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ABSTRACT

Visible and infrared data obtained from instruments onboard geostationary satellites have been extensively

used for monitoring clouds and their evolution. The Advanced Baseline Imager (ABI) that will be launched

onboard the Geostationary Operational Environmental Satellite-R (GOES-R) series in the near future will

offer a larger range of spectral bands; hence, it will provide observations of cloud and rain systems at even finer

spatial, temporal, and spectral resolutions than are possible with the current GOES. In this paper, a new

method called Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks–

Multispectral Analysis (PERSIANN-MSA) is proposed to evaluate the effect of using multispectral imagery

on precipitation estimation. The proposed approach uses a self-organizing feature map (SOFM) to classify

multidimensional input information, extracted from each grid box and corresponding textural features of

multispectral bands. In addition, principal component analysis (PCA) is used to reduce the dimensionality to

a few independent input features while preserving most of the variations of all input information. The above

method is applied to estimate rainfall using multiple channels of the Spinning Enhanced Visible and Infrared

Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. In comparison to the use of

a single thermal infrared channel, the analysis shows that using multispectral data has the potential to improve

rain detection and estimation skills with an average of more than 50% gain in equitable threat score for rain/

no-rain detection, and more than 20% gain in correlation coefficient associated with rain-rate estimation.

1. Introduction

The accurate estimation of the amount, and temporal

and spatial distribution of precipitation is critical to

a wide range of applications from global climate mod-

eling to local weather and flood forecasting. Precipita-

tion is a key component of the earth’s hydrological cycle

and it has great effects on human lives and property.

At regional to global scales, the existing ground-based

precipitation observation networks are insufficient; thus,

satellites provide a viable and attractive alternative.

Clearly, the continuing development of satellite-based

precipitation retrieval algorithms that provide progres-

sively better estimates of precipitation has been a grow-

ing area of research because of the opportunities and the

challenges it entails.

On the basis of the assumption that colder cloud tops

are correlated with higher rain rate, cloud-top infrared

(IR; ;11 mm) data from geosynchronous earth-orbiting

(GEO) satellites have been frequently used to provide

high spatial and temporal resolution rain retrievals. In

general, these indirect approaches give good results

when rain estimates are integrated over larger time and
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space scales, but they tend to provide high uncertainty

for instantaneous rainfall estimates at small scales

(Arkin and Meisner 1987). In contrast, passive micro-

wave (PMW) data, particularly over oceans, capture

hydrometeor-relevant information and facilitate more

accurate instantaneous rainfall estimates because they

are more directly related to rain rates. To date, the main

disadvantage of PMW sensors has been that they are

carried onboard low Earth-orbiting (LEO) satellites;

therefore, they are limited in their temporal resolution.

The Global Precipitation Measurement (GPM) mission

will coordinate the collection of higher-quality PMW-

based global rainfall observations at ;3-h average re-

visit time and ;10-km pixel resolution (Hou et al. 2008).

Although this represents a significant improvement, the

current and future network of PMW sensors will con-

tinue to lack the spatial and temporal resolutions that

are required by some applications. Among such appli-

cations are flash floods caused by extreme convective

storms, where the life of the storm from initiation to

dissipation can occur within an hour or less and is con-

fined to a highly localized area.

Many recent algorithms show encouraging results by

combining data from IR and PMW sensors (Adler et al.

1993: Bellerby et al. 2000, 2009; Hsu et al. 1997, 2009;

Huffman et al. 2001, 2007; Joyce et al. 2004; Kidd et al.

2003; Kuligowski 2002; Kummerow and Giglio 1995;

Levizzani et al. 1996; Miller et al. 2001; Sorooshian et al.

2000; Todd et al. 2001; Turk et al. 2000, 2003; Xu et al.

1999). Arguably, GEO satellite observations will con-

tinue to play an important role in rain estimation

(Huffman et al. 2007), and the challenge is to provide

more accurate estimates. One possible direction of im-

proving the utility of GEO satellites is to explore the

benefit of multispectral imagers for rain detection and

estimation. This is consistent with the increasing number

of spectral bands on recent and future GEO-based in-

struments, along with higher time and space resolution.

