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ABSTRACT

Data from geosynchronous Earth-orbiting (GEO) satellites equipped with visible (VIS) and infrared (IR)

scanners are commonly used in rain retrieval algorithms. These algorithms benefit from the high spatial and

temporal resolution of GEO observations, either in stand-alone mode or in combination with higher-quality

but less frequent microwave observations from low Earth-orbiting (LEO) satellites. In this paper, a neural

network–based framework is presented to evaluate the utility of multispectral information in improving

rain/no-rain (R/NR) detection. The algorithm uses the powerful classification features of the self-organizing

feature map (SOFM), along with probability matching techniques to map single- or multispectral input space

into R/NR maps. The framework was tested and validated using the 31 possible combinations of the five

Geostationary Operational Environmental Satellite 12 (GOES-12) channels. An algorithm training and val-

idation study was conducted over the conterminous United States during June–August 2006. The results

indicate that during daytime, the visible channel (0.65 mm) can yield significant improvements in R/NR

detection capabilities, especially when combined with any of the other four GOES-12 channels. Similarly, for

nighttime detection the combination of two IR channels—particularly channels 3 (6.5 mm) and 4 (10.7

mm)—resulted in significant performance gain over any single IR channel. In both cases, however, using

more than two channels resulted only in marginal improvements over two-channel combinations. Detailed

examination of event-based images indicate that the proposed algorithm is capable of extracting information

useful to screen no-rain pixels associated with cold, thin clouds and identifying rain areas under warm but

rainy clouds. Both cases have been problematic areas for IR-only algorithms.

1. Introduction

Significant advances in rainfall estimation from sat-

ellite observations have been achieved in recent years.

With improved observations, algorithms, and process-

ing power, satellite-based precipitation estimates are

moving toward increasingly finer spatial and temporal

resolutions. Although this provides unprecedented op-

portunities for new hydrological and meteorological

applications, it brings about an additional challenge of

satisfying the demand for high accuracy at the scales

relevant to such applications.

Both geosynchronous Earth-orbiting (GEO) satellites

equipped with visible (VIS) and infrared (IR) scanners

and low earth orbiting (LEO) satellites equipped with

passive microwave (PMW) sensors provide observations

that are commonly used for rainfall retrieval. PMW rain-

retrieval algorithms (e.g., Kummerow et al. 1996; Weng

et al. 2003; Zhao and Weng 2002) have the advantage of

being more ‘‘physically based,’’ as they are sensitive to

actual hydrometeor content rather than just to cloud-

top properties like IR and VIS algorithms. However,

LEO satellites have a low sampling frequency relative

to GEO satellites, which is a significant problem for

short-term, rapid-response hydrometeorological appli-

cations. Meanwhile, the significantly higher sampling
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rate of GEO satellites, coupled with the higher spatial

resolutions of IR and VIS instruments, offers the ability

to capture the temporal variability of rainfall at scales

relevant to many applications, albeit indirectly and

through inferential algorithms. Recognition of the above

described benefits and limitations has motivated the de-

velopment of numerous combination/blending rain re-

trieval algorithms (Adler et al. 1993; Huffman et al. 2001,

2007; Joyce et al. 2004; Kidd et al. 2003; Kuligowski 2002;

Kummerow and Giglio 1995; Levizzani et al. 1996; Miller

et al. 2001; Sorooshian et al. 2000; Todd et al. 2001; Turk

et al. 2000, 2003; Xu et al. 1999). In a majority of com-

bined algorithms, precipitation rate is directly calculated

from a GEO-based IR-only (;11 mm) image using

PMW-derived relationships between GEO-based IR

data and rain intensity. Therefore, GEO-based precipi-

tation, whether standing alone or in combination with

other sources, has broad effects and applications.

It is generally assumed that more intense precipitation

is associated with colder cloud-top brightness tempera-

ture (Tb). However, the inverse relationship is not always

true. High-altitude cirrus, for instance, is a very cold

cloud and is often depicted as raining by IR-only algo-

rithms, even though no rain actually occurs. Conversely,

lower-level warm clouds (i.e., stratiform), which can be

associated with precipitation, generally appear as non-

raining clouds to IR-only algorithms. The misidentifi-

cation of rain/no-rain (R/NR) areas is one of the major

limitations of many IR-based techniques (Arkin and

Xie 1994). It can reduce the effectiveness of long-term

bias adjustment techniques (Tian et al. 2007).

In this paper, we explore the use of ‘‘multispectral’’

data as an alternative approach to improve GEO-based

rain retrieval. As a first step, we select the binary prob-

lem of rainfall detection and develop a framework to

test the utility of additional spectral channels. Our focus

on the areal extent of precipitation leaves the estima-

tion of rain rates to later work.

The scope of this paper is presented as follows: In

section 2, we present a background on multispectral

precipitation retrieval. Sections 3 and 4 introduce the

proposed R/NR detection algorithm and its multispec-

tral application, respectively. The validation of the al-

gorithm is furnished in section 5, and two case studies

are presented in section 6.

2. Background

Next to the thermal IR (;11 mm) channel, the VIS

channel, which provides indirect measure of cloud thick-

ness, is the second most commonly used band in GEO-

based precipitation retrieval algorithms. Techniques

that use both infrared and visible images to delineate

rain and no-rain areas go back to the 1970s. Lovejoy and

Austin (1979) developed a pattern matching technique

that uses radar data to identify probabilities of R/NR

occurrences in the normalized VIS–IR two-dimensional

space and to delineate an optimal rain-area extent.

Cheng et al. (1993) delineated precipitation areas using

VIS–IR images for four distinct synoptic types: cold

fronts, warm fronts, cold air convection, and mesoscale

convective systems. They found that combined VIS and

IR data perform better than using IR alone for all

synoptic types. Subsequently, Cheng and Brown (1995)

extended their analysis to refine the optimization of

the aforementioned Lovejoy and Austin (1979) tech-

nique in a manner that accounts for synoptic patterns in

rain-area delineation. Arguing that in midlatitudes the

combination of VIS and IR imagery provides more

rainfall-occurrence relevant information than IR only,

Tsonis (1984) proposed a method that uses VIS–IR

histograms to detect rain areas. Similarly, the IR and

VIS combination has been extensively studied as input

to rain-rate estimation techniques (Grassotti and Ga-

rand 1994; Griffith et al. 1978; Hsu et al. 1999; King et al.

