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[1] The algorithm for the current Geostationary Operational Environmental Satellite
(GOES) Sounders is adapted to produce atmospheric temperature and moisture legacy
profiles from simulated infrared radiances of the Advanced Baseline Imager (ABI) on
board the next generation GOES-R. Since the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) on board the Meteosat Second Generation (MSG) Meteosat-8/9 has
many of the same spectral and spatial features as ABI, it is used as proxy to test the
algorithm. Because as imagers, SEVIRI and ABI do not have enough CO2 absorption
spectral bands relative to the current GOES Sounders, the legacy profile algorithm for the
current GOES Sounders needs to be modified. Both simulations and analysis with
radiance measurements indicate that the single temperature-sensitive infrared band
(13.4 mm) of SEVIRI cannot provide enough temperature profile information.
However, SEVIRI’s two H2O absorption spectral bands (6.2 and 7.2 mm) are able to
provide useful information on water vapor content above 700 hPa. Because of their
high spatial (approximately 3 km for SEVIRI and 2 km for ABI IR bands) and high
temporal (15 min full disk coverage) resolutions, SEVIRI and ABI will provide useful
profile products with a quality similar to that from the current GOES Sounder prior to
the availability of a hyperspectral IR sounding system in geostationary orbit.
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1. Introduction

[2] The current Geostationary Operational Environmental
Satellite (GOES) Sounder [Menzel and Purdom, 1994;
Schmit et al., 2002] operational products include clear-sky
radiances, atmospheric temperature and moisture profiles,
total/layer precipitable water, cloud top pressure, and water
vapor tracked winds. Applications of those products in-
clude: nowcasting and forecasting of weather events, as-
similation of cloud products into regional numerical forecast
models, and monitoring of temperature and moisture
changes in the preconvective periods. Retrieval algorithms
have been developed for GOES Sounder products [Ma et
al., 1999; Li and Huang, 1999; Li et al., 2008], and
products were validated [Menzel et al., 1998; Schmit et
al., 2002]. The Advanced Baseline Imager (ABI) [Schmit et
al., 2005] on board the next generation of GOES satellite
(GOES-R) has much finer spatial resolution (2 km for
infrared bands) and much faster scan rate (15 min for full

disk plus 5 min for CONUS plus 30 s for mesoscale
regions). The ABI has the capability to scan a full disk
scan in 5 min.
[3] However, as an imaging instrument, the ABI only has

a few broadband infrared (IR) spectral bands that have
atmospheric profile information, including one CO2 absorp-
tion band (13.3 m), one O3 absorption band and three H2O
absorbing bands (6.19, 6.95 and 7.34 mm). According to the
weighting functions shown in Figure 1, the CO2 band peaks
at a height close to the surface and the three water vapor
bands peak between the 700 and 300 hPa layers. The ABI
brightness temperatures contain less information of the
vertical distribution of temperature and humidity than the
instruments with higher spectral resolution, such as Atmo-
spheric Infrared Sounder (AIRS) [Chahine et al., 2006] and
Infrared Atmospheric Sounding Interferometer (IASI) [Aires
et al., 2002]. Schmit et al. [2008] have studied and con-
cluded that ABI, when combined with forecast information,
can continue the current GOES Sounder type products
(atmospheric legacy profiles, cloud top properties, etc.) as
an interim measure prior to the availability of a hyper-
spectral infrared sounding system in geostationary orbit.
The pros and cons of ABI for continuation of the current
sounder type products are analyzed. For example, the
unique aspects of ABI legacy products are the high spatial
resolution, the fast scan rate and full disk coverage, which is
very important for mesoscale forecasts and nowcasting.
This paper describes the algorithm used for clear-sky ABI
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Figure 1. The weighting functions of (left) SEVIRI and (right) ABI IR bands calculated from the U.S.
1976 standard atmosphere at nadir view.
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legacy profiles. Data from the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) on board the first Meteosat
Second Generation (MSG) Meteosat-8/9 [Schmetz et al.,
2002] has been used as an ABI proxy in the algorithm
development and evaluation.
[4] SEVIRI has similar spectral and spatial features to

ABI (Table 1). As an imager, SEVIRI can finish a full disk
scan within 15 min with a spatial resolution as high as 3 km
(resampled). Figure 1 shows the temperature and water
vapor (expressed as logarithm of mixing ratio) weighting
functions (Jacobians) for SEVIRI (Figure 1, top) and ABI
(Figure 1, bottom). SEVIRI only has one CO2 absorbing
spectral band (13.4 mm) for air temperature retrieval and
two H2O absorbing spectral bands (6.2 and 7.35 mm) for
humidity retrieval. With one more H2O absorption spectral
band and better spatial resolution, ABI is expected to
provide better moisture information than SEVIRI. To apply
the legacy algorithm for SEVIRI and ABI, the current
GOES Sounder algorithm needs to be modified.
[5] The operational algorithm for the GOES I-M Sounder