For example, the operational Spinning Enhanced Visi-

ble and Infrared Imager (SEVIRI) instrument, onboard

Meteosat Second Generation (MSG), has 12 spectral

bands and currently scans the earth’s surface every

15 min, with a pixel size of 3 km at the subsatellite point

(Schmetz et al. 2002). Similarly, the future Geostation-

ary Operational Environmental Satellite-R (GOES-R)

series, planned to be launched in early 2015, will carry

the Advanced Baseline Imager (ABI), which will pro-

vide images in 16 spectral bands ranging from 0.47 to

13.3 mm, with improved temporal and spatial resolutions

(Schmit et al. 2005).

A great deal of research has been devoted to

precipitation-relevant multispectral studies, either using

multispectral bands to characterize clouds and under-

stand some of the near-cloud-top microphysical pro-

cesses associated with precipitation processes (Arking

and Childs 1985; Levizzani and Setvák 1996; Pilewskie

and Twomey 1987; Rosenfeld and Gutman 1994;

Turk and Miller 2005) or to delineate the areal extent

of precipitation (Behrangi et al. 2009; Cheng et al. 1993;

Inoue and Aonashi 2000; Lensky and Rosenfeld 2003;

Lovejoy and Austin 1979; Tsonis 1984). Efforts to esti-

mate rain rate from a combination of channels have been

also investigated, mainly limited to using only a single

visible and a single infrared band together (Bellerby

et al. 2000; Griffith et al. 1978; Hsu et al. 1999; King et al.

1995; Negri et al. 1984; O’Sullivan et al. 1990). A few

studies have used multispectral bands (more than two

channels) for rain-rate estimation. Kurino (1997) ar-

gued that areas with brightness temperature difference

(Tb11mm 2 Tb12mm) equal or greater than 3K correspond

to cirrus clouds with no rain, and areas with (Tb11mm 2

Tb6.7mm) , 0 correspond to deep convective cloud with

heavy rain. Using these three channels and composite

digital radar data, he developed a three-dimensional

(3D) lookup table of rain probability and mean rain rate

(MRR) to estimate both deep and shallow precipitation.

In another effort, Ba and Gruber (2001) developed the

GOES Multispectral Rainfall Algorithm (GMSRA),

which uses five spectral bands—0.65, 3.9, 6.7, 11, and

12 mm—to estimate rainfall. GMSRA builds on a series

of previously developed techniques: raining clouds are

identified using spatial temperature gradients (Adler

and Negri 1988) and time changes (Vicente et al. 1998),

and during the daytime, effective radii of cloud parti-

cles(Rosenfeld and Gutman 1994). Rainfall rates are

derived from 11-mm brightness temperatures and are

also adjusted for subcloud moisture in a manner similar

to Vicente et al. (1998). The self-calibrating multivariate

precipitation retrieval (SCaMPR; Kuligowski 2002) is

another multispectral approach, but it adds the dimen-

sion of being calibrated in real time against rain rates

from PMW sensors: regression techniques are used to

select the optimal predictors (selected from GOES bands

3–6 plus some derived quantities) and coefficients for

rain/no-rain discrimination and rainfall rate estimation.

In this paper we develop a multidimensional rain es-

timation technique called Precipitation Estimation from

Remotely Sensed Information using Artificial Neural

Networks–Multispectral Analysis (PERSIANN-MSA)

to estimate rain rate using multispectral data plus tex-

tural features. Textural features represent various as-

pects of each channel’s value across several neighboring

grid boxes in a satellite image. The results are also

compared to evaluate the value of such multidimen-

sional data. PERSIANN-MSA employs the ANN-based

self-organizing feature map (SOFM; Kohonen 1982) to

DECEMBER 2009 B E H R A N G I E T A L . 1415



cluster multidimensional input information in a manner

that facilitates the assessment of their individual and

combined utility in rain estimation. By clustering input

features into localized maps, SOFM has the advantage

of facilitating analysis capabilities, and by extension, the

ability to interpret the nonlinear output resulting from

ANN models (Behrangi et al. 2009; Hsu et al. 1997, 1999;

Tapiador et al. 2004) and to shed light on the value

of ANN in rain estimation. In section 2, we describe the

datasets used in the study and the study location. Al-

gorithm development and scenarios of combined chan-

nel selection are described in section 3. The results of

these combination scenarios are then compared in section

4 using both statistical scores and visual analyses. Lastly,

the conclusions of this study are presented in section 5.