1995; Negri and Adler 1987a,b; O’Sullivan et al. 1990).

The effectiveness of other spectral bands in improving

rain retrieval has also been investigated. Inoue (1987)

showed that the brightness temperature difference

(BTD) between 11 (Tb11) and 12 mm (Tb12) IR bands are

useful in identifying cirrus clouds. Thin-cirrus pixels were

found to coincide with BTD(11mm,12mm) values greater

than 2.5 K. Kurino (1997) reported that image pixels

where BTD(11mm,12mm) are greater than or equal to 3 K

correspond to cirrus clouds with no rain, while areas

whose BTD(11mm,6.7mm) are less than or equal to 0 K

correspond to deep convective cloud with heavy rain.

Using these three channels (11, 12, and 6.7 mm) along

with composite digital radar data, he calculated three-

dimensional (3D) lookup tables of probability of rain

and mean rain rate to estimate both ‘‘deep/shallow’’

precipitation rates. Inoue and Aonashi (2000) used both

the Visible Infrared Spectrometer (VIRS) and the

precipitation radar (PR) on board the Tropical Rain-

fall Measuring Mission (TRMM) satellite to investigate

the value of multispectral information. Selecting four

parameters—the radiance ratio of 0.6 and 1.6 mm,

BTD(11mm,12mm), BTD(3.8mm,11mm), and Tb11—they sug-

gested a number of thresholds for delineating rain areas

and demonstrated the superiority of using multispectral

information.

The utility of multispectral bands in capturing mi-

crophysical properties near cloud tops has also been the

subject of many investigations. Pilewskie and Twomey

(1987) showed that information relevant to cloud-top

microphysics can be obtained from the reflected solar
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radiation at several wavelengths in the near-infrared

portion of the solar spectrum. Arking and Childs (1985)

reported that the 3.7-mm band is very sensitive to the

distribution of cloud drop sizes, thermodynamic phase,

and particle shape. Rosenfeld and Gutman (1994) used

Advanced Very High Resolution Radiometer (AVHRR)

bands (0.65, 3.7, 10.8, and 12.0 mm) to analyze micro-

physical properties near the tops of potential rain

clouds. Their findings indicate that the 3.7-mm band

adds considerable information regarding precipitation

processes in clouds, particularly those with top tem-

perature greater than 245 K.

More recently, Ba and Gruber (2001) developed

the Geostationary Operational Environmental Satellite

(GOES) Multispectral Rainfall Algorithm (GMSRA).

GMSRA uses five spectral bands—0.65, 3.9, 6.7, 11, and

12 mm—to estimate rainfall. The algorithm incorporates

cloud-top Tb11 as a basis for estimation with concepts

such as effective radii of cloud particles (Rosenfeld

and Gutman 1994), spatial–temporal temperature gradi-

ents (Adler and Negri 1988; Vicente et al. 1998), and

BTD(11mm,6.7mm), being employed to screen no-rain

clouds. In a more recent study, Capacci and Conway

(2005) investigated the benefits of multispectral images

in delineating daytime precipitation areas during winter

and in and around the United Kingdom. Using an ar-

tificial neural network (ANN), they tested 511 possible

combinations of nine spectral bands (ranging from 0.6 to

12 mm) obtained from Terra’s Moderate Resolution

Imaging Spectroradiometer (MODIS) and the Spinning

Enhanced Visible and Infrared Imager (SEVIRI) on

board the Meteosat Second Generation (MSG) satel-

lites. As a result, they reported remarkable improve-

ment in skill by using multispectral data as opposed to

use of only one visible or infrared channel.

Although in this study we focus on the five spectral

bands within the GOES-12 VIS–IR range, the proposed

framework is inherently extensible. Our work differs

from the analysis of Capacci and Conway (2005) in

three aspects: First, we extend the analysis into a greater

portion of the daylight hours by considering the effect

of sun zenith angle (SZA) variation. Second, and more

importantly, we employ the ANN-based self-organizing

feature map (SOFM; Kohonen 1982) as opposed to the

more traditional multilayer perceptual (MLP) neural

networks. Third, we conduct our experiment over the

contiguous United States as oppose to the United King-

dom. Therefore, different precipitation regimes are ex-

perienced, such as deep convective systems, which are

not typical over the United Kingdom. As will be dis-

cussed later, by clustering input features into localized

maps SOFM has the advantage of facilitating analysis

capabilities, and by extension, of increasing the effec-

tiveness of the method and the ability to interpret the

nonlinear output resulting from ANN models. As de-

scribed by Tapiador et al. (2004), ANNs are a viable

alternative to physically based algorithms, especially

where the underlying physical relationships between the

studied quantities and/or processes are unclear. Readers

interested in further discussion of the pros and cons

of using neural networks in satellite precipitation esti-

mation are referred to the above-mentioned work of

Tapiador et al. (2004) and to the works of Hsu et al.

(1997), among others.

3. R/NR detection algorithm

Figure 1 is a schematic overview of key steps per-

taining to the development and validation of the pro-

posed framework, as well as a visual depiction of the

structure of the remainder of this manuscript. As seen in

the figure (left side), the algorithm uses the SOFM to

classify input features into clusters that are then used to

assign R/NR designation to image pixels. In artificial

neural networks’ terminology, the term ‘‘feature’’ or

‘‘input feature’’ refers to any input that is introduced into

the ANN. For example, the pixel’s brightness temper-

ature at a given wavelength (band) is called a feature,

and the collection of features that are associated with

each pixel is called a ‘‘vector’’ of features. Features as-

sociated with a given pixel can also be extracted from

a window of neighboring pixels and may include the

mean, standard deviation, range, and image texture in-

dices (Wu et al. 1985). In this study, only the pixel value

itself is used to facilitate more direct conclusions re-

garding the role of each spectral band or combination of

them. We standardize each feature and then employ

SOFM as a classifier to categorize input features into a

number of clusters. Subsequently, R/NR probabilities

are assigned to each cluster, based on radar observations.