uses the short-range forecast as a first guess and background
in a nonlinear physical retrieval [Ma et al., 1999]. Recently
the algorithm was improved to include a regression as first
guess [Li et al., 2008] in CIMSS GOES Sounder routine
processing. The improved retrieval system includes two
components: a multivariable regression technique followed
by a subsequent physical retrieval [Li et al., 2000, 2008]. In
this study, we tested both components by simulation and
applied them to SEVIRI radiance measurements. However,
the GOES Sounder algorithm was modified for SEVIRI: the
regression coefficients for GOES Sounder are based on the
collocated radiosondes, GOES Sounder radiances, and fore-
casts matchup data set, while the regression coefficients for
SEVIRI/ABI are based on the synthetic radiances calculated
from a near global training data set that contains tempera-
ture, moisture and ozone profiles, as well as surface skin
temperature and surface IR emissivities [Seemann et al.,
2008]. Some useful profile-derived products such as the
total precipitable water (TPW), the lifted index (LI), and
the water vapor content at three significant layers (WV1: the
water vapor content between surface and the 900 hPa layer;
WV2: the water vapor content between 900 and 700 hPa
layers; WV3: the water vapor content between 700 and

300 hPa layers) from SEVIRI are evaluated in this study
because those are the current GOES Sounders’ operational
products. In addition, the impact of handling surface IR
emissivities on the legacy profiles from SEVIRI/ABI radi-
ances is studied.
[6] Our research is described in this paper as follows: in

section 2, we present the data set for this study and briefly
describe the algorithm. In section 3, a numerical simulation
is applied to test the sensitivities of the algorithm to some
additional factors, including surface emissivities and back-
ground errors. In section 4, a set of radiosonde (RAOB)
profiles and a full disk case are selected to test the algorithm
for application. Section 5 presents our concluding remarks.

2. Algorithms and Data Sets

2.1. Algorithm Description

[7] The improved GOES Sounder algorithm [Li et al.,
2008] uses the regression as the first guess (starting point of
iteration in physical retrieval); the regression uses SEVIRI
radiances and forecast as predictors. A global radiosonde
data set with surface skin temperature and surface IR
emissivities physically assigned [Seemann et al., 2003,
2008] is used to generate the regression coefficient. The
predictands include temperature and water vapor mixing
ratio profiles; the basic predictors include SEVIRI/ABI IR
spectral band brightness temperatures, surface pressure,
land/ocean flag, and latitude. Since SEVIRI/ABI only has
a few sounding spectral bands, the temperature/moisture
profiles from short-range numerical weather prediction
(NWP) forecast model are used as additional predictors in
order to keep the vertical structure of forecast. The temper-
ature forecast between 100 and 1013 hPa and mixing ratio
forecast between 300 and 1013 hPa are used as additional
predictors. Given Y (e.g., temperature or mixing ratio at a
given pressure level) as a predictand, the regression equa-
tion is in the following format:

Z ¼ A0 þ
XN
j¼1

B0
jTbj þ

XN
j¼1

C0
jTb

2
j þ

Xnt
l¼1

btlTl þ
Xnw
l¼1

bwl log wlð Þ

þ D1ps þ D2 sec qþ D3 cos Latð Þ; ð1Þ

here Tb is the brightness temperature; T(K) and w(g/kg) are
forecast temperature and water vapor mixing ratio respec-
tively; Ps(hPa), q, and Lat are surface pressure, local zenith
angle (LZA), and latitude, respectively. A, B, b, C and D are
regression coefficients; N, nt and nw are the total number of
SEVIR/ABI IR spectral bands, number of temperatures, and
number of mixing ratios used as predictors. To derive the
regression coefficients, a global data set containing
temperature, moisture, and ozone profiles as well as the
surface skin temperature, surface emissivities at SEVIRI
and ABI IR spectral bands, are needed. We used a data set
consisting of more than 15,700 global profiles of tempera-
ture, humidity and ozone [Seemann et al., 2008]. A set of
calculated BTs from a fast and accurate radiative transfer
model is also required to generate the regression coeffi-
cients. The radiative transfer model applied here in
simulating SEVIRI/ABI IR brightness temperatures is a
fast transmittance model named Pressure-Layer Fast Algo-
rithm for Atmospheric Transmittances (PFAAST) [Hannon

Table 1. Band Number and Wavelength of ABI and SEVIRI

ABI SEVIRI

Band Wavelength (mm) Band Wavelength (mm)

