atmospheric correction and BRDF fitting. A traditzd way (e.g. the MODIS albedo
algorithm) to achieve this is to implement themagafely in two steps. Here, we achieve
this in one step by combining both the atmosphextitative transfer process and BRDF
modeling in our optimization schema. The albedmatblogy is also used as a constraint
of optimization.

3.4.1.1 Atmospheric correction

Atmospheric effects include molecular and aerosaltsring and absorption by gases,
such as water vapor, ozone, oxygen and aerosolecMar scattering and absorption by
ozone and oxygen are relatively easy to correcaulmee their concentrations are stable
over both time and space. Because the effect afrwaipor absorption is significant, we

will use ABI water vapor retrieval (or the NCEP 6t forecasting data) to correct the
water vapor effect on ABI observations. The modfiadilt component of atmospheric

correction is to eliminate the effects of aeroselbjch requires accurate information on

26



the spatial distribution of aerosol properties thave to be estimated from satellite
observations.

There is a relatively long history of the quantitatestimation of AOD from remotely
sensed imagery (Liang 2004) using multiangularrimftion (Diner et al. 2005; North
2002) polarization information (Deuze et al. 200h)ltispectral information (Kaufman
et al. 1997; Liang et al. 1997) and multitemponébrmation (Christopher et al. 2002;
Hauser et al. 2005). The MODIS science team (Kanfetaal. 1997; Remer et al. 2005)
uses the dark-object method to estimate AOD fromIN®imagery over land for
climate study. However, its major limitation is gsitability only for densely vegetated
(“dark”) surfaces. If no dense vegetation canopiesdetected in a defined area (e.g., 10
km x 10 km for MODIS), no aerosol retrieval occuls.our recent study (Liang et al.
2006), we proposed a method using multitemporayrimétion of MODIS data. The
validation results (Zhong et al. 2007) indicated algorithm is very effective.

AOD is a standard product of GOES-R ABI data sti@eanHowever, the accuracy and
integrity of the ABI aerosol product may be insciint to calculate LSA. Our strategy is
to apply the ABI aerosol product as the “first-geiegalue. We then use an optimization
approach to improve the aerosol estimate and tonast the BRDF parameters

simultaneously. If the ABI aerosol product is ewtd as very accurate, we will mainly
focus on estimating the surface BRDF parameters. cdfesider this procedure as a
further adjustment of AOD product for better deteration of surface reflectance

anisotropy, rather than a completely new atmosplemirection procedure. To speed-up
the process, the atmospheric parameters are puételdt and stored in LUTS.

3.4.1.2 Land surface BRDF model

Performance of albedo retrieval from satellite obastons is usually restricted by a
limited sampling of directional surface reflectantlerefore, a model is usually used to
characterize the surface anisotropy. The modebeanverted with a finite set of angular
samples and used to calculate surface reflectanaeyi sun-view geometry and to derive
surface albedo. An empirical kernel-based BRDF rhedk be used in the ABI LSA
algorithm.

Maignan et al. (2004) found that among the curcbrectional reflectance models, the
best two are the three-parameter linear Ross—Lietraad the nonlinear Rahman—Pinty—
Verstraete model. However, all models fail to aately reproduce the sharp reflectance
increase close to the backscattering (hotspot pehfgction. Based on physical
considerations, Maignan et al. (2004) suggestedodifioation of the Ross—Li model,
without the addition of a free parameter, to ac¢don the complex radiative transfer
within the land surfaces that leads to the hot spgriature. They illustrated that the
modified linear model performs better than all oghe

This modified Ross-Li model will be used in the L@4gorithm and the mathematic
details of this model will be given in Section 3.5.
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3.4.1.3 Land surface albedo climatology

One of the most important features of our ABI LS§oaithm is the use of existing
albedo products as the prior knowledge. Many stgealhta including AVHRR, MODIS,
MISR, GOES are used for generating albedo proddttey may have different spatial
and temporal resolutions and coverage, but all igesvprimary knowledge on surface
albedo. We intend to integrate these products uslat fusion techniques and to
generate climatology (mean and variation). If tlagiation or uncertainty matrix of the
albedo climatology is small at the given space @me, our albedo algorithm estimates
albedo based mainly on the mean value of the puevmroducts. Otherwise, it relies
primarily on ABI observations.

In the original satellite albedo product, there arany “gaps” due to cloud cover and
other retrieval failure. NASA has funded a numbegmor studies that potentially will
contribute to an improved albedo climatology. Wevéhaeveloped a spatial-temporal
filtering technique to fill the gaps within MODISbedo products (Fang et al. 2007). We
have also explored different data fusion methods ¢han integrate albedo from different
satellite products, such dse Optimal InterpolatiofWang and Liang 2010a), Empirical
Orthogonal FunctioffWang and Liang 2010b), multiresolution tree (Waargl Liang
2010c) and others.

3.4.1.4 Calculation of spectral albedos

After obtaining BRDF parameters, it is straightfardl to calculate spectral albedos,
which are simply integrations of the surface dim@l reflectance functions over the
entire viewing hemisphere. The spectral albedosdareted as narrowband albedos in
the next section. Instead of directly carrying th& numeric integration, we calculate the
integral using an empirical polynomial equatiortlu# three kernel parameters, similar to
the MODIS albedo algorithm (Schaaf et al. 2002) Wbtails are given in Section 3.5.4.