Following, and using the probability matching technique,

a critical probability threshold (CPT) (Cheng. et al. 1993)

is computed, which distinguishes clusters most likely

associated with a rain event from those likely to repre-

sent no-rain situations. In the following sections, a more

detailed description of the algorithms is provided.

a. Data preparation

Given a number of input features N, there are

2N 2 1 possible ways of combining them. In our case the

five GOES-12 channels—VIS (Ch1; 0.65 mm), NIR (Ch2;

3.9 mm), water vapor (Ch3; 6.5 mm), and IR channels 4

(Ch4; 10.7 mm) and 6 (Ch6; 13.3 mm)—can be combined

in 31 different ways. A number of issues must be con-

sidered when using all five channels of the GOES-12
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satellite. First, Ch1 (0.65 mm) is only available during the

daytime. Second, the reflection from both Ch1 and Ch2

(which has a reflection as well as an emission compo-

nent) must be normalized to account for the effect of

SZA variation. The mixed emitted and reflected radia-

tion at Ch2 must be separated before adjusting the re-

flection component. Herein, this was performed using

the thermal channel (Ch4) through Planck’s radiation

law (Rosenfeld and Gutman 1994). In addition, since

the radiance at 3.9 mm is quite low (roughly three orders

of magnitude lower than the radiance at 10.7 mm for

a brightness temperature of 210 K), the precision of

GOES brightness temperatures below 230 K is very

poor, and ‘‘saturation’’ values below 200 K cannot be

measured.

Two popular albedo normalization methods were in-

vestigated to select the more effective approach for SZA

normalization. The first approach multiplies an observed

albedo by its associated (cosSZA)21, as in (Cheng et al.

1993; King et al. 1995), and the second approach uses the

FIG. 1. Schematic overview of algorithm development and verification. Dotted arrows indi-

cate supervised classification connections and unfilled arrows represent unsupervised classifi-

cation connections. The trained SOFM, along with its cluster map and the critical probability

threshold, represent the R/NR classifier (gray area). Notice that the procedures described in

this figure are repeated for each of the 31 combinations.

JUNE 2009 B E H R A N G I E T A L . 687



inverse square root of cosine: (cosSZA)�1/2 (Minnis and

Harrison 1984; Tsonis and Isaac 1985). Figure 2 shows a

comparison of the two methods when applied to a large

sample of pixels that represents regional variability of

local time SZA over the contiguous United States

during summer. As mentioned by King et al. (1995),

SZA correction is deemed effective when the normal-

ized albedo shows little diurnal variation at high albedo

values, associated with very bright clouds. As seen in the

Fig. 2c, normalizing by (cosSZA)21 seems to be more

effective than by (cosSZA)21/2 (Fig. 2b) when compared

to unnormalized values (Fig. 2a). Because of uncer-

tainties associated with SZA greater than 608 (early

morning and late evening hours), normalization was only

applied within SZA , 608. On the basis of the overall

results, we conclude that cos21(SZA) is reasonable to

normalize albedo and the reflected component of Ch2

when SZA , 608. Note that the simple method em-

ployed here assumes that the reflected radiation field is

isotropic and thus much more subject to error than a

more rigorous approach of directly retrieving the cloud

microphysical properties from reflected solar radiation,

such as that presented in Nakajima and King (1990) and

Nakajima et al. (1991). However, since the purpose of

this paper is to demonstrate the potential utility of these

bands for R/NR discrimination, this approximation

should be sufficient for this study.

The remaining channels (3, 4, and 6) are less sensitive

to diurnal effects and do not require adjustment. Al-

though the latter three channels can be used during

daytime and nighttime, the study is restricted to only

daytime images (with SZA , 608) to ensure the ho-

mogeneity of the images used in the proceeding com-

parisons. Arguably, any conclusion made regarding the

seven possible combinations of channels 3, 4, and 6 can

be extrapolated to infer their potential use in detecting

areal extent of precipitation during nighttime as well.

b. SOFM unsupervised training

The second stage of the proposed framework involves

using a SOFM (Kohonen 1982) technique to classify

input features into a number of groups called clusters.

Training the SOFM occurs in the unsupervised mode

FIG. 2. Comparison of two albedo normalization methods for SZA diurnal variation. Albedo data obtained from

GOES-12 during Jun–Aug 2006, (a) without any normalization, (b) using (cosSZA)21/2, and (c) using (cosSZA)21.

(top row) All pixels considered in the analysis with SZA , 608. (bottom row) The 90th percentile of albedo associated

with the SZA , 608.
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without introducing R/NR observations into the pro-

cess. The unsupervised training improves the SOFM

classification by reducing the noisiness that may result

from uncertainties in precipitation measurement fields.

Below is a brief description of the procedure; a detailed

description is available in Hsu et al. (1999).

The SOFM divides the multidimensional feature space

into a predetermined number of clusters arranged in a

2D structure. Theoretically, SOFM clusters can be

arranged in any number of dimensions. However, as

seen in section 3d, the 2D architecture of the SOFM

clusters facilitates the visualization of the clusters, which

is a valuable tool for interpreting the results. To describe

the SOFM training process, an example using a two-

dimensional feature map is demonstrated in Fig. 3. The

process of the SOFM training consists of following steps:

Step I: Initialization. The cluster centers (weight vec-

tors) are generated randomly near the center of

standardized (between zero and one) input feature

space (Fig. 3b, left panel).