1 0.47
2 0.64 1 0.635
3 0.87 2 0.81
4 1.38
5 1.61 3 1.64
6 2.25
7 3.9 4 3.92
8 6.19 5 6.2
9 6.95
10 7.34 6 7.35
11 8.5 7 8.7
12 9.61 8 9.66
13 10.35
14 11.2 9 10.8
15 12.3 10 12
16 13.3 11 13.4
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et al., 1996; Eyre and Woolf, 1988]. The fast transmittance
model is built upon the transmittance profiles calculated by
the line-by-line (LBL) radiative transfer model based on the
high-resolution transmission molecular absorption spectro-
scopic database HITRAN 2000 [Rothman et al., 1998]. The
regression derived profile is used as the first guess for
physical retrieval iterations. Since forecast profiles are used
together with SEVIRI/ABI IR brightness temperatures as
predictors, the regression should not be worse than the
forecast if the BTs have good radiometric accuracy.
[8] In this study, we select six out of eight SEVIRI IR

bands for predictors in the regression. We excluded the
3.9 mm band because it is negatively impacted by the solar
radiation, showing a significant diurnal variation in BT,
which is difficult to simulate in the training process. We also
excluded the 8.7 mm band because it contains surface
emissivity with large spatial variation over land and intro-
duces high uncertainties for regression; however, the 8.7 mm
band can be used over ocean. For the ABI simulations, the
3.9 and 8.5 mm bands are excluded for the same reasons. Of
course the ABI will have additional bands that are not on the
SEVIRI, such as three water vapor channels or a 10.35 mm
band. Temperatures between 100 and 1013 hPa and mixing
ratios between 300 and 1013 hPa from short-term numerical
weather prediction (NWP) model forecasts are used as
additional predictors in the regression.
[9] Once the regression retrieval is obtained, it is used as

the first guess in the physical retrieval process. The physical
approach uses an optimal method of combining observa-
tions with a background in the form of a forecast which is
also used in the regression as additional predictors. In the
physical retrieval, the 9.7 mm band is not used because it is
strongly impacted by ozone uncertainty. The variational
retrieval is performed by adjusting the atmospheric profile
state, X, from the background, Xb, to minimize a cost
function [Rodgers, 1976] of

J Xð Þ ¼ Ym � F Xð Þ½ �TE�1 Ym � F Xð Þ½ �
þ X � X b
� �T

gB�1 X � X b
� �

; ð2Þ

where B and E are the error covariance matrices of
background, Xb, and the observation (radiances) vector, Ym,
respectively, F(X) is the forward radiative transfer model
operator, g is the regularization parameter (also called
smoothing factor) which is introduced for convergence and
solution stability. Superscripts T and �1 are the matrix
transpose and inverse, respectively.
[10] By using the Newtonian iteration

Xnþ1 ¼ Xn þ J 00 Xnð Þ�1	J 0 Xnð Þ; ð3Þ

the following quasi-nonlinear iterative form is obtained

dXnþ1 ¼ ðF 0T
n 	 E�1 	 F 0

n þ gB�1Þ�1 	 F 0T
n 	 E�1 	 dYn þ F 0

n 	 dXn

� �
;

ð4Þ

where X is the vector of temperature and humidity profile to
be solved, n is the iteration step, n = 0 denotes first guess
profile, dXn = Xn � Xb, dYn = Ym � F (Xn), F

0 is the tangent
linear operative (Jacobian) of forward model F. The

regularization parameter is adjusted in each iteration
according to the discrepancy principal [Li and Huang,
1999; Li et al., 2000]. The reason to introduce the
regularization parameter is to balance the contributions
from the background and satellite observations in the
solution, which is particularly important when the back-
ground (e.g., forecast) error is not Gaussian, or is only a
locally Gaussian distribution.
[11] Since there are correlations among atmospheric var-

iables, only a limited number of variables are needed to
explain the vertical structure variation of an atmospheric
profile [Smith and Woolf, 1976]. The number of indepen-
dent structure functions can be obtained from a set of global
atmospheric profile samples. Assume

X � X b ¼ FA; ð5Þ

where A= (a1, a2, . . ., aM), and F =

FT 0 0

0 Fq 0

0 0 FTs

2
4

3
5, FT is

the matrix of the first ~NT empirical orthogonal functions
(EOFs) of the temperature profile, Fq is the matrix of the
first ~Nq EOFs of the water vapor mixing ratio profiles,
FTs

= 1, and M = ~NT +~N4 + 1. It is obvious that FTF =
I. Defining ~F 0 = F0 	 F, equation (4) becomes

Anþ1 ¼ ~F 0T
n 	 E�1 	 ~F 0

n þ gB�1
� ��1	~F 0T

n 	 E�1 	 dYn þ ~Fn 	 An

� �
;

ð6Þ

where A0 = 0, and

k F A gð Þ � Ymð Þ k2¼ s2; ð7Þ

where s is the observation error of SEVIRI [Aminou et

al., 2003], define kXk2 = 1
N

PN
i¼1

xi
2, X = (x1, x2,. . ., xN).