3.4.1.5 Narrowband to broadband conversion

After the narrowband albedos are obtained from ititegration of the directional
reflectance model, narrowband to broadband corwessare carried out based on
empirical statistical relationships. The broadbadbledo mainly depends on surface
spectral albedo spectra, but is also affected &ytmospheric conditions. With extensive
radiative transfer simulations and surface refleotaspectral measurements, we have
developed the conversion formulas for calculatihg total shortwave albedo, total-,
direct-, and diffuse-, visible, and near-infrareddriband albedos for several narrowband
sensors (Liang 2001; Liang et al. 2003), includk§TER, AVHRR, GOES, Landsat-7
ETM+, MISR, MODIS, POLDER, and VEGETATION in SPOPpacecraft. A similar
approach was later applied to generate the comvefsirmula for VIIRS (Liang et al.
2005a). The formula for MODIS has been used fotineualbedo production (Schaaf et
al. 2002), the MISR formula for calculating shorgaalbedo is very effective (Chen et
al. 2008), and the VIIRS formula will be used fgreoational albedo production. The
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same strategy also will be used to covert five ABirowband albedos to one broadband
albedo.

3.4.1.6 Derivation of surface reflectance

Traditional atmospheric correction does not accdantthe surface BRDF effect. The
surface reflectance products derived from this tgyfemethods are based on the
assumption that the surface is Lambertian (e.g. MOBurface reflectance product
(Vermote et al. 2002)). As the byproduct of ABI LS@ur ABI land surface reflectance
products will take full advantage of BRDF infornmati gathered in the process of
retrieving albedo. We calculate the surface redlece from the Qin et al. (2001)'s
equation by considering the coupled BRDF effectéwben the surface and the
atmosphere. The BRDF parameters from the offlineden@and ABI AOD when
applicable will be the input of our surface reflaute algorithm.

3.4.2 Mathematical Description
This subsection gives the mathematical detailb®fsteps above mentioned.

3.4.2.1 Land surface BRDF model

A simple linear model is adopted to represent tindase BRF. The modified three-
parameter linear Ross—Li BRF model can be writee(Maignan et al. 2004):

rdd (Hs’€v7¢) = fiso + fvol |:Kvol (HS’HV’¢) + fgeo |:ngo(63’6v7¢) (1)

where the volumetric and geometrical kernel functias the following form:

y :(n/2—5)c055+5|n5 14 1 _m )
cosé, + cosb, 1+ 7 4
$o
Ko =0(6,,6,,9) —sedd, —sed, + 05(L+ cosé e, sed, 3)
and where
O =(t —sintcost)(sed, +sedd,)/ i 4)
h,/D? + (tand, tand, sing)*
cost = \/ (tand, tand, sing) )(5
b(sedd, +sedd,)

D= \/ tan’ g, +tan” 6, — 2tand, tané, cosp (6)
cos¢é = cosH, cosf, +siné, sind, cosy (7)
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and whereé,=0.026, E:Z.O, and all the angles have the unit of radian.

3.4.2.2 Formulation of TOA reflectance

To retrieve AOD and the parameters of the surfaB®B from TOA reflectance, we
have to establish TOA reflectance as a functioBRDF and AOD. Here, we use the
formulation proposed by Qin et al. (2001). The falanfor TOA BRF p(Q,,Q,)is

expressed as:

T(QS)R(QS’QV)T(QV)_tdd (Qs)tdd (Qv)|R(Qs’Qv)|p
1-r.0

where Q_ 0O (-x,,@)is the solar incoming direction, an@, O(4,,¢,) for the viewing

direction. There are two groups of coefficients the above expression that are
independent of each other: atmosphere-dependent samfhce-dependent. These
coefficients in each group represent the inhereopgrties of either the atmosphere or
the surface. This means that we can determine theeegroups of coefficients
separately.

p(Qs1Qv) =pO(Qs1Qv)+

(8)

For the atmospherep,(Q,,Q,) is the atmospheric reflectance associated with pat
radiance (zero surface reflectance), gni$ the atmospheric spherical albedo as defined
before. The transmittance matrices are defined as:

T(Qs) = [tdd (Qs) tdh (Qs)] 9)

T(Q,)= [tdd Q) ty (Qv)]T (10)

where the subscript T stands for transpose, eaoBriittance has two subscript symbols:
d (directional) and h (hemispherical).

The direct transmittance,( ) has the simple analytical expressiap:(x) = exp(-7, /u).

The directional-hemispheric transmittandg X defines the fraction of downward diffuse

flux generated by atmospheric scattering as thectlibeam passes through the
atmosphere. It can be calculated as the ratioeofritegrated sky radiance at the surface

level L'(Q,,Q,) over the downward hemisphere to the TOA incomivigrsradiation:
- Ll (Qs’Qv)ﬂdev
tin(Q,) == (11)
HsFo
The hemispheric-directional transmittandg, () is defined as the ratio of the integrated

upwelling TOA radiance over the upper hemispherthéoupwelling flux at the surface
level F':
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[, L(@,Q,)ude,
F' '

tha (Q,) = (12)

where botht, and t,, have to be calculated numerically. A practical S8ohuis to create
look-up tables in advance.