2. Description of the dataset

As part of the algorithm development efforts for

GOES-R, the GOES-R Algorithm Working Group

(AWG) has archived datasets for development and

validation work, including SEVIRI data for the first nine

days from each of January, April, July, and October of

2005 at the full temporal (15 min) and spatial (3 km at

subpoint) resolution of the instrument. Of the 12 spec-

tral channels for each SEVIRI image, 10 channels in the

present study were used, centered at 0.635 (hereafter

referred to as VIS0.6), 0.81 (VIS0.8), 1.64 (NIR1.6), 6.25

(WV6.2), 7.35 (WV7.3), 8.70 (IR8.7), 9.70 (IR9.7), 10.80

(IR10.8), 12.0 (IR12.0), and 13.4 mm (IR13.4).

Notice that despite its demonstrated value, the 3.9-mm

channel is not considered in this study. There are several

studies in support of using the 3.7-mm (and by extension

3.9-mm) channel to retrieve cloud particle properties

and rainfall (Arking and Childs 1985; Rosenfeld and

Gutman 1994; Rosenfeld and Lensky 1998; Ba and

Gruber 2001), retrieval of cirrus cloud parameters (Rao

et al. 1995), and observation of convective storm tops

and plumes (Levizzani and Setvák 1996; Setvák et al.

2003), among others. During the daytime, the 3.7/3.9-mm

channel radiance contains both solar reflection and

thermal emission. To consider the effect of solar zenith

angle (SZA) on the reflection component of this chan-

nel, the solar component must be quantified and un-

coupled, which in itself has been a subject of several

investigations in the past (Rao et al. 1995; Rosenfeld

and Lensky 1998; Setvák and Doswell 1991). However,

in practice, most of these studies are subject to some

necessary simplifications and assumptions, such as zero

transmissivity of clouds, which is only acceptable for

optically thick clouds. Some other simplifications have

been addressed by Setvák et al. (2003). Therefore,

despite of its importance, the SEVIRI 3.9-mm chan-

nel is not considered in the present comparative study,

preventing any misinterpretation due to the necessary

simplifications.

In this study, the first five days of each month were

allocated for algorithm training and calibration, with the

remaining four days set aside for verification and testing.

A study region covering longitudes 308W–08 and lati-

tudes 158S–158N was selected because 1) it only includes

the ocean as background, where the PMW rain esti-

mates used for training and calibration purposes are

more accurate; 2) it includes the equatorial region,

where a large number of major precipitation events is

expected; 3) it minimizes the effects of parallax on the

cloud locations because the SEVIRI images are near

nadir; and 4) it maximizes the sample size for daylight-

only bands by avoiding higher latitudes, where the

length of daylight is relatively short in January (North-

ern Hemisphere) or July (Southern Hemisphere) and

SZA becomes significant.

The first three channels (VIS0.6, VIS0.8, and NIR1.6)

are highly affected by SZA and must be normalized. We

tested two different normalization methods suggested in

the literature (i.e., Cheng et al. 1993; King et al. 1995;

Minnis and Harrison 1984; Tsonis and Isaac 1985): 1) the

inverse of cos(SZA) and 2) the inverse square root of

cos(SZA). Our experiments show that, for SZA , 608,

using 1/cos(SZA) results in more reasonable correction

(Behrangi et al. 2009), and thus the former method was

chosen and applied for grid boxes with SZA , 608.

Because of the limited amount of available ground

observations of rainfall in the study area, a set of com-

bined intercalibrated normalized PMW-derived rain-

rate estimates, provided by the National Oceanic and

Atmospheric Administration’s Climate Prediction Cen-

ter (NOAA/CPC; Joyce et al. 2004), was used for train-

ing, calibration, and validation purposes. The combined

PMW data includes rain-rate estimates from the Tropical

Rainfall Measuring Mission (TRMM) Microwave Im-

ager (TMI), the Advanced Microwave Scanning Radi-

ometer for Earth Observing System (AMSR-E), the

Special Sensor Microwave Imager (SSM/I), and Ad-

vanced Microwave Sounding Unit/Microwave Humidity

Sounder (AMSU/MHS) sensors. The precedent order of

TMI, AMSR-E, SSM/I, and AMSU/MHS is used for

sensor overlaps in a 30-min period (Joyce et al. 2004).