Equation (5) and equation (6) are applied to derive the
solution from SEVIRI radiances.
[12] For simulation purpose, we randomly selected 90%

of the training data set to generate the regression coeffi-
cients, and applied the retrieval process to the remaining
10% of independent data set. In this study we had 1411
independent retrievals. There are three major aspects in the
simulation are studied:
2.1.1. Error Covariance Matrix of the Background
[13] The background error estimate is based on the differ-

ences of temperature/moisture profiles between the rawin-
sonde data set and the spatially and temporally collocated
National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) product which are used as
the background in the GOES Sounder retrievals. In the
training data set, the estimated errors are added to the true
profile to simulate the forecast.
2.1.2. Surface IR Emissivities
[14] It is difficult to get the real surface IR emissivities at

any time and for any location on the earth surface. The
surface emissivities in the training data set are from oper-
ational MODIS emissivity products. In previous studies, the
surface IR emissivities were set as constants with tiny
random variations [Seemann et al., 2003; Li et al., 2000;
Zhou et al., 2002]. In this study, we take the IR emissivities
as predictands in the training process, so that we can obtain

D15310 JIN ET AL.: SEVIRI/ABI INFRARED SOUNDING

4 of 19

D15310



a group of estimated emissivities at SEVIRI spectral bands
from the regression approach. These derived emissivities
will be fixed during physical iterations.
2.1.3. Surface Skin Temperature
[15] The surface skin temperature is a key factor in

radiative transfer model calculation. Surface skin tempera-
ture has large spatial and temporal variability. In the training

data set, each profile is assigned with a surface skin
temperature based on the relationship between surface air
temperature and solar zenith and azimuth angles [Seemann
et al., 2003]. In the retrieval process, surface skin temper-
ature is an unknown variable to be retrieved since no
predetermined surface skin temperature observation can be
used. Usually the error in surface skin temperatures from the
NWF models is quite large, and the error covariance of
background surface skin temperature should be set accord-
ingly; for example, in previous studies [Seemann et al.,
2003; Li et al., 2000; Zhou et al., 2002], the surface skin
temperature background is assumed to have a mean error of
zero and a standard deviation of 10 K. In the SEVIRI
physical retrieval, the surface skin temperature derived from
regression is used as background as well as the first guess
and is assumed an error of 2.5 K.

2.2. Data Set for SEVIRI Clear-Sky Physical Retrieval
Study

[16] One month (August 2006) data sets are used for this
study. These data sets include: SEVIRI full disk BTs at 3-km
spatial resolution and 15-min temporal resolution; the full
disk SEVIRI cloud mask products from the EUMETSAT
agency at the same spatial/temporal resolution; the global
radiosonde profiles collected at two standard moments:
0000 and 1200 UTC; the European Center for Medium
range Weather Forecasting (ECMWF) 12-h forecast prod-
ucts for background; and the ECMWF 6-h analysis prod-
ucts as the truth for validation; Advanced Microwave
Scanning Radiometer–EOS (AMSR-E) TPW products
over ocean in August 2006 are prepared as independent
validations.

Figure 2. The radiosonde station map.

Figure 3. The simulated RMSE profiles of (left) temperature and (right) relative humidity. The solid
line, black/red dash-dotted line, and black/red dashed line represent results from forecast, SEVIRI/ABI
regression, and SEVIRI/ABI physical retrieval, respectively.
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Figure 4. (a–c) The scattering plots of TPW (mm) between retrievals from simulation and truth. The
dashed line in each panel is the 1-to-1 line. In Figures 4b (regression) and and 4c (physical), black and red
plots represent results from SEVIRI and ABI, respectively.

Figure 5. The simulated three water vapor components ((a–c) WV1, (d–f) WV2, and (g–i) WV3, all in
mm) against the true. The dashed line in each panel is the 1-to-1 line. In Figures 5b, 5c, 5e, 5f, 5h, and 5i,
black and red plots represent results from SEVIRI and ABI, respectively.
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[17] Assuming that each field of regard (FOR) contains 3
by 3 field of views (FOVs) or pixels, the clear-sky SEVIRI
BTs within each FOV are averaged for parameter retrieval.
The clear-sky pixels are selected on the basis of operational
SEVIRI cloud mask products from EUMETSAT. The
ECMWF products (both forecasts and analysis) have a
0.25 � 0.25 grid spatial resolution. A bilinear interpolation
is performed spatially and temporally to get the closest
profile for each SEVIRI pixel as the background (from

forecast) or as the truth (from analysis). The ECMWF
analysis profiles at the radiosonde sites and times
(0000 UTC and 1200 UTC) are taken as the quality-
controlled RAOBs for validation. A total of 365 RAOBs

Figure 6. Histograms of the differences between regressed and true emissivities at five SEVIRI IR
bands. In each panel, the thick bars represent 778 land cases, and the thin bars represent 633 oceanic
cases.

Figure 7. Same as Figure 4c but taking the true surface IR
emissivities in calculation and only for SEVIRI simulation.

Figure 8. The regressed surface skin temperature against
the true in the SEVIRI simulation. The dashed line is the
1-to-1 line.
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matching the SEVIRI observations under clear skies is
obtained (Figure 2).

3. Simulation Studies

[18] In the simulation, retrieval of atmospheric tempera-
ture and moisture profiles along with the derived products,
such as total precipitable water (TPW), lifted index (LI),
WV1, WV2 and WV3, are compared with the truth. In

Figure 9. Same as Figure 4c but taking the true surface
skin temperature in physical retrieval in SEVIRI simulation.

Figure 10. The comparison between the calculated and observed brightness temperatures at five IR
bands for bias correction. In each panel the solid line represents the linear fitting, and the dashed line is
the 1-to-1 line.