For the surface, the reflectance matrix is defiagd

ria (Qs,Q,) Ty (Qs):| 19)

rhd(gzv) rhh
where r(Q,,Q,) is bi-directional reflectance and equivalent te tBidirectional

Reflectance Factor (BRF) defined by Eg. (1). Thredional-hemispherical reflectance (
ry, (Q,) (or black-sky albedo) is defined as:

RQ.,Q,) :{

1
()= [, 1(@,,2,)dQ,. (14)

where the integration is over the upper hemisph&te hemispherical-directional
reflectance (,(Q,) (or white-sky albedo) is defined in the same way,the integration

is over the lower hemisphere:
1
(@) = [, (9,0, (15)

The bi-hemispherical reflectanceg,() is:

1
rlhh = 2_[0 rdh (lus )lusd:us (16)
where u, =cos@, ).

The determinanﬂ is easily calculated as:
|R(Qs’ Qv)| =Ty (g, Q, )y — T Q)1 (Q,) (17)

It is evident that as long as surface BRDF is knae surface reflectance matrix can be
determined. The authors claim that this approads dwt introduce any approximation
into the formulation, and their numerical experitsetemonstrate that this formulation is
very accurate (Qin et al., 2001).

3.4.2.3 Determination of AOD and BRDF parameters

Given the surface BRDF model (1) and the atmosphadiative transfer model (8), the
three BRDF parameters and AOD at each observatiorbe obtained by minimizing the
following cost function:
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I =(r()=1,)BT(r(x)-1,)+(2(X) - AR (AN~ p) +I. =, + I, +J,  (18)

Wherex are the three coefficients of the surface BRDF ehahd AOD, r(x) is the
calculated surface albedo using the BRDF model (l)are the "first-guess” values of
albedo from albedo climatology (see Section 3.4,B3s the uncertainty matrix of the
albedo “first-guess” valuegp,is the observed ABI TOA reflectance is the calculated
TOA reflectance from equation (8), and R is theematrix of the calculated TOA
reflectance.J;is the cost function to account for various consgalJ, is the cost

function of the background, and, is the cost function of the ABI data fitting.

If the ABI AOD product is accurate, we estimateyotiiree coefficients of the surface
BRDF model. The optimization process is then mugipker. If the accurate AOD is not
available, we will estimate AOD and the BRDF partargesimultaneously.

There are many different approaches available fonimizing the cost function. We
employ the Shuffled Complex Evolution method (SCE;Duan et al. (1992) and Duan
et al. (1993)), an efficient algorithm in searchgigbal optimals. The SCE-UA method is
capable of handling high parameter dimensionatity ia does not rely on the availability
of an explicit expression for the objective funatior the derivatives.

3.4.2.4 Calculation of spectral albedo

An angular integration over all the viewing angiegequired to calculate albedo from
BRDF parameters. Instead of directly calculating ititegral, we use a similar method to
MODIS (Schaaf et al. 2002), fitting blacksky albesith a polynomial function:

(by + b6, +b,8,” +b.6.”)

2 3
+ fgeo(co + Clgs + ngs + 0393 )

abs(gs) = fisoa+ f

vol

(19)

Where 6, is solar zenith angle, and,,a,a,,b,,b,b,,c,,c,c, are the regression

coefficients, whose values are listed in Table Similarly, the whitesky albedo can be
computed by using the equation:

= figat fab+fcC (20)

vol

Table 3.7. Coefficients used to calculate albedmfBRDF parameters.

Variable Value
a 1.0
bo -0.0374
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b1 0.5699
b, -1.1252
b3 0.8432
Co -1.2665
C1 -0.1662
C 0.1829
Cs -0.1489
1.0

0.2260

Cc -1.3763

3.4.2.5 Calculation of all sky albedo

Using the equation (19) and (20), we can obtairh léck-sky and white-sky albedo.
Given the black-sky and white-sky albedo, the kjl-slbedo a can be calculated by:

a=pa,+Q1-pa, (21)

where p is the diffuse fraction of the total radiat p can be obtained through its
empirical relationship with the ratio k of totakwlation to extraterrestrial solar radiation
(Orgill and Hollands 1977):

1577- 184k 035< k < 075
1- 024%,k < 035 (22)
0177k > 075

P

The insolation can be obtained from ABI DSR prodant the extraterrestrial solar
radiation ki can be easily calculated from the solar constant ¢

E, = ccosb, (23)
where &, is solar zenith angel.
3.4.2.6 Calculation of broadband albedo

The broadband albedo can be converted from spealibgidos using the following
empirical formula:

1(8,) = By + BFI(6) + BFoT,(8.) + BoF s (8.) + BFoly () + BF s (6)  (24)
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where r,(6,) are the spectral albedq are the coefficientsF, are the normalized
downward irradiance of the ABI five bands:

Ei (65)

F = (25)
E,(6,) + E,(6;) + E5(6,) + E5(6,) + Eq (6,)

and E (6, )are the downward irradiance of each band (at theifsp solar zenith angle).
Radiative transfer simulations and statistical gsialprovide the coefficienfs .