Both the combined PMW rain estimates (with a grid size

of about 0.078 3 0.078) and the SEVIRI multispectral

images (with the nominal grid size of 3 km) were re-

mapped onto common 0.088 latitude–longitude grids and

approximately coincident pairs were used. Because of

the scan time of the SEVIRI images (15 min) and the

temporal precision of the combined PMW rain maps

(30 min), a 30-min time lag (at worst) between the pairs
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can occur, which to some extent could insert uncer-

tainties in both training and evaluation processes.

3. Methodology

a. Scenario development

To assess the role of multispectral data in improving

satellite rainfall estimation, we selected 12 combination

scenarios (Table 1). A fair comparison is ensured by

distinguishing ‘‘anytime’’ from ‘‘daytime’’ scenarios:

‘‘anytime’’ scenarios are those excluding both visible

and near-infrared bands (VIS06, VIS08, and NIR1.6).

This results in five scenarios (scenarios 1–5, hereafter

group 1) that are applicable to both daytime and night-

time hours, whereas the remainder (scenarios 6–12,

hereafter group 2) are only applicable during the day-

time. As described in section 2, the daytime hours con-

sist of grid boxes with SZA , 608, allowing more reliable

normalization of visible channels during daytime. Al-

though ‘‘anytime’’ scenarios can be used during daytime

and nighttime, the study is restricted to only daytime

images to provide a direct comparison of the various

approaches. Notice that scenarios 3, 4, 10 and 11 contain

GOES 8–11 imager-like channels, and thus their results

are arguably extendable to current GOES as well.

b. Input feature extraction and compression

Local textural features around each satellite grid box

are useful in rainfall estimation (i.e., Wu et al. 1985). In

this study, we extract five features similar to those used

in the PERSIANN (Sorooshian et al. 2000) algorithm.

These include the grid-box value itself along with the

means and standard deviations of 3 3 3 and 5 3 5 win-

dows of pixels centered on each grid box. Clearly, using

both multispectral images and textural features signifi-

cantly increases the number of inputs (see Table 1) and

imposes significant computational demand on the algo-

rithm. However, the high interband correlations, which

reflect redundancy among the spectral bands, can be

employed to reduce the dimensionality of the problem.

One common way to obtain such reduction is by using

principal component analysis (PCA). PCA uses an or-

thogonal linear transformation of the data to a new co-

ordinate system, such that the first coordinate (principal

component) contains the greatest data variance, the sec-

ond coordinate contains the second largest data variance,

and so on (Jolliffe 2002). Depending on the field of ap-

plication, PCA is also known as Karhunen–Loeve trans-

form (KLT), empirical orthogonal functions (EOFs), or

the Hotelling transformation (Anderson 2003; Jolliffe

2002). Briefly, let X be the data matrix containing N

variables. The covariance matrix (C) of X is calculated as

follows:

C 5 Cov(X) 5 E[(X�X)T(X�X)], (1)

where X is the mean value of X. The linear trans-

formation of X to orthogonal matrix Y is

Y 5 (X�X)V, (2)

where Y is the matrix of principal components and V is

the eigenvector matrix of the covariance matrix C. The

transformed components in Y are uncorrelated to each

other, and the covariance matrix of principal compo-

nents is

TABLE 1. Representation of scenarios used in the present work to assess the role of multispectral and textural features in

precipitation retrievals.

Scenario

index

Band/bands’

wavelength (mm)

Number of textural

features per

channel

Dimension of input

features (pixel value 1

textural features)

Dimension of

input features

(after PCA)

1 10.8 1 1 N/A

2 10.8 5 5 N/A

3 6.2 1 7.3 1 10.8 1 12 1 4 N/A

4 6.2 1 7.3 1 10.8 1 12 5 20 4

5 6.2 1 7.3 1 8.7 1 9.7

1 10.8 1 12 1 13.4

5 35 4

6 0.6 1 1 N/A

7 0.6 5 5 N/A

8 0.6 1 10.8 1 2 N/A

9 0.6 1 10.8 5 10 N/A

10 0.6 1 6.2 1 7.3 1 10.8 1 12 1 5 N/A

11 0.6 1 6.2 1 7.3 1 10.8 1 12 5 25 6

12 0.6 1 1.6 1 6.2 1 7.3 1 8.71 9.7

1 10.8 1 12 1 13.4

5 50 8
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D 5 Cov[Y] 5 E[YTY] 5 E[VT(X�X)T(X�X)V]