Figure 11. The retrieved RH RMSE profiles using
SEVIRI brightness temperatures with (solid line) and
without (dashed line) bias correction in physical retrieval.
The dash-dotted line is the forecast RMSE for comparison.
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addition, the impact of surface emissivity uncertainties on
the clear-sky parameter retrievals is evaluated.

3.1. Profile Retrievals

[19] The root-mean-square errors (RMSE) of retrieved
atmospheric temperature and moisture profiles from simu-
lated SEVIRI/ABI radiances are shown in Figure 3. Mois-
ture is represented by relative humidity (RH). The RMSE is
based on the absolute differences between the retrievals and
truth. For the temperature retrieval, neither the regression
nor the physical retrievals substantially reduce the RMSE of
the forecast that is taken as the background. This result is
reasonable because there is only one CO2 absorption

spectral band on SEVIRI/ABI and there is not enough
temperature profile information from this type of broad
spectral satellite observation. However, for the humidity
retrieval, the results are quite different. On the basis of the
information contained in the two/three H2O absorption
spectral bands on SEVIRI/ABI, the RH RMSE between
700 and 300 hPa can be reduced by both approaches, which
is consistent with the water vapor vertical information
contained in the two/three H2O absorption spectral bands
(see Figure 1). Furthermore, the physical retrieval is much
better than the regression because of the nonlinear solution
of the radiative transfer model. In fact, the RH RMSE is
almost locked between 10 and 15% at any pressure level by
the physical retrieval. Although the window bands (8.7,
10.8, and 12.0 um) provide useful water vapor information
near the surface, the RH RMSE under the 800 hPa layer is
only slightly changed because of the difficulty in decou-
pling the impact of surface skin temperature in the physical
retrieval [Li, 1994]. In addition, the ABI is better for
retrieving moisture than SEVIRI because of one more
H2O absorption band.

3.2. Derived TPW Product

[20] The accuracy of TPW, derived from the profiles, is
shown in Figure 4. Because of the significant improvement
in RH RMSE, the TPW from the physical retrieval has a
smaller RMSE against the truth when compared with the
forecast. The improvement with the regression is almost
undetectable because of the slight improvement in RH
profile retrieval.
[21] When the profile is integrated into three parts (WV1,

WV2 and WV3) the contribution of the water-vapor-ab-
sorbing bands on the moisture retrieval is clearly depicted.
In Figure 5, the retrieved WV1 from both approaches has
almost the same statistical features against the truth when
compared with the forecast, indicating the weakness of
SEVIRI/ABI in retrieving low-level water vapor content.
For the retrieval of middle level water vapor, the regression
method still does not show any decent improvement while
the physical approach results in a noticeable improvement.
The most significant improvement appears in the upper
layers. Because of the humidity information provided by the
water-vapor-absorbing bands, the physical retrieval reduces
the WV3 RMSE from 42.2% to 23.2% for SEVIRI and
20.9% for ABI, respectively, while the regression method

Figure 12. Same as Figure 3 but using RAOBs as true,
ECMWF forecast as first guess for regression, and the
difference between RAOBs and ECMWF forecast profiles
as background.

Figure 13. Same as Figure 4 but using RAOBs as true, ECMWF forecast as additional predictors in
regression, and real SEVIRI observations for retrieval.
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only reduces the WV3 RMSE by 1% for SEVIRI and 4%
for ABI against the forecast. Considering the weakness of
the numerical model in predicting high-level water vapor,
the WV3 product from the geostationary satellite imagers
can significantly improve the model by providing upper
level water vapor information at high spatial and temporal
resolutions. In fact, ECMWF is assimilating the clear-sky
water vapor radiances from a number of geostationary
imagers [Köpken et al., 2004; Szyndel et al., 2005].

3.3. Impact of Surface IR Emissivities on Clear-Sky
Parameters

[22] In the above numerical study, to make the simulation
more realistic, the surface IR emissivities from the regression
are used in the physical retrieval. The emissivity regression is
based on the training data set that contains physically realistic
IR emissivities assigned to each profile. Figure 6 shows the
histogram of differences between the regressed emissivities
and true values for 5 SEVIRI IR spectral bands. For oceanic
cases, the variations in bias between the regressed and the
true are quite small and for bands 5/9/10/11, almost all biases

are within ±0.01. For land cases, the variations of bias are
larger, but in general, most of the regressed emissivities are
within ±0.02 relative to the true values.
[23] The regression determined emissivities are used in

the physical retrieval, and the emissivities are fixed during
the iterations. To check the impact of emissivity uncertainty
on the physical retrieval, the ideal emissivities in physical
retrieval is also attempted, for example, using the true
emissivities in physical retrieval in the simulation. The
results shown in Figure 7 indicate that the uncertainties in
surface emissivities have a slight impact on the physical
retrieval if 8.7 mm is not included. However, simulations
might not fully reflect the real surface situation; for example,
spatial and spectral variations of IR emissivity in 8.7 mm are
quite large over desert region, which is difficult to simulate.
The 8.7 mm band can be used over the ocean in the physical
retrieval because of the uniform emissivity. Handling sur-
face IR emissivities in the SEVIRI/ABI physical retrieval is
important if all window bands are included, the possible
approaches are (1) to use regression derived emissivities,
which needs a realistic training; (2) to use predetermined

Figure 14. The three water vapor components (WV1, WV2 and WV3, all in mm) against truth
(RAOBs). The dashed line in each panel is the 1-to-1 line. ECMWF forecast is used as additional
predictors in regression.
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emissivity database, for example, from baseline fit database
[Seemann et al., 2008]; and (3) to use emissivity product
from hyperspectral IR sounders on board polar orbiting
satellites.