3.4.3 Algorithm Output

The outputs of the LSA algorithm offline mode maimclude the three parameters of
the BRDF model for each ABI band (Table 3.8), whigh be used as one input of the
online mode. The final outputs of the LSA algoritlanline mode are instantaneous
albedos and reflectances. These albedo valuesemtdtion of their meaning are given
in Table 3.9. BRF at five bands are also producetha by-products of LSA. However,
the availability and quality of albedo and reflexta products are slightly different due to
the difference between their theoretical algorithases. Accordingly, the BRF products
are organized in separate files (Table 3.10).

Table 3.8. Outputs of the ABI albedo algorithm iokl mode.

Name Type Description Dimension
Chlf iso | float]| BRDF isotropic component parameter at CH1grid (xsize, ysize
Chlf vol | float BRDF volumetric kernel parameter at Ch1| grid (xsize, ysize
Chlf geo | float BRDF geometric kernel parameter at Ch1| grid (xsize, ysize
Ch2f iso | float]| BRDF isotropic component parameter at CH2grid (xsize, ysize
Ch2f vol | float BRDF volumetric kernel parameter at Ch2| grid (xsize, ysize
Ch2 f_geo | float BRDF geometric kernel parameter at Ch2| grid (xsize, ysize
Ch3f iso | float| BRDF isotropic component parameter at CH3grid (xsize, ysize
Ch3f vol | float BRDF volumetric kernel parameter at Ch3| grid (xsize, ysize
Ch3f geo | float BRDF geometric kernel parameter at Ch3| grid (xsize, ysize
Ch5f iso | float| BRDF isotropic component parameter at CH5grid (xsize, ysize
Ch5f vol | float BRDF volumetric kernel parameter at Ch5| grid (xsize, ysize
Ch5f geo | float BRDF geometric kernel parameter at Ch5| grid (xsize, ysize
Ch6 f iso | float] BRDF isotropic component parameter at CH6grid (xsize, ysize
Ch6 f vol | float BRDF volumetric kernel parameter at Ch6| grid (xsize, ysize
Ch6 f_geo | float BRDF geometric kernel parameter at Ch6| grid (xsize, ysize

Quality flag for each pixel, indicating tlgenera
QF char retrieval quality

PQI char | Quality control flags for each pixel, indicating grid (xsize, ysize

grid (xsize, ysize
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| additiona BRDF quality |

Table 3.9. Outputs of the ABI albedo algorithm nalmode: LSA

Name | Type Description Dimension
Alct:)gil o float Derived narrowband albedo value at Op7 grid (xsize, ysize
Alct:)gilo float Derived narrowband albedo value at Ouéd grid (xsize, ysize
Alct:)geélo float Derived narrowband albedo value at 0,86 grid (xsize, ysize
Alct:)ggo float Derived narrowband albedo value at 1,61 grid (xsize, ysize
Alct:)ggo float Derived narrowband albedo value at 2,26 grid (xsize, ysize

Sg‘l)gg’é%v float Derived broadband albedo value at 0.44810 | grid (xsize, ysize
A|g?:do char Quality flag for reea;;:iz\f);i(:ll,];?igi/cating the generg lgrid (xsize, ysize
"o | char | itonal dagnost momaton | 10 (ize. ysize

Table 3.10. Outputs of the ABI albedo algorithmioalmode: BRF

additional diagnostic information

Name | Type Description Dimension
Ch1BRH float |perived bidirectional reflectance value at Oy grid (xsize, ysize
Cch2 BRA float |perived bidirectional reflectance value at 0,61 grid (xsize, ysize
ch3 BRA float [perived bidirectional reflectance value at 0,86 grid (xsize, ysize
Cch5 BRA float |perived bidirectional reflectance value at 1,61 grid (xsize, ysize
ché BRA float  [perived bidirectional reflectance value at 2,26 grid (xsize, ysize
BRF QF| char Quality flag for reea;ﬁzvpeili(zll;;rl]igi/cating the generd Igrid (xsize, ysize
BRF PQI| char Product Quality Information for each pixel, indicaf] grid (xsize, ysize

Correspondingly, we also have three groups of Quéliag (QF) and Product Quality

Information (PQI) information. One is for the imeediate BRDF parameter products,

the second group is for albedo products, and ting group is for reflectance products.

QF is a mandatory quality information required b$FR> The three groups of QF are

defined in Tables 3.11-13.
Table 3.11. QF definition of ABI intermediate BRP&rameter products
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Bit

Name

Value

0 Overall quality 0=good, 1 = bad or missing
1 Land mask O=land, 1=water
2 Number of cl_ear O=sufficient, 1=insufficient
sky observations
3 | Convergence flag 0=good, 1=bad
4
2 Empty Reserved for future usage
7
Table 3.12. QF definition of ABI LSA products
Bit Name Value
0 Overall quality 0=good, 1 = bad or missing
1 Land mask O=land, 1=water
2 Cloud O=clear, 1=cloud
3 BRDF 0O=good BRDF, 1= bad or missing BRDF
0= LZA <=70 degrees,
4 LZA 1 =LZA > 70 degrees
5
6 Empty Reserved for future usage
7
Table 3.13. QF definition of ABI BRF products
Bit Name Value
0 Overall quality 0=good, 1 = bad
1 Land mask O=land, 1=water
2 Cloud O=clear, 1=cloud
3 LZA 0= LZA <=70 degrees,

1=LZA > 70 degrees
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4 BRDF 0= good BRDF, 1= bad or missing BRDF

5 AOD 0=AOD is good, 1=No AOD or AOD is bad
g Empty Reserved for future usage

PQI contains additional quality information. Thefid#ions of the three PQIs are given
in Tables 3.14-16, respectively.