Step II: Competition. The input feature vectors are

presented one by one from the training dataset to

the network and a distance d between each stan-

dardized input feature (xi, i 5 1, . . . n0) and the

corresponding SOFM cluster center is calculated as

dj 5 �
n0

i51
(xi � wij)

2

2
4

3
5

1/2

, j 5 1, . . . , n1 (1)

where, wij is the weight vector (connection param-

eter) of the SOFM from input feature i to the

specified node j. For each input vector, the best

matching SOFM cluster, c (winning cluster), is de-

fined as the cluster that possesses the shortest dis-

tance d between the input feature vector and the

SOFM connection weight vector wij, as follows:

dc 5 min(dj), where j 5 1, . . . , n1. (2)

Step III: Weight (cluster center) update. The wining

cluster and its neighboring cluster centers (clusters

within the gray area, with size V shown in Fig. 3a,

right side) are moved toward the presented input

vector with an already-defined learning rate h. Both

FIG. 3. A brief overview of the SOFM technique. (a) Presentation of a 2D input feature space into a 2D

SOFM structure. (b) Expansion of the cluster centers during the recursive training process. (c) Repre-

sentation of input space with respect to the number of cluster centers.
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h and V are reduced throughout the learning pro-

cess, as described in Hsu et al. (1999).

Step IV: Recursive computation. Through a recursive

process of competitive cluster selection and weight

adjustment, cluster centers continue to evolve (see

Fig. 3b) and finally become stable with respect to

the decrease of learning rate and the neighborhood

size.

After training, the trained SOFM has the ability to

assign any arbitrary input feature vector xi to the closest

SOFM cluster center. As shown in Fig. 3c, increasing

the number of trained clusters results in more detailed

representation of the input feature space. A 2 3 2

cluster network (Fig. 3c, left panel) offers only four

clusters, which poorly represent the input feature space,

while a 8 3 8 network (Fig. 3c, right panel) includes 64

clusters, resulting in substantial improvement in repre-

senting input space details. Figure 3c also illustrates that

clusters arranged into a two-dimensional discrete map

preserves the topological order of feature vectors. This

means that the 2D SOFM structure that we assigned

before (Fig. 3a, left side) is projected into the input

feature space and preserves the neighborhood connec-

tion of SOFM clusters (see Fig. 3c).

c. Filtering

In reality, the automatic clustering of input features

may result in an undesirable representation of the sys-

tem. Consider, for example, a 15 3 15 cluster network

with a 2D input feature vector that includes albedo and

Tb10.7. By training the SOFM with a fully randomly

sampled dataset (Fig. 4a), most of the clusters appear

to be concentrated over the region of high brightness

temperature and low albedo, representing clear-sky grid

boxes (Fig. 4b). This, unfortunately, causes most of the

SOFM clusters to explain those situations with little or

no precipitation. To better represent cloudy areas with a

higher possibility of precipitation occurrence, a suffi-

cient number of clusters in the region of low Tb is re-

quired. Filtering the sample data ahead of the SOFM

classification is one way to ameliorate this problem.

Therefore, in the present study, a two-step filtering

procedure is used. In the first step, all data samples are

binned into a number of groups (here, 10 groups with

unequal range), based on Ch4 brightness temperature.

Then, the number of samples in the coldest bin is ap-

plied as an upper limit to screen data in the other bins:

data from the warmer bins are randomly removed until

the total count of data vectors in each bin matches the

number of samples in the coldest temperature group.

The redistribution results in a more desirable distribu-

tion of clusters in the input feature space and thus im-

proves the representation of cloudy areas by the cluster

centers (Fig. 4c).

d. Probability of precipitation for each cluster

At the end of the training step, the location of cluster

centers in the input feature space (SOFM weights) is

fixed. Afterward, the entire algorithm development data-

set is processed through the SOFM network, and each

input vector is assigned to the corresponding cluster in

the SOFM layer. As described in section 4a, for each

input vector (from satellite grid boxes), approximately

coincident rain rate information is assigned from rain

FIG. 4. Illustration of the role of filtering process to improve the representation of more likely rain situations. (a)

Dataset used for the training the network. (b) Clusters arrangement before filtering. (c) Clusters arrangement after

filtering. Notice the resulting shift in the concentration of clusters between the two cases.
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‘‘observation.’’ The next step is using rain ($0.1 mm h21)

and no-rain (,0.1 mm h21) observations to compute a

POP for each cluster (k) as

POPk 5
Rk

(Rk 1 Dk)
3 100, k 5 1, . . . , n1 (3)

where Rk and Dk are the total counts of rain and no-rain

observations for each cluster, respectively.

As mentioned earlier, the SOFM clusters are arranged

into a two-dimensional discrete map that preserves to-

pological order. A two feature (Ch1 1 Ch4) example is

shown in Fig. 5 to describe how clusters (Fig. 5a) inte-

grate input features into a two-dimensional map of POP

(Fig. 5b). Visual inspection of Fig. 5 shows that high

POP is mostly associated with low brightness tempera-

ture (Fig. 5c) and high albedo (Fig. 5d), which corre-

sponds to cold and thick clouds (zone A). Also, cold,

thin clouds (i.e., cirrus), generally characterized by low

temperature and low albedo, correspond with lower

POP (zone B). Naturally, clear sky during summertime

corresponds with high brightness temperature, low al-

bedo, and, as clearly shown, with low POP (zone C). In

general, the accuracy of the above-defined POP de-

pends on several factors, including the effectiveness of

input features mapping, the issue of coregistration of

satellite and radar observations, and the uncertainty in

ground observation (i.e., radar) of R/NR pixels.

e. Critical probability threshold

Because R/NR delineation is a binary problem, a

mechanism to separate R/NR clusters is needed. If we

treat POP as an index of the likelihood of a rain or no-

rain event, a critical probability threshold can then be

defined to divide SOFM–POP cluster maps into SOFM-

rain and no-rain clusters. To identify such a threshold,

we use pattern matching techniques in manners similar

to Lovejoy and Austin (1979) and Cheng et al. (1993).

As implemented in this study, the pattern matching

technique consists of the following steps. First, SOFM

clusters are sorted in order of decreasing POP. Second,

starting from the cluster with the highest POP, the total

number of rain counts (obtained from all clusters) is

reallocated to the top ranking clusters, one by one, up to

their original (rain and no rain) counts. The reallocation

continues until the total rain count is exhausted. The

POP of the cluster at which this occurs is defined as

the critical probability threshold (CPT). In essence, all

the clusters with POP higher than CPT will be consid-

ered as rain with effective POP 5 1 and those with lower

values as no rain with effective POP 5 0.