3.4. Impact by Surface Skin Temperature

[24] Another numerical experiment was designed to test
the impact of surface skin temperature variation on the
profile retrieval. Similar to the above emissivity testing, two
configurations are tested: using the true skin temperature
and regression derived skin temperature in physical itera-
tions, respectively. Note that the surface skin temperature is
fixed during the physical iterations if truth is used as both
the background and the first guess, while the surface skin
temperature is updated together with temperature and mois-
ture profiles during physical iterations if regression skin
temperature is used as first guess.
[25] The quality of the regressed skin temperature is

checked before the experiment. As shown in Figure 8, in
general the regressed surface skin temperatures have good
agreement with the true temperatures. The bias is close to
zero between 250 and 310 K, covering most possible
surface situations within the SEVIRI full disk; the bias is
negative when the skin temperature is higher than 310 K
and positive when the skin temperature is lower than 250 K,
the bias might be due to the inconsistent skin temperature
assignment between 90% and 10% of data set in that
temperature range.
[26] Results using the true skin temperature in the physical

retrieval are shown in Figure 9. Relative to the impact caused
by surface emissivity variation, the impact from surface skin
temperature variation is larger. The correlation coefficient
increases from 0.97 to 0.98 and the RMSE decreases 0.3%.

4. Application to SEVIRI Measurements

4.1. Bias Correction

[27] In this section, the algorithm is tested with quality-
controlled radiosonde profiles collected at the stations

shown in Figure 2. Before applying the algorithm, we make
a radiance bias adjustment to minimize the uncertainty
caused by the radiative transfer model or radiometric
calibration. The results are shown in Figure 10. 365 collo-
cated quality controlled RAOBs and SEVIRI radiance
measurements are used. For band 5, the fitting line is almost
parallel to the 1-to-1 line, illustrating a solid bias between
calculations and observations at this band. For bands 6 and
11, a similar bias exists as well but not as significant as that
for band 5. For the two ‘‘window’’ bands, i.e., bands 9 and
10, the bias is close to zero. According to the patterns in
Figure 10, it is speculated that after the bias correction, the
quality of the humidity profile may be improved, especially
at the upper layer.
[28] As shown in Figure 11, because of the bias correc-

tion the RH RMSE profile is significantly improved, espe-
cially in the upper layers (between 600 and 300 hPa). The
improvement in the lower levels (below the 700 hPa layer)
also exists but not as pronounced as that in high levels; the
improvement in the temperature profile retrieval is not
shown here as it is too small. Since the bias is dependent
in this study, improvement from bias adjustment is substan-
tial; ideally an independent bias is needed for universal bias
adjustment. A better bias estimate is very important for
quality SEVIRI/ABI legacy profiles. In the following para-
graphs, if not emphasized, the SEVIRI BTs used in the
calculation are all bias corrected. One caveat of the bias
correction maneuver is that all RAOBs are collected over
land and the bias over ocean is still unknown.

4.2. Profile Retrievals

[29] The RMSE of RH profile retrievals is shown in
Figure 12. In the retrieval, the ECMWF 12-h forecast
profiles are used together with SEVIRI radiances in the
regression, and the regressed profiles are used as the first
guess in the physical retrieval. The forecast error profile is
calculated by comparing the difference between RAOBs
and ECMWF forecast profiles.
[30] The results with real data are similar to those in

simulation. The improvement in the temperature RMSE
profile is almost undetectable by both methods (not shown).

Figure 15. Density scattering plot of TPW between
physical retrievals and AMSR-E over ocean in August
2006 (2,822,939 samples).

Figure 16. A full disk of RMSE between SEVIRI TPW
and AMSR-E (pixels are grouped into each 1 � 1� boxes,
and only boxes with more than 20 samples are considered).
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But the RH RMSE profile is solidly improved by both
methods. After the physical retrieval, the RH RMSE profile
is significantly improved between the 700 and 300 hPa
layer. But for the profile lower than 800 hPa, the physical
retrieval does not produce better results than the regression.