Table 3.14. PQI definition of ABI intermediate BRIpArameter products
Bit Name Value

0 Land mask O=land, 1= water

00= full BRDF inversion, 01= low quality
1 BRDF inversion (magnitude inversion only
BRDF inversion 10=failure of BRDF inversion due to no
enough clear sky observation, 11= failure| of

N

2
BRDF inversion due to other reasons.
3 , 00=high quality data, 01=data produced but
4 Data quality with low quality, 10=no data
5
6 Empty Reserved for future usage
5
Table 3.15. PQI definition of ABI LSA products
Bit Name Value
0 Land mask O=land, 1= water
1 00=clear, 01=probably clear, 10=probably
2 Cloud mask cloudy, 11=cloudy
00= full BRDF inversion, 01= low quality
3 BRDF inversion (magnitude inversion only),
BRDF inversion 10=failure of BRDF inversion due to no
4 enough clear sky observation, 11= failure| of
BRDF inversion due to other reasons.
5 , 00=high quality data, 01=data produced but
6 Data quality with low quality, 10=no data
7 Empty Reserved for future usage
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Table 3.16. PQI Definition of ABI BRF products

Bit Name Value

0 Land mask O=land, 1= water

1 Cloud mask 00=clear, Olzprobablz/ clear, 10=probably
2 cloudy, 11=cloudy

3 BRDF input 0=BRDF input, 1=Lambertian assumption
4 AOD input 0=AOD is available. 1 = no AOD

5 , 00=high quality data, 01=data produced but
6 Data quality with low quality, 10=no data

7 Empty Reserved for future usage

Besides the QF and PQI, each file of BRDF paramsele8A and BRF products also
comes with metadata information. The metadata mébion is given in Tables 3.17-19.

Table 3.17. Metadata of ABI intermediate BRDF pagtenproducts

Metadata | Source Definition
Date common Beginning and end dates of the product
Time common Beginning and end times of the product
Dimension | common Number of rows, number of columns
Product | common The ABI land surface BRDF parameter product
Name
Satellite common GOES-R satellite name
Instrument | commor] ABI
Version common Product version number
Data type BRDF Data type used to store BRDF paranset
Scale BRDF Scale used to stretch BRDF parameters
Offset BRDF Offset used to stretch BRDF parameters
Filling BRDF Value representing no data produced
Value
Product Unitf BRDF BRDF parameters are dimensionless
Compositingl BRDF The compositing time period used to derive BRD
Period parameters.
QF BRDF Number of QF flag values
categories
QF BRDF Percent of retrievals with each QF flag value
percentages

Table 3.18. Metadata of ABI LSA products
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Metadata | Source Definition
Date common Beginning and end dates of the product
Time common Beginning and end times of the product
Dimension | common Number of rows, number of columns
Product | common The ABI land surface albedo product
Name
Satellite common GOES-R satellite name
Instrument | commor] ABI
Version common Product version number
Data type LSA Data type used to store albedo values
Scale LSA Scale used to stretch albedo
Offset LSA Offset used to stretch albedo
'\:/'leg LSA Value representing no data produced
Valid Range| LSA Valid range of albedo values, 0-1
Product Unit| LSA Albedo is dimensionless
Compositing] LSA The compositing time period used to derive BRDF
Period parameters.
. LSA Maximums, minimums, means and standard deviati
Statistics
of albedos
QF . LSA Number of QF flag values
categories
QF LSA Percent of retrievals with each QF flag value
percentages
Table 3.19. Metadata of ABI BRF products
Metadata | Source Definition
Date common Beginning and end dates of the product
Time common Beginning and end times of the product
Dimension | commor Number of rows, number of columns
Pl\rlztrj#ea common The ABI land surface reflectance product
Satellite commor GOES-R satellite name
Instrument | common ABI
Version common Product version number
Data type BRF Data type used to store reflectanteeg
Scale BRF Scale used to stretch reflectance
Offset BRF Offset used to stretch reflectance
l\:/I!‘BllllTjg BRF Value representing no data produced
Valid Range| BRF Valid range of reflectance values, 0-2
Product Unitt BRF Reflectance is dimensionless
Compositingl BRF The compositing time period used to derive BRD
Period parameters.
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Statistics BRF Maximums, minimums, means and standard dewisit
of reflectances
QF BRF
categories Number of QA flag values
QF BRF Percent of retrievals with each QF flag value
percentages
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The algorithm will be tested using three types aixy data: MODIS, SEVIRI and the

4 TEST DATA SETS AND OUTPUTS

simulated ABI data.