Identifying CPT marks the conclusion of the model’s

development phase. Indeed, the reduction of the di-

mensionality of the input features vector into a 2D

SOFM map of clusters and the subsequent determi-

nation of POP and CPT is a robust feature that en-

hances our algorithm’s extensibility to cope with a large

FIG. 5. Two-dimensional representation of clusters’ arrangement and their corresponding maps of

computed POP, albedo (Ch1), and brightness temperature (Ch4).
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number of input channels and, consequently, compu-

tational cost. For each spectral combination, the trained

SOFM and its cluster map along with CPT form the

R/NR classifier (gray box in Fig. 1)

4. Algorithm application

a. Data

Three months (June, July and August 2006) of half-

hourly GOES-12 images with 0.048 3 0.048 spatial res-

olution were collected from the National Oceanic

and Atmospheric Administration/National Environmen-

tal Satellite, Data, and Information Service (NOAA/

NESDIS) Environmental Satellite Processing Center

(ESPC) over the conterminous United States. In addi-

tion, hourly accumulated 4-km gridded radar rain rate

estimates were obtained from the National Centers for

Environmental Prediction (NCEP) Environmental Mod-

eling Center (EMC) (Lin and Mitchell 2005) and re-

mapped to a 0.048 latitude/longitude.

The dataset was divided into model development

(calibration) subset and model validation/verification

subset using a simple odd–even Julian day criterion.

Images obtained on odd days were selected for training

and model development, while even days were retained

for model validation. A mask representing the effective

beam height of 3 km (Maddox et al. 2002) was applied

to screen radar rainfall observations that may not be

reliable. Note that the hourly rainfall rate observation,

described above, was assumed to be uniformly distrib-

uted within each hour (i.e., that the rain rate was con-

stant with time) to allow the comparison with half-hourly

GOES data. As for each GOES-12 image, as described

earlier, only pixels satisfying the SZA , 608 at the time of

image acquisition were introduced into the network.

b. SOFM size

As mentioned previously, the development of a

SOFM network requires a predetermined number of

clusters. In principle, a larger number of input features

are better classified by a network with a larger number

of clusters. However, a larger number of clusters can

also substantially increase the computational demands

of both network development and application. An op-

timal configuration, for our purposes, would be the one

that ensures the stability of the model performance for

the larger channel combination. Using a representative

subset of the model development data, a sensitivity

analysis of the model’s performance, as measured by the

equitable threat score (ETS; see next section), was con-

ducted. The results of the sensitivity analysis for se-

lected combinations are shown in Fig. 6. As seen from

the figure, a 10 3 10 SOFM network is relatively suffi-

cient to classify both small and large channel combina-

tions. However, a 15 3 15 cluster network was selected

as a proper SOFM size and implemented to each of the

31 possible combinations of spectral bands.

c. Performance measures

The equitable threat score is one of several verification

statistics that can be computed from the binary-based

contingency table. The table classifies the prediction

outcome into the following four possibilities based on

observation of R/NR occurrences:

d hits (H): number of pixels correctly classified as pre-

cipitation,
d misses (M): number of pixels incorrectly classified as

no precipitation,
d false alarms (F): number of pixels incorrectly classified

as precipitation,
d correct negatives (Z): number of pixels correctly

classified as no precipitation.

A perfect prediction system would produce only hits

and correct negatives and no misses or false alarms. But

in reality, predictions produce both of the latter. The

model’s skill can then be described in terms of ratios of

hits and/or misses to the observations. Among the most

commonly used statistics are

� probability of detection: POD 5
H

H 1 M
(4)

� false alarm ratio: FAR 5
F

H 1 F
(5)

� bias estimate: BIAS 5
H 1 F

H 1 M
(6)

POD and FAR range from 0 to 1, with perfection

represented by a POD of 1 together with a FAR of 0.

POD is sensitive to the number of hits, but it ignores

false alarms; FAR, on the other hand, is sensitive to false

alarms, but it ignores misses. As a result, a low POD can

be increased by increasing the predicted rain coverage

but such improvement would be at the cost of increasing

false alarms. In general, BIAS considers both predic-

tions and observations. A value of 1 indicates that

predictions and observations have identical area cov-

erage independent of location. As such, a perfect BIAS

score does not necessarily indicate a perfect match of

R/NR pixels between observed and predicted fields.

Originally defined in (Gilbert 1884), the ETS, also

called the Gilbert skill score (Schaefer 1990), is a

modification of the commonly used threat score, also

692 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 10



known as the critical success index. ETS is computed as

follows:

ETS 5
H � C

(H 1 F 1 M)� C
, (7)

where C 5
(H 1 M)(H 1 F)

(H 1 F 1 M 1 Z)
.

Schaefer (1990) referred to C as the ‘‘number of fortu-

itously correct forecasts’’ or the number of hits that

occur by chance. He argued that, among many possible

skill scores, ETS is less sensitive to ‘‘no forecast’’ (Z)

and is more accurate across both rare and more frequent

events. Arguably, by subtracting fortuitously correct

forecasts from the number of hits, and from the total

number of threats (H 1 M 1 F), ETS becomes a more

‘‘equitable’’ score. ETS is commonly used in the veri-

fication of numerical weather prediction models and

more specifically in verifying models’ ability to capture

rare extreme events (Stephenson 2003). The lower

bound of ETS is 21/3, and it indicates that the model’s

skills are worse than the skill of a random prediction. A

value of 0 would indicate that all the correct predictions

may be attributed to chance, and a value of 1 indicates

full correspondence between predicted and observed

occurrences of the event being verified. In this study,

ETS is used as the main skill score to cross compare the

performances of the 31 spectral combinations during

model validation. Other scores, such as POD, FAR, and

BIAS, are computed but not shown here. These mea-

sures will be used to provide insight into specific case

study events.