4.3. Derived Products

[31] The TPW from different methods are compared with
that derived from RAOBs (Figure 13). The results are
similar to the simulation in Figure 4. The regression shows
almost no improvements in TPW. But after the physical
retrieval, the TPW is noticeably better than the forecast. The
three TPW components are also separated and compared
with the ROABs (Figure 14). It is encouraging that both
retrieval methods result in some improvement, even if only
modest at times. For both methods, the greatest improve-

ments are at lower pressure levels (e.g., higher altitudes).
Although in a direct comparison, the physical retrieval
shows better results than from the regression at lower
pressure levels. For WV1, the RMSE derived from the
physical approach shows only a 0.1% improvement over the
regression which is 12.2% and the correlation coefficient R
is improved from 0.90 to 0.92. For WV2, the RMSE from
the physical method is 0.4% better, while for WV3, it is
4.8% better.

4.4. Comparison With AMSR-E

[32] AMSR-E TPW is a reliable product for independent
validation with other satellite products [Fetzer et al., 2006].
We have compared our retrieved TPW product with that
from AMSR-E over the water. Because AMSR-E TPW has
a spatial resolution of 20 km (compared to 9 km for SEVIRI

Figure 17. The lifted index derived from (a) ECMWF analysis, (b) ECMWF forecast, (c) regression,
and (d) physical retrieval at 0000 UTC, 18 August 2006.

D15310 JIN ET AL.: SEVIRI/ABI INFRARED SOUNDING

12 of 19

D15310



TPW), we only collect the SEVIRI pixels whose center is
closer than 10 km to the AMSR-E pixel center. The
collected SEVIRI TPW values are averaged to compare
with the AMSR-E TPW; typically there are 4 SEVIRI
records for each AMSR-E pixel. It should be noted that
this operation inevitably smoothes the noise level of the
SEVIRI TPW product. Concerning the temporal match, we
take the moment of the AMSR-E crossing over the equator
as reference, selecting the closest SEVIRI full disk for
comparison. For the whole month (August 2006), there
are more than two million qualified AMSR-E TPW records
collected. The density scattering plot is shown in Figure 15.
The correlation coefficient is 0.96 and the RMSE is smaller
than 10%. For TPW measurements, this result is quite good.

However, the SEVIRI TPW still shows some negative bias
when the TPW is more than 25 mm and a positive bias
when the TPW is less than 25 mm, as also reported by
Seemann et al. [2003] using a similar algorithm and the
MODIS BTs. Further studies are needed to investigate this
issue. The spatial distribution of RMSE is presented in
Figure 16. In most oceanic areas, the RMSE is smaller than
4 mm. In some areas of West Indian Ocean, the RMSE is as
large as 7 mm. The only outlier appears in Chad Lake where
the RMSE is close to 12 mm. As discussed earlier, the
SEVIRI TPW is derived from IR radiances which are
insensitive to surface emissivities. As a microwave instru-
ment, it is very possible that the AMSR-E TPW is not as
reliable here because of the impact of land surface emissiv-

Figure 18. Same as Figure 17 but for TPW.
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ity. Focusing on the pixels over the Atlantic Ocean and
Mediterranean, they do not show noticeable variation with
different local zenith angle (LZA).

4.5. Comparison With ECMWF Analysis Products

[33] A case at 0000 UTC on 18 August 2006 is selected
to show the improvement in predicting severe weather with
our retrieved atmospheric profiles. The LI, TPW, WV1,
WV2 and WV3 are displayed in Figures 17–21, respec-
tively. In Figure 17, the forecast model claims much larger
areas of atmospheric instability than the actual conditions
reported by the analysis. Both the regression and physical
retrieval result in a better LI distribution than the forecast.
The regression results in a minimal red area which seem-

ingly makes it superior to the physical retrieval if only
focusing on the red patches. However, as seen in the upper
left part in each panel, the regression significantly under-
estimates the atmospheric instability, e.g., the LI in this area
is larger than 0, indicating a stable atmospheric status while
in other three panels, there are large blue patches indicating
unstable areas. This pattern illustrates that with the regres-
sion the atmospheric status is biased to a more stable state;
this result might be due to the fact that the profiles in the
training data set are all collected in clear skies and therefore,
in most cases, they represent a stable atmospheric status.
The unstable conditions are not well regressed by the
regression coefficients generated from such a data set.
Comparing Figure 17b with Figure 17d, it is clear that the

Figure 19. Same as Figure 17 but for WV1.
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physical retrieval results in a better compromise. The area of
red patches is significantly reduced and the blue patches in
the upper left part are well represented.
[34] The images of TPW and its three components also

illustrate the superiority of the physical retrieval to both the
forecast and regression. In Figure 18, the purple area in the
bottom left part of the panel indicates a very humid air mass
(TPW > 50 mm). The forecast underestimates the size of
this air mass and the regression does not provide any
noticeable improvement in it. Only the physical approach
extends the humid area to the left edge of the panel and
more accurately depicting the actual condition reported by
the analysis.