5

l
1

0 . . . 0

0 l
2

. . . 0

. . . . . . . . . 0

0 0 . . . l
N

2
66664

3
77775

, (3)

where D is diagonal matrix of eigenvalues of C. The total

variance of the data matrix can be represented as

Tv 5 �n

i51li, where the li values are the eigenvalues

ranked from the largest to the smallest variance. For

relatively high-dimensional scenarios in our study, as

shown in the last column in Table 1, the number of

principal components selected for the developmental

data preserve 99% of the total variance.

c. Classification of the input features

In this study, the ANN-based SOFM technique

(Kohonen 1982) is used to classify input vectors into

a number of classes (hereafter clusters), each presenting

a unique combination of input features. Rain observa-

tions are not used to train the SOFM because experience

shows that uncertainties in the assumed-true rain rate

tend to degrade the result. The cluster centers are ar-

ranged into a two-dimensional discrete map, randomly

initialized near the center of the feature space, and

trained by introducing input vectors one by one. After

training, the clusters are spread out in the input feature

space, and each cluster center represents neighboring

input vectors with similar properties (Behrangi et al.

2009). By using the SOFM technique, features within

each cluster retain the same order in which they were

introduced to the network. This property helps to visu-

alize the input features as described in section 3d.

The process of training the SOFM, which is further

described in Kohonen (1982) and Hsu et al. (1999),

consists of introducing input vectors one by one from the

training dataset to the network. All input feature must

be standardized so that they become comparable to one

another in magnitude. The distance d between each

standardized input vector (xi, i 5 1, . . . n0) and the center

of each SOFM cluster is calculated as follows:

d
j
5 �

n0

i51
(x

i
� w

ij
)2

2
4

3
5

1/2

, j 5 1, . . . , n
1
, (4)

where n1 is the total number of clusters and wij is the

cluster-center vector (weight vector) of the SOFM that

connects input feature i to the specified cluster j.

The best-matching SOFM cluster c (winning node) is

the one corresponding with the minimum distance (dc)

between the input feature vector and the SOFM con-

nection weights wij as follows:

d
c
5 min(d

j
), j 5 1, . . . , n

1
. (5)

Through a recursive process of competitive cluster se-

lection and weight adjustment, the locations of the cluster

centers are incrementally shifted in the N-dimensional

vector space until they become stable. Thereafter, the

trained SOFM has the ability to assign any arbitrary in-

put feature vector xi to an SOFM cluster (with fixed

weights) according to its minimum distance.

d. Calculating mean rain rate for each cluster

Given the classification described in section 3c, each

SEVIRI grid box is assigned to one of the SOFM clus-

ters, bringing with it the corresponding coincident PMW

rain estimate. By processing the entire algorithm de-

velopment dataset through the SOFM network, the

MRR for each cluster is calculated as follows:

MRR
C

5
�RR

C

Nr
C

1 Nn
C

, (6)

where MRRC is the mean rain rate for cluster c, RRC is

the rain rate (including zero rain rate) of every single

grid box of the cluster c, and NrC and NnC are the num-

bers of rain and no-rain grid boxes within the cluster c,

respectively.

Because the SOFM preserves the topological order of

the input features (Hsu et al. 1999; Kohonen 1982),

a distinct map of input features and MRR can be dis-

played for each cluster. Figures 1a and 1b show these

input maps for scenario 8, which has only two input

features. The grids in Fig. 1 represent clusters arranged

in a 2D network with a size of 20 3 20. Comparison of

albedo (Fig. 1a), brightness temperature (Fig. 1b), and

MRR (Fig. 1c) maps demonstrates that brighter and

colder cloud (similar to convective clouds) is associated

with higher rain rates (zone B), and almost no pre-

cipitation is expected from low-reflectance regions, ei-

ther with high temperature (zone D, similar to clear-sky

condition) or low temperature (zone C, similar to thin

cirrus clouds).

e. Precipitation estimation

The power-law regression (e.g., Martin et al. 1990;