5. Results and verification

By considering the computational cost and goodness

of the classification, about 56 000 filtered input vectors

(out of approximately 6 000 000 input vectors) were used

for SOFM classifications of each combination scenario.

The clusters POP for each combination scenario was

calculated using about 11 000 000 satellite–radar matched

grid boxes, which were extracted from the calibration

and training datasets. Finally, the CPT of each combi-

nation scenario was calculated and used to delineate

rain area.

Table 1 summarizes the model validation results for

all 31 channel combinations grouped by the number of

channels in each combination in ascending order.

Within each group, the combinations are listed in de-

scending order of performance skill as measured by

ETS. In addition to ETS, a performance gain/loss mea-

sure was computed as the ratio of gain/loss in perfor-

mance compared to the performance measure associated

with using Ch4 alone:

FIG. 6. Sensitivity of SOFM R/NR detection performance to number of clusters in the network

for selected combinations.
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% Gaini 5
ETSi � ETSch4

ETSch4
3 100, (8)

where i is the combination index. Channel 4 was chosen

as the reference channel because it is the most com-

monly used band in IR-only rain retrieval algorithms.

From Table 1, it is clear that in comparison with other

single channels, the visible channel (albedo) alone, with

ETS (0.327) and ETS gain (34.95%), is very effective in

delineating the areal extent of rain during the daytime.

This is consistent with the partial results shown previ-

ously in Fig. 5 that demonstrate the value of albedo as

an indirect measurement of cloud optical thickness in

discerning the probability of precipitation. Combining

albedo with any other channel, particularly with Ch2

(albedo 1 Ch2, ETS 5 0.370) or Ch4 (albedo 1 Ch4,

ETS 5 0.361), scored better than albedo alone and

much better than any combination of IR channels;

however, increasing the number of channels beyond two

yields marginal improvements. The marked improve-

ment achieved by using visible data is consistent with

previous studies (Capacci and Conway 2005; Cheng

et al. 1993; Lovejoy and Austin 1979; Tsonis 1988).

The results in Table 1 also highlight the importance of

Ch2 as the second-best channel during daytime in single-

channel mode. The reflection component of Ch2 is a

factor for the improved performance. The good per-

formance of Ch2 (3.9 mm) is also consistent with Arking

and Childs’ (1985) findings that the relatively similar

3.7-mm channel is sensitive to cloud drop size distribu-

tion, thermodynamic phase, and particle shape. Our

results also support the findings of several other studies

that have argued in support of using the 3.7-mm channel,

particularly during daytime (Rosenfeld and Gutman 1994;

Rosenfeld and Lensky 1998).

An interesting observation from Table 1 is the strong

complimentary role of the water vapor channel (Ch3),

especially in conjunction with Ch4. In single-channel

mode, Ch3 has a very low skill in discriminating raining

from nonraining pixels. However, when used in combi-

nation with Ch4, significant improvement in skill (ETS) is

obtained. This is partially consistent with the findings of

previous authors (e.g., Ackerman 1996; Martin et al. 2008;

Tjemkes et al. 1997), who argued that areas where Ch3

was warmer than Ch4 were regions where overshooting

TABLE 1. Summary of validation results over the contiguous United States (Jun–Aug 2006).

Number of channels Scenarios ETS Performance gain (%) Rank Effective period

One Albedo 0.327 34.95 16 Day

Ch2 0.261 7.78 28 Day

Ch4 0.242 0 29 Day 1 night

Ch6 0.226 26.54 30 Day 1 night

Ch3 0.209 213.71 31 Day 1 night

Two Albedo 1 Ch2 0.370 52.68 8 Day

Albedo 1 Ch4 0.361 48.87 13 Day

Albedo 1 Ch6 0.350 44.47 14 Day

Albedo 1 Ch3 0.350 44.27 15 Day

Ch2 1 Ch3 0.294 21.20 20 Day

Ch3 1 Ch4 0.293 20.84 21 Day 1 night

Ch2 1 Ch6 0.284 17.15 24 Day

Ch2 1 Ch4 0.281 16.11 25 Day

Ch4 1 Ch6 0.273 12.58 26 Day 1 night

Ch3 1 Ch6 0.267 10.15 27 Day 1 night

Three Albedo 1 Ch2 1 Ch3 0.372 53.37 3 Day

Albedo 1 Ch2 1 Ch6 0.370 52.76 4 Day

Albedo 1 Ch2 1 Ch4 0.370 52.54 6 Day

Albedo 1 Ch3 1 Ch4 0.362 49.34 10 Day

Albedo 1 Ch4 1 Ch6 0.362 49.20 11 Day

Albedo 1 Ch3 1 Ch6 0.360 48.63 12 Day

Ch2 1 Ch3 1 Ch4 0.295 21.62 18 Day

Ch3 1 Ch4 1 Ch6 0.294 21.39 19 Day 1 night

Ch2 1 Ch3 1 Ch6 0.290 19.87 22 Day

Ch2 1 Ch4 1 Ch6 0.285 17.57 23 Day

Four Albedo 1 Ch2 1 Ch3 1 Ch6 0.372 53.56 2 Day

Albedo 1 Ch2 1 Ch4 1 Ch6 0.372 53.48 5 Day

Albedo 1 Ch2 1 Ch3 1 Ch4 0.371 53.25 7 Day

Albedo 1 Ch3 1 Ch4 1 Ch6 0.371 53.12 9 Day

Ch2 1 Ch3 1 Ch4 1 Ch6 0.295 21.63 17 Day

Five Albedo 1 Ch2 1 Ch3 1 Ch4 1 Ch6 0.372 53.59 1 Day
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convective tops had ejected water vapor into the

stratosphere, producing a warm water–vapor signal

above cloud top. Although the performance of other

combinations that include channel 3 along with albedo

are better than the two-channel (Ch3 1 Ch4) combina-

tion, the latter bears significant impacts for nighttime

rain detection. At nighttime, the visible channel is not

available, and Ch2 does not have the important reflec-

tion component. With both Ch3 and Ch4 being com-

monly available on most of the operational and research

GEO satellites, the gain in nighttime rain detection per-

formance through their combination is rather welcomed.