[35] Figures 19–21 indicate how the TPW pattern is
improved by the physical algorithm. For WV1, neither the
regression nor the physical retrieval noticeably corrects the
overestimate of water vapor content around 20�N, 5�W
(Figure 19). This result is reasonable because of the lack of
H2O absorption bands whose weighting function profiles
peak just above the surface. Figure 20 illustrates that
because of the lack of H2O absorption bands responding
to the moisture parameter between 900 and 700 hPa, there
are no significant improvements on the WV2 retrieval.
Figure 20 demonstrates how the TPW pattern in Figure 18
is improved. The humid area near the left edge of the panel
between 15�N and 20�N is missed by the forecast and is not

Figure 20. Same as Figure 17 but for WV2.
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retrieved by the regression. Only through the physical
retrieval can the humid area be retrieved.
[36] The quantitative comparisons for the full disk case at

0000 UTC on 18 August 2006 are shown in Figures 22 and
23. Only 1% of all pixels in the full disk are randomly
selected for the scatterplots. In Figure 22, TPW, WV1, WV2
and WV3 are compared and in Figure 23, the LI is
compared. The results from the regression are not compared
here as they are worse than those from the physical retrieval.
With the physical retrieval, the correlation coefficient for
TPW is increased from 0.97 to 0.98 and the RMSE is
reduced from 9.78% to 9.11%; for WV1, the improvement
is not significant; for WV2, the correlation coefficient is
increased from 0.94 to 0.95 and the RMSE is reduced by
0.5%; for WV3, the correlation coefficient is increased from

0.95 to 0.97 and the RMSE is reduced from 20.8% to
17.1%. Note that the samples selected for comparison in
Figure 22 include those from both land and ocean. Because
of the lack of bias adjustment for pixels over ocean, we
applied the bias adjustment on radiances of pixels over land
only. Further improvement on the retrievals over ocean
should be possible if a reliable bias adjustment can be
made. The comparison of LI shows the limitation of using
SEVIRI broadband IR radiances for retrieving the temper-
ature profiles.

5. Concluding Remarks

[37] In this paper, we discussed retrieving atmospheric
profiles from SEVIRI spectral band IR radiances as a proxy

Figure 21. Same as Figure 17 but for WV3.
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for ABI using the algorithm adapted from that applied to the
GOES Sounder measurements. The algorithm includes a
synthetic regression approach and a physical iterative re-
trieval approach. Both the simulation and the case study
analysis prove the superiority of the physical retrieval to the
forecast. Since SEVIRI/ABI only has two/three H2O ab-
sorption bands, which correspond to the moisture variation
in the upper layer (higher height than 700 hPa), the most
significant improvement in water vapor profile appears in
the upper layers. With only one CO2 absorption band at
13.4/13.3 m for the temperature profile retrieval, both the
numerical study and the case analysis indicate the limited
temperature information from SEVIRI/ABI that can be
added to the forecast.
[38] The sensitivity study indicates that for the physical

retrieval, the uncertainty caused by the IR surface emissiv-
ities is small if 8.7 mm is not included in the retrieval. The

emissivities from the regression or predetermined database
can be used for the physical retrieval. Another numerical
study shows that, relative to the emissivities, the impact of
surface skin temperature uncertainty on moisture profile is
relatively larger, The surface skin temperature estimate from
the regression has good agreement (RMSE less than 2 K)
with the truth if the temperature is limited between 250 and
310 K according to the simulation, covering most conditions
for geostationary satellite remote sensing. In the physical
retrieval process, surface skin temperature is simultaneously
retrieved with temperature and moisture profiles.
[39] Some in situ radiosonde profiles are used as true

profiles in the radiative transfer model to make a bias
correction before applying the algorithm to the real data.
It is proved that both water-vapor-absorbing bands have
noticeable biases when comparing the calculated brightness
temperatures with the SEVIRI observations. After the

Figure 22. The scattering plots for comparing the TPW, WV1, WV2, and WV3 derived by the physical
retrieval with those from forecast. The analysis data are taken as the true. The samples are randomly
selected 1% of all pixels from the full disk at 1800 UTC, August 2006, and the sample number is 31044.
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radiance bias adjustment, the quality of water vapor profiles
retrieved from the physical approach is significantly im-
proved. A caveat in this study is that we only have in situ
radiosonde profiles collected over the land. The bias adjust-
ment may cause errors when applying the derived fitting
equations to pixels over the ocean.
[40] The TPW from the physical retrieval is also com-

pared to that from AMSR-E over ocean using a large
number of samples. Relative to other similar research
[Martinez et al., 2007], the results are encouraging in terms
of the high correlation coefficient (0.96) and small RMSE
(<10%). Moreover, the SEVIRI TPW product is insensitive
to surface types and does not show noticeable biases with
the variation of LZA. However, the physical algorithm still
underestimates TPW when the TPW is greater than 25 mm
and overestimates it when TPW is less than 25 mm, similar
to the performance of MODIS in retrieving TPW with a
similar algorithm [Seemann et al., 2003]. This issue needs
further investigation.
[41] According to this study, useful water vapor informa-

tion, especially the upper level moisture information, at high
temporal/spatial resolution from geostationary satellite-
based instruments such as SEVIRI and ABI, can be derived.
Since ABI and SEVIRI are not sounder instruments, the
water vapor products provided by SEVIRI/ABI are pre-
ferred to those vertically integrated parameters, instead of
the profile.
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