Vicente et al. 1998; Kuligowski 2002) and the histogram

matching (e.g., Huffman et al. 2007; Kidd et al. 2003;

Todd et al. 2001; Turk et al. 2003; Hong et al. 2004)

techniques have been commonly used in estimating rain

rate using brightness temperature of clouds obtained
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from a single IR band. Although the latter techniques

may reduce systematic errors from spatially mismatched

cloud features and surface rainfall (Kidd et al. 2003), they

are based on the assumption that rainfall rate mono-

tonically increases as cloud-top temperature decreases

(Scherer and Hudlow 1971: Scofield 1987). However, as

illustrated in Fig. 1, this assumption does not always

hold: a relatively warm and thick cloud (high albedo)

can produce substantial rainfall (zone A), whereas in

some cases, almost no precipitation is observed when

cold clouds have low reflectance (i.e., cirrus cloud,

zone C).

The classification of multispectral data to discrete

clusters and the subsequent calculation of MRR for each

cluster (Fig. 1c) provide the basis to populate the rain

histogram using clusters (which lumps many input fea-

tures together) as opposed to the IR Tb alone. In other

words, using multispectral (or textural feature) classifi-

cation and statistics, the notion that ‘‘more intense

rainfall belongs to colder temperature group’’ is modi-

fied to ‘‘more intense rainfall belongs to a group of

higher MRR.’’ This view suggests applying the histo-

gram matching technique to redistribute the data to the

clusters based on the MRR of each cluster.

As such, the MRR for each cluster is first calculated.

The cluster (containing N1 samples) that presents the

highest MRR is given the first rank and the cluster

(containing N2 samples) that demonstrates the second

highest MRR is labeled the second rank. This continues

for all clusters, and the number of samples in each

cluster is recorded. Afterward, the first-ranked cluster

will be assigned the N1 highest rain-rate values, the

second highest MRR cluster will be given the next N2

highest rain-rate values, and so on for all of the clusters

in the map, and then a new mean rate (MRR2) is cal-

culated for each cluster. A comparison of MRR2 (Fig. 1d)

with MRR (Fig. 1c) shows that MRR2 is increased

in clusters having high MRR and decreased in clusters

containing low MRR.

4. Evaluation and comparison of results

The PMW rain estimates are taken to be the ‘‘obser-

vation’’ and are used to build the contingency table with

FIG. 1. Visualizing the SOFM weights and clusters’ mean rain rates before and after redistribution for

scenario 8: (a) albedo (VIS06), (b) Tb (IR10.8), (c) MRR, and (d) MRR2. The 400 SOFM cluster centers

(weights) are arranged in a 20 3 20 cluster structure, as shown on the axes of each panel.
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concurrent SEVIRI-based rain estimates, which repre-

sent ‘‘model predictions.’’ The construction of the con-

tingency table is based on identifying binary (0/1 or yes/

no) events. This is accomplished by selecting a threshold

(0.1 mm h21) above which a rain event would be consid-

ered to have occurred. This approach yields information

on the algorithm’s ability to delineate rain/no-rain areas

and enables us to compute evaluation statistics that in-

clude the following:

probability of detection: POD 5
H

H 1 M
, (7)

false-alarm ratio: FAR 5
F

H 1 F
, (8)

bias estimate (area): BIAS
a

5
H 1 F

H 1 M
, and (9)

equitable threat score: ETS 5
H �G

(H 1 M 1 F)�G
,

(10)

where

G 5
(H 1 M)(H 1 F)

(H 1 M 1 F 1 Z)
,

H (hits) 5 number of grid boxes correctly classified as

rain,

M (misses) 5 number of grid boxes incorrectly clas-

sified as no rain,

F (false alarm) 5 number of grid boxes incorrectly

classified as rain, and

Z (correct no rain) 5 number of grid boxes correctly

classified as no rain.

The ETS allows the scores to be compared ‘‘equitably’’

across different regimes (Schaefer 1990) and is in-

sensitive to being influenced by systematic over- or

underforecasting.

In addition to the categorical evaluation statistics, the

following continuous evaluation statistics were com-

puted: 1) correlation coefficient (CORR), 2) root-mean-

square error (RMSE) and 3) volume bias (BIASy).