Further insight into the reason for the superior per-

formance of the Ch3 1 Ch4 combination in contrast

with their individual contributions can be gained by

comparing the distribution of their brightness tem-

perature under rain and no-rain situations. Figure 7

shows the relative frequency distribution of single

channels along with the BTD (Ch4, Ch3). The latter, to

some extent, can reflect the combined effect of the two

channels, and several studies (i.e., Inoue and Aonashi

2000; Kurino 1997; Lensky and Rosenfeld 2003; Schmetz

et al. 1997) have already reported the utility of BTD

(Ch4, Ch3) as an input to rain retrievals algorithm. For

channel 3, despite the pronounced modes of both dis-

tributions (Fig. 7c), the two distributions are not easily

distinguishable and the two modes are very close.

However, as shown in Fig. 7f, BTD (Ch4, Ch3) dem-

onstrates fairly distinctive distributions with pronounced

modes. It is tempting, therefore, to use the BTD

(Ch3, Ch4) as input feature to SOFM, as opposed to

using the combination of two channels. Theoretically,

we can argue that using BTD reduces the dimension-

ality of the SOFM classification problem and that it

would be consistent with the findings of several previ-

ously referenced studies in term of improving the R/NR

delineation. However, in practice, with ETS 5 0.255,

the performance of BTD (Ch4, Ch3) is lower than the

0.295 ETS value associated with the combination of Ch3

and Ch4 as two independent input features. From Fig. 7

we can also infer that although channels 2, 4, and 6

(Figs. 7b,d,e, respectively) show some distinct differ-

ences between their relevant distributions, the absence

of a pronounced mode for rainy condition for bands 4

and 6 may have contributed to their low performance in

single-channel mode.

As seen in Table 1, of the 31 spectral combinations,

only 7 are suitable for both day and nighttime rain area

FIG. 7. (a) Relative frequency distributions of albedo, (b)–(e) Tb, and (f) BTD under rain (dashed line) and

no-rain (solid line) conditions.
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detection. Although the values of the performance in-

dex for these combinations are below those of combi-

nations that include visible albedo or Ch2, they provide

an important niche in nighttime R/NR detection. Figure 8

shows the best performance (maximum ETS) within

each set of 1–5-channel combinations plotted against

the number of channels. Notice that for nighttime, a

maximum of only three channels is available (3, 4, and 6).

In both cases, ETS is stabilized using two channels. In

other words, although using two channels shows consid-

erable improvement over a single channel, only marginal

improvement is achieved once more than two channels

are used. However, this conclusion is only applicable to

channels tested in this study and cannot be extended,

without investigation, into other spectral bands.

6. Case studies

Two specific case studies are selected for assessing the

relative usefulness of various channels and combinations

of them at event scale. The first case, shown in Fig. 9,

represents cold but thin nonraining clouds over Arkansas

and Missouri, captured by a GOES-12 image at 2015

UTC 9 June 2006. The second case study, shown in

Fig. 10, was sampled at 1415 UTC 30 August 2006 from

an extreme event (Hurricane Ernesto) as it passed over

the Florida peninsula. Only 11 out of the 31 possible

combinations are used in the analyses shown in Figs. 9, 10,

with the majority representing thermal channels (3, 4, and

6) to assess both daytime and nighttime performances.

a. Nonraining cold, thin cloud

The Tb image (Fig. 9a) shows a relatively cold cloud

over the region; the visible albedo image (Fig. 9b) pre-

sents a generally low reflectance, and the baseline R/NR

data from radar (Fig. 9c) does not include any pixels

with rain. The remaining panels (Figs. 9d–n) show R/NR

maps produced by applying the trained networks of the

corresponding combinations. The numbers on the top-

right side of each panel represent false alarm counts.

Figures 9d,e,f show the rain areas falsely detected by

using single IR-only channels (3, 4, and 6). Clearly, all

three channels failed to screen no-rain pixels, with Ch3

and Ch6 being close in terms of the number of false

detections. Using Ch4, on the other hand, resulted in a

slightly better performance. Consistent with the results

reported so far, by combining two single channels (Figs.

9g,h,i), the SOFM displays a remarkable ability to ex-

tract information from each element of the combina-

tions and substantially reduce false detection. The two

dimensional (Ch3 1 Ch4) combination also outper-

forms the single dimension BTD (Ch4, Ch3), suggesting

that although subtracting the brightness temperatures

appears to be useful, using the two channels as distinct

input features increases the extraction efficiency of the

SOFM. The relatively poor performance of the Ch3 1

Ch6 combination also highlights the important role of

Ch4 in R/NR detection, especially for nighttime. Only

minor improvements can be gained by adding a third

channel, as seen in Fig. 9k, for example, which is con-

sistent with the validation results shown in Table 1.

Remarkably, the introduction of albedo only (Fig. 9m)

results in full removal of the no-rain pixels, even without

the benefit of any IR information. Another interesting

observation is the excellent performance of Ch2 (Fig. 9l)

when compared with other single IR channels. In ad-

dition to the channel’s sensitivity to cloud-top physical

properties (Arking and Childs 1985; Rosenfeld and

Gutman 1994), the presence of visible component is a

likely cause of its improved performance.

b. Warm raining cloud (Hurricane Ernesto)

The panels in Fig. 10 are constructed in similar manner

to Fig. 9. However, in this case, statistics (Table 2) from

the contingency table were calculated for each scenario

by counting the H’s, M’s, and F’s, which are shown in

green, blue, and red, respectively. The Tb image (Fig. 10a)

shows a relatively warm cloud area over the north-

western part of the Florida peninsula, with fairly high

albedo (Fig. 10b) indicating thick clouds (zone A).

Figure 10c shows the extent of the rain area as captured

by radar. Clearly, the warmer cloud (zone A) is asso-

ciated with rain. As seen in Figs. 10d,e,f, all three single

IR channels (i) failed to capture the warm rain pixels

particularly in zone A, (ii) successfully captured very

cold rain pixels, and (iii) presented extensive false de-

tections (red regions). Evidently, the high POD

FIG. 8. Effect of the number of channels on the performance

measure (ETS) using the best ranked combination within each

category shown in Table 1.
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associated with these three channels is not necessarily

synonymous with good performance, as indicated by the

high values of FAR as well as by the lower values

of ETS.