4.1 Input Data Sets and Ground Measurements

4.1.1 Proxy Input Data

One characteristic of the ABI LSA algorithm is tlitatiakes advantage of two features of
ABI measurements -- high temporal refreshing rates multi-spectral configuration -- to

achieve the goal of retrieving atmospheric condgiand surface BRDFs simultaneously.
However, no existing satellite sensors can provideal proxy data with such

characteristics to facilitate our algorithm verdion activities. We use both MODIS and
MSG/SEVIRI data here. MODIS has similar spectraifiguration (seven bands for the
land application) to ABI. However, MODIS is a palditing sensor and maps the
Earth surface only twice in most cases even if araline both Terra and Aqua satellites.
The current geostationary satellites (e.g. GOESGMBave high refreshing rate, but
none of them has as many bands as ABI. Table 4t4 tine visible and near infrared

bands of the MSG/SEVIRI, MODIS and ABI.

Table 4.1. Comparison of SEVIRI, MODIS and ABI esftive bands.

Sensor Ieesrglﬂﬁgl] Chl\(fljl(;l. nel Waveliz:r?lt)h Cente Bandwidth (1im)
15mir 1 0.47 0.45 — 0.49
2 0.64 0.59 — 0.69
ABI 3 0.86 0.85—0.88
5 1.61 1.58 — 1.64
6 2.26 2.23-2.28
15mir 2 0.63¢ 0.56- 0.71
SEVIRI 3 0.81 0.74- 0.8¢
4 1.6¢ 1.50- 1.7¢
MODIS Polar- 1 0.64¢ 0.62-0.67
orbitting 2 0.85 0.820.€8
3 0.46¢ 0.46-0.48
4 0.55¢ 0.E5-0.57
5 1.24; 1.25-1.2¢
6 1.62¢ 1.€3-1.6E
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7 2.11¢ 2.11-2.16

4.1.1.1Simulated Data

Since none of existing satellite sensors can pepdoxy data with both the high
temporal resolution and multiple-channels as ABkdaimulation will be the only way
to test our algorithm’s ability to handle ABI ddtefore GOES-R is launched. We use
Qin et al. (2001)’s formulation of atmospheric r#die transfer to simulate TOA signals
and assure the simulated TOA signals have theviollp properties:

. Use the ABI band configuration and band responsetions.
. Bear the realistic observing geometry and refregshéte of ABI.
. Consider the couple between the atmosphere anaceUBRDF.

In order to simulate the signals received by thaceporne sensors, both the surface
properties and atmospheric parameters are neededdition to the sensor response
functions. We use the BRDF parameters from the M®&bedo products as the input of
surface properties. The AOD data come from thel freéasurements at SURFRAD sites
as the atmospheric conditions. Similar to the s@dration, AOD is also measured every
3 minutes using visible Multi-Filter Rotating Shadmand Radiometers (MFRSR).
SURFRAD AOD measurements include five bands (415@.6, 613.5, 671.7 and
867.5nm). However, the 6S simulation requires ti@DAnput at 550nm. We calculate
this value using the Angstrom Equation:

r,=B1"

where A is the wavelength7, is the AOD atA. a and B are coefficients, which

are obtained through the linear regression if AOEBasurements at three bands are valid.
An example of such time series of AOD at 550nmivegin Figure 4.1.
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Figure 4.1 An example input of AOD time serieshet Bondville site. The AODs at
550nm are calculated from AODs at other bands usieghngstrom Equation.

4.1.1.2 MODIS Data

We carried out two types of validation activitiesing MODIS as proxy data. First, we
extracted the point data over the SURFRAD and ARhexi sites for the whole year of
2005 and directly compare our retrievals with fieléasurements. We also generated a
time series of ten days’ MODIS data as proxy datéest the operational ability of the
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LSA algorithm over 2D images. MODIS is a polar-t¢iriy sensor. The L1B MODIS
swath cannot be directly used to stack the timesdrecause each of these swaths has
different spatial coverage. We have to projecttad MODIS L1B swath data to a
common map projection. MODIS radiance, geolocatiata and MODIS cloud mask,
water vapor and AOD products, covering the MODIS H11V04 and the period of May

1 to 10, 2005, are downloaded. We used the MODI&dgection Tool to project these
data sets to MODIS’s sinusoidal map projection. phaiected data will be passed to
AIT and used as the test dataset. The detailedn#tion of these datasets is given in
Table 4.2.

Table 4.2. Detailed information of MODIS test dagds

?\Ia;?nsst Description File names* Dimension
MoDo2 | MODIS/Terra H10V4.AYYYYDDD.HHMM.hdf 1200%1200
TOA Radiance
Mopog | MODIS/Terra H10V4.AYYYYDDD.HHMM.hdf 1200*1200
Geolocation
MODIS/Aqua "
MYDO2 | T5A Radiance H10V4.BYYYYDDD.HHMM.hdf 1200%1200
MyDo3 | MODIS/Aqua H10V4.BYYYYDDD.HHMM.hdf 1200%1200
Geolocation
MODO4 MC’AZ'f)g) ‘T"a MODO04.H10V4.AYYYYDDD.HHMM.hdf 120*120
MYDO04 M%Z'g@)?“a MYDO04.H10V4.AYYYYDDD.HHMM.hdf 120%120
Mopo7 | MODIS/Terma |\ oh07 110v4.AYYYYDDD. HHMM. hdf 240*240
Water Vapor
MyDo7 | MODIS/AQua |\ 0o 11 0v4. AYYYYDDD. HHMM. hdf 240*240
Water Vapor
Mop3s | MODIS/Terma | \\shee | 5 H10V4.AYYYYDDD.HHMM.hdf | 1200%1200
Cloud Mask -
MyD3s | MODIS/AQua | o hae | 5 H10v4.AYYYYDDD.HHMM.hdf | 1200%1200
Cloud Mask -
McDa3 | MODIS albedc| oy /s 110 va AYYYYDDD.HHMM.hdf | 1200%1200
climatology