These statistics are used to evaluate the skill of each

scenario in estimating rain intensity. Unlike the bias in

areal coverage (BIASa), which is computed using the

contingency table, BIASy represents the ratio of the

average estimate to the average observation:

BIAS
y
5

1

N
�
N

k51
RR

est
(k)

1

N
�
N

k51
RR

obs
(k)

, (11)

where N is the total number of grid boxes, RRest(k)

is the estimated rain-rate value for grid box k using

PERSIANN-MSA, and RRobs(k) is the PMW rain-rate

value for grid box k, treated as a rain-rate observation in

this study. As a side note, both area and volume bias give

only an overall comparison of rain magnitude and its

areal extent; they do not measure the magnitude of the

errors. For fair evaluation, all statistics should be con-

sidered simultaneously, which in some cases is not an

easy task, particularly when they show improvements in

some aspects but degradation in others.

Table 2 shows the overall statistics for all 12 scenarios

listed in Table 1. To facilitate cross comparisons be-

tween the scenarios, the statistics in Table 2 are plotted

in Fig. 2. Notice that these statistics are computed from

all coincident PMW SEVIRI images for which at least

TABLE 2. Overall statistics for the studied scenarios. Notice that negative numbers for FAR and RMSE gains represent

improvement in skill.

Scenario

index ETS

ETS

gain (%) BIASa POD

POD

gain (%)

FAR

(%)

FAR

gain (%) CORR

CORR

gain (%)

RMSE

(mm h21)

RMSE

gain (%) BIASy

1 0.301 0 0.946 0.467 0 0.506 0 0.531 0 0.849 0 0.984

2 0.316 5.0 0.973 0.491 5.1 0.496 22.0 0.549 3.4 0.820 23.4 0.998

3 0.322 7.1 0.890 0.476 1.9 0.466 28.1 0.541 1.9 0.835 21.6 0.964

4 0.335 11.3 0.940 0.502 7.5 0.466 28.0 0.555 4.6 0.808 24.8 0.981

5 0.339 12.7 0.962 0.512 9.8 0.467 27.7 0.562 5.7 0.800 25.7 0.990

6 0.407 35.1 0.912 0.565 21.1 0.380 224.9 0.534 0.6 0.863 1.65 0.956

7 0.434 44.4 0.924 0.595 27.4 0.357 229.6 0.607 14.3 0.775 28.7 0.930

8 0.428 42.1 0.913 0.585 25.3 0.359 229.0 0.620 16.7 0.769 29.3 0.943

9 0.441 46.7 0.925 0.601 28.8 0.350 230.9 0.625 17.8 0.752 211.4 0.949

10 0.435 44.4 0.912 0.591 26.6 0.352 230.5 0.622 17.2 0.778 28.4 0.970

11 0.458 52.3 0.901 0.608 30.3 0.325 235.9 0.642 20.8 0.748 211.9 0.967

12 0.462 53.4 0.900 0.611 30.9 0.321 236.6 0.645 21.4 0.742 212.5 0.960
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two percent of the total grid boxes in the image contain

rain.

Comparing group 1 with group 2, significant improve-

ment in skill is evident whenever the VIS06 channel is

used in combination. Similar results are achieved by

replacing the VIS06 channel with VIS08 (not shown

here). Scenario 6 (only VIS06 without any textural fea-

tures) results in substantially better rain/no-rain statis-

tical scores than any of the scenarios in group 1, in which

no visible channel is included. However, for rain-rate

estimation, using albedo alone does not produce signif-

icant improvement over the remaining combinations,

including the single IR channel (scenario 1). The role of

textural features is highlighted by comparing scenario 7

with scenario 6. Scenario 7 adds extracted textural fea-

tures to the albedo channel in scenario 6 and shows

significant improvements over the IR-only scenario 1,

particularly for rain/no-rain detection. This implies that

textural features extracted from VIS06 add information

about cloud type, and thus improve the classification and

result in more robust estimation of rain intensity. Ar-

guably, the important role of the visible channel for

precipitation retrieval can be linked to its utility in re-

moving thin cirrus clouds. In addition, using IR-only

data may result in screening out precipitation from rel-

atively warm but dense raining clouds, which is an error

that can be avoided by adding the VIS channel. Our

assessment of the value of visible channels for rain re-

trieval is consistent with some previous studies (e.g., Ba

and Gruber 2001; Tsonis and Isaac 1985).