Again, the introduction of one additional IR channel

(Figs. 10g,h,i) significantly improves the algorithm’s ability

not only to screen cold no-rain areas but also to detect

warm rain areas. This is particularly evident when the

combination Ch4 1 Ch3 is used (Fig. 10g). Consistently

throughout this study, there seems to be no substantial

advantage of using BTD (Ch4, Ch3) (Fig. 10j) as a single

input feature over using the combination of Ch4 and

Ch3 (Fig. 10g). Although reasonable improvements are

observed using Ch2 (Fig. 10l), during daytime the im-

provements are very comparable to the gains made by

using the combination of Ch3 and Ch4. Again, the most

remarkable improvements in both detection and

screening are achieved by using visible albedo alone,

and the addition of an IR channel (Ch4) did not nec-

essarily result in substantial gains. It must be mentioned

that the above analysis may have been affected, to one

degree or another, by errors due to temporal gaps be-

tween satellite images and ground observations, partic-

ularly considering the rapid movement of the hurricane.

7. Summary and conclusions

We presented an algorithm that allows the utilization

of multiple channels in delineating R/NR areas. The

algorithm was employed, as a framework, to equitably

compare the value of information gained by using one

or more spectral bands in detecting R/NR areas. Al-

gorithm development and validation were conducted

using a three-month period of coincident radar rainfall

estimates and GOES-12 images, and all possible 31

combinations of the 5 spectral bands were assessed.

It must be mentioned that since the emitted radiance

values for Ch2 (3.9 mm) of GOES-12 are very low, there

are issues with the reliability of radiance values for cold

(below 230 K) clouds at night. However, the addition of

reflected solar radiation during the daytime alleviates

this problem. Therefore, Ch2 is useful after normalizing

the reflection component for sun angle changes in manners

similar to that used for Ch1 albedo correction, keeping in

FIG. 9. Visual comparison of performances of selected channel combinations for a cold, thin cloud situation at 2015 UTC 9 Jun 2006: (a)

map of Tb (Ch4), (b) map of normalized albedo, and (c) radar R/NR observation. (d)–(n) show the calculated R/NR areas using number

of selected combinations. (top right) Number in each box represents the number of false alarm pixels indicated in red. Blacked-out blocks

have no data.
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mind that just as with visible albedo, all scenarios con-

taining Ch2 are only applicable to the daytime period.

Our results demonstrate that during the daytime, sig-

nificant improvement in R/NR detection can be gained by

using albedo alone. We found that albedo improves both

the detection of rain pixels and the screening of no-rain

pixels. Additional improvements were also obtained by

using albedo in conjunction with other channels. How-

ever, only marginal improvement is gained when it is

combined with more than one IR/NIR channel.

For nighttime detection, when visible channels are

not available, the results demonstrated that significant

improvement in increasing the hits and decreasing

the false alarms and misses can be achieved by using the

water vapor channel (Ch3; 6.5 mm) together with the

thermal channel (Ch4; 10.7 mm), compared to using Ch4

alone. Because of the availability of these two channels

on almost all environmental weather satellites, this

combination has the potential to be applied for current

satellites. Although using combinations of any two IR

channels seems superior to use of any single IR channel,

no significant improvement is found when more than

two infrared channels are used.

Our results demonstrate the capability of SOFM to

identify the most important channels for rain detection

and to extract the information required for improved

detection of rain pixels and screening of no-rain pixels.

Furthermore, the extensibility of the proposed algo-

rithm to use any number of spectral bands that are

available from other imagers lends its particular

strength in cases in which the physical relationship be-

tween the spectral band and rainfall process is not clear.

With the advent of modern imagers on recent and future

geostationary satellites [e.g., SEVERI on MSG and the

FIG. 10. Visual comparison of performances of the selected channel combinations for Hurricane Ernesto at 1415 UTC 30 Aug 2006: (a)

Tb (Ch4), (b) normalized albedo, and (c) radar R/NR observation. (d)–(n) Calculated R/NR areas using number of selected combi-

nations. Green, blue, and red indicate hits, misses, and false alarms, respectively.

TABLE 2. Statistics for selected scenarios for Hurricane Ernesto at

1415 UTC 30 Aug 2006

Scenario

POD

(%)

FAR

(%) BIAS ETS

ETS gain

over Ch4

alone (%)

Ch3 73.844 44.461 1.330 0.254 212.41

Ch6 78.216 44.052 1.398 0.272 26.32

Ch4 76.843 41.997 1.325 0.290 0

Ch3 1 Ch4 77.573 34.122 1.178 0.377 29.93

Ch3 1 Ch6 80.408 41.834 1.382 0.304 4.81

Ch4 1 Ch6 72.231 38.978 1.184 0.305 4.92

BTD (Ch4, Ch3) 79.728 37.415 1.274 0.352 21.09

Ch3 1 Ch4 1 Ch6 78.125 34.655 1.196 0.373 28.48

Ch2 80.635 35.704 1.254 0.375 28.99

Albedo 75.117 22.319 0.967 0.478 64.63

Albedo 1 Ch4 79.224 24.159 1.045 0.489 68.44
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Advanced Baseline Imager (ABI) on GOES-R], more

spectral channels with higher temporal and spatial reso-

lution are becoming available. This study, along with some

previous works, confirms the inherent benefit of additional

spectral bands for precipitation retrievals. As mentioned

by Huffman et al. (2007), enhancing GEO-based rain

retrieval algorithms is an important step toward im-

proving combined LEO (PMW) and GEO-based pre-

cipitation products. Together with the anticipated launch

of NASA’s Global Precipitation Measurement (GPM)

mission, multispectral approaches that use data from

recent and future GEO satellites provide an unprece-

dented opportunity to improve global precipitation

measurements at scales relevant to many applications.
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