*YYYY = year, DDD = day, HH=hours and MM = minuteall times are in UTC

4.1.2 Ground Measurements

Albedo measurements over SURFRAD and AmeriFlux osts/ are used in our

validation (Table 4.3 and Table 4.4). Albedo iscaddted as the ratio of outgoing and
incoming solar irradiance. Incoming and outgoingrslkave radiation is measured every
3 minutes at SURFRAD sites using the Eppley PreciSpectral Pyranometers (PSP),
which are calibrated annually. The spatial and t@m@&p representation of field

measurements and satellite retrievals are usudfgreht. The averages of albedo over
30 minutes are used to compare with instantanelbesi@ retrieved by our algorithm to
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mitigate the mismatch. The MODIS albedo productgeha temporal resolution of 16
days. The corresponding averages of field measursnage used to match MODIS data
sets. Different from the measurements at SURFRAdM) fdata at the AmeriFlux sites
contain only the radiation in the visible spectrugo the validation results at these
AmeriFlux sites are only for visible albedo.

Table 4.3. Information of SURFRAD Stations

Site No. Site Location Latitude [Longitudg SINEEs
types
1 Bondville, IL 40.05 -88.37 Crop
2 Desert Rock, NV 36.63| 116:02|  Open
shrub
3 Fort Peck, MT 48.31| -105.10 Grass
4 Goodwin Creek, MS 34.05| 89.87 Deciduou
Forest
Pennsylvania State -77.93 | Mixed
5 University, PA 40.72 Forest
6 Sioux Falls, SD 43.73 -96.62 Forest
Table 4.4. Information of AmeriFlux Stations
Site No. Site Location Latitude| Longitude
1 Fort Peck 48.31 -105.1d
2 Fermi(Prairie) 41.84 -88.24
3 Mead(Irrigated) 41.17 -96.48
4 Mead(Rain fed) 41.18 -96.44

4.2 Output from Proxy Data

4.2.1 Output from Simulated Data

More validation work using simulated ABI data isgoimg. Preliminary results show our
retrieval could capture the BRDF distribution wetider a variety of atmospheric and
surface settings. One example is given in Figuge Although the two BRDF data sets
come from different empirical models, they haveikinreflectance distribution shapes.
However, due to the feature of the BRDF model we insthe albedo algorithm, a hot-
spot effect is noticeable in our retrieved BRDRritsition.
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Retrieved BRDF Simulated BRDF
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Figure 4.2 The retrieved BRDF and the actual BRB&dun the simulation at ABI red
and near infrared bands.

4.2.2 Output from 2D MODIS Data

The LSA algorithm was carried out on these timéesenf 2D images to generate albedo
maps at each observation time. The retrieved bigcktbedo on May %, 2005 around
48.3°N, 102.8°W is shown in Figure 4.3. The MODI&dBsky albedo for the same time
and location is also shown. Our estimation captarssnilar spatial pattern to MODIS
data but has slight underestimation (Figure 4.4).
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Figure 4.3 The blacksky albedo maps on May 1st5200und 48.3°N, 102.8°W.
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Figure 4.4 Comparison between our retrieved allzadbMODIS albedo.

4.2.3 Output from MODIS Data over Field Sites

The direct validation results of our retrieved @be&alues at SURFRAD are shown both
in time series (Figure 4.5) and scattering plotgyfe 4.6). Generally, the retrieved
albedo values match well with field measurements.the non-snow cases (Desert Rock
and Goodwin Creek), the Root Mean Square Errors§RMare quite small, although the
R? values are rather low due to the small range bédo variations. The undetected
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clouds may be the main cause of albedo overestmati Desert Rock. At Goodwin
Creek, both our estimations and MODIS products slightly lower than field
measurements. This may come from the inaccurategeptations of aerosol types. Both
our retrievals and MODIS albedo data can reasona@plesent the seasonal snow albedo
over Bondville, Fort Peck and Sioux Falls. Our iestal algorithm requires shorter
compositing window, which makes it possible to é&ettcapture the rapid
snowfall/melting processes when ABI data are abéela
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Figure 4.5. Time series of validation results & LHEA algorithm using MODIS as proxy
data in 2005 over six SURFRAD sites.
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The validation results at four AmeriFlux sites al@wn in Figures 4.7-9. The results
shown here are visible albedo because only irraémrin the visible spectrum are
measured at these sites. Similar to the resul®JRFRAD, our algorithm can capture
the annual curves of albedo, but produces largerseffor rapidly changing surfaces.
Overall, the RMSE of our retrievals at these fotlessis much smaller than that of
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Figure 4.6 Scattering plots of our retrieved albeder SURFRAD

MODIS products (Figure 4.9).
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Figure 4.9 The overall quality of our retrievedeadb and MODIS albedo products using
all the four AmeriFlux sites data over year 2005.

4.2.4 Summary of Estimate Accuracy and Precision

The validation results of the six SURFRAD sites gireen in Figure 4.10. Compared
with MODIS albedo products, our algorithm perforsightly better in terms of bias,
RMSE and R We should also notice that our algorithm producesh more data than
MODIS, because our products are instantaneous WADDIS products are 16-day
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composite values. The listed accuracy requiren@mABI albedo is 0.08 albedo unit and
the error (RMSE) of our retrievals is 0.01. In terof RMSE (precision), we achieve a
value of 0.06 while the F&PS requirement is 10%b(€at.5). For the real ABI data, we
expect even higher accuracy, since the ABI datee hmvtemporal resolution of 15
minutes, providing sufficient data within a shortme period, which is extremely
important for the cases of rapidly changing surfgceperties, such as transitions

between snowfall and snow melting.
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Figure 4.10 The overall quality of our retrievededo and MODIS albedo products
using all the six sites data over year 2005.

Table 4.5. Information of AmeriFlux Stations

Our algorithm | MODIS Products|F&PS Requirement
Accuracy(Bias) 0.01 0.04 0.08
Precision(RMSE) 0.06 0.07 10%
R? 0.82 0.65 N/A

51



52



5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

Accurate retrieval of albedo requires reliable asitjon of atmospheric parameters.
Forward running of atmospheric radiatve transferdehbois time-consuming and not
suitable for operational retrieval of albedo. lastethe LSA algorithm pre-runs the
atmospheric radiative transfer at some given canditand stores the parameters into the
LUTSs to save computational time.

The current version of the LSA algorithm includesagptimization process. To speed up
the iterative process, we may have to limit the benof iterations or adjust the iteration
convergence criteria.

5.2 Programming and Procedural Considerations

The LSA algorithm is purely a pixel-by-pixel algthnin. However, it requires a time
series of clear-sky observations to achieve enanigimation to inverse BRDF models.
Given the data volume of full disk albedo produdtss inefficient to gather a stack time
series data over all pixels at each ABI scannimgtiGiven that the BRDF parameters do
not vary greatly over a short period of time, we tise pre-calcualted BRDF parameters
from the previous day to save computational timeorider to achieve this, we divide our
algorithm into two parts, online and offline modesspectively.

5.3 Quality Assessment and Diagnostics

The retrieval process of albedo will be monitorewl dhe retrieval quality will be

assessed. A set of quality flags will be generatétl the albedo product for retrieval
diagnostics. These flags will indicate the retrles@nditions, including the land/non-land
mask, clear/cloudy sky. These flags also indicates data quality (are clear sky
observations sufficient? Is the data quality of A@Dable? Is a full inversion of BRDF
successful?). The detailed information is docuneeiieSection 3.6.

5.4 Exception Handling

The LSA algorithm checks for conditions where thbedo retrieval cannot be
performed. These conditions include the failuresefsors, such as saturated channels or
missing values. They also include the conditiongnvhontinuous clouds are present so
that there are no enough clear-sky observationdetthhese circumstances, we will:

» Provide filling value for albedo when no enoughacleky input is available.

» Provide filling value for surface reflectance wrtae observation is cloudy.
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5.5 Algorithm Validation

A summary of our previous validation results hasrbgiven in Section 4. In order to
qguantify the retrieval errors and improve the isi@n algorithm, we need to carry out
more extensive validation work before and afteunth of the GOES-R satellite. Albedo
is continuously measured by several surface meas&umenetworks, such as Atmospheric
Radiation Measurement at the Southern Great PIa88i$RFRAD, and Ameriflux
projects. Albedo measurements at more than a hdrsites are available for pre-launch
and post-launch validation. We have conducted albealidation extensively during
recent years (Chen et al. 2008; Liang et al. 20@hg et al. 2005b), and will continue
this activity for the ABI albedo product over mawerface types.
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6 ASSUMPTIONS AND LIMITATIONS

The following sections describe the assumptionsd@veloping and estimating the
performance of the current version of ABI LSA aigfam. The limitations and potential
algorithm improvement are also discussed.

6.1 Performance

The following assumptions have been made in devsjopand estimating the
performance of the ABI LSA algorithm:

» Surface BRDF is the revised linear kernel modehwhtree coefficients.

» Surface anisotropy is constant within days throaghoving window and can be
represented by the linear kernel model.

» The reciprocity principle is valid at ABI resoluis.

6.2 Assumed Sensor Performance

The ABI LSA algorithm requires a time series ofatleky TOA reflectance inputs. The
number of clear sky observations within a shortetiperiod will influence the retrieval

quality of LSA and corresponding land surface iface by-products. Additionally, the
algorithm relies on the cloud mask product to dmish clear-sky observations from
cloud sky observations. The retrieval accuracy dégmends on the quality of cloud mask.

6.3 Algorithm Improvement

The introduction of prior knowledge such as theoselr types, BRDF and albedo
climatologies will improve the retrieval quality &fSA and land surface reflectance.
Currently, we use the multiyear’'s mean and variasfcklODIS albedo products as one
of the constraints in our optimization code. We @argrently working on analyzing more
existing satellite albedo and BRDF products andamneffort to incorporate as much
background knowledge as possible.
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