Comparison of statistics within group 1 shows that

scenarios containing more spectral channels generally

produce better skill for both rain detection and estima-

tion. However, the improvement is more pronounced

when comparisons are made for the rain/no-rain de-

lineation problem. This observation is also valid for the

scenarios in group 2. Note that the improvements within

each group (groups 1 and 2) are less significant than

between groups, highlighting the important role of the

visible channel. Although including more spectral bands

was found to be effective, the statistics are systemati-

cally better when textural features are added to gridbox

values for each spectral image (see scenarios 2, 4, 6, 8, and

10 as compared to scenarios 1, 3, 5, 7, 9, and 11 in Table 2).

FIG. 2. Visual comparison of overall statistics for all 12 scenarios. (left) Skills for rain and no-rain delineation, and

(right) how well scenarios are estimating the precipitation rate.
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Comparison of scenarios 4 and 5 (group 1) and sce-

narios 11 and 12 (group 2) with other scenarios dem-

onstrates that PCA is a useful technique that compresses

input features while preserving precipitation-relevant

information (see Tables 1 and 2). The correlated fea-

tures were compressed to only four independent vari-

ables from the original 20 and 35 correlated features in

scenarios 4 and 5, respectively, while maintaining 99%

of the variance in the data. Similarly, the 25 and 50

correlated features (in scenarios 11 and 12) were com-

pressed into six and eight independent features, re-

spectively. The effectiveness of the PCA technique to

compress the original set of input features into a fewer

number of independent features reduces the computa-

tional burden and speeds up the rain estimation process.

This is particularly important when the algorithm is used

for operational purpose.

The comparison of all scenarios, except 5 and 12, with

scenario 1 (IR only) indicates that using the common

multispectral channels (visible, water vapor, and ther-

mal IR channels) mostly available from current GOES

series satellites can lead to various levels of improve-

ment, particularly for precipitation detection. Although

only one water vapor channel exists in most of the cur-

rent GOES series, experiments have shown that even

a single water vapor channel adds information relevant

to precipitation (Ba and Gruber 2001; Behrangi et al.

2009; Desbois et al. 1982; Kurino 1997; Shenk et al.

1976). Following Behrangi et al. (2009), we define a rel-

ative gain/loss metric by referencing all scenarios to the

performance associated with scenario 1—the commonly

used IR (;11 mm) channel. Each element of the gain/

loss column shown in Table 2 is calculated as follows:

% Gain/Loss(S, i) 5
S

i
� S

1

S
1

3 100, (12)

where S and i represent the performance metric (ETS,

POD, FAR, CORR, or RMSE) and scenario index (i 5

1, . . . 12), as shown in Tables 1 and 2. For example, in

Table 2, the gain in ETS for scenario 2 is computed as

follows:

% Gain/Loss(ETS, 2) 5
ETS

2
� ETS

1

ETS
1

3 100

5
0.316� 0.301

0.301
3 100 515%.

Whether the previous index is considered as a gain or

a loss depends on whether an increase or decrease of the

value of performance measure is better or worse. For

example, considering FAR and POD, the former is said

to have gained if Eq. (12) yields a negative number,

whereas the latter gains when Eq. (12) produces a posi-

tive value.

Employing the additional SEVIRI channels (i.e.,

NIR1.6, WV8.7, IR9.7, and IR13.4) results in only mar-

ginal improvements. Although more detailed study is

needed to assess the role of each of these spectral bands,

the complementary role of NIR1.6 for rain detection has

been reported in previous studies (e.g., Capacci and

Conway 2005; Inoue and Aonashi 2000). Within group 1,

the all-infrared channel combination along with in-

dividual channel textural features (scenario 5) results in

12.7%, 9.8%, 7.7%, 4.6%, and 4.8% gain in ETS, POD,

FAR, CORR, and RMSE, respectively. Including the

remaining ‘‘daytime spectral bands’’ (scenario 12) leads

to further skill improvements of 53.4%, 30.9%, 36.6%,

21.4%, and 12.5% respectively.

To further examine gains and losses due to using

multispectral data and textural features, we selected

77 precipitation events from the subset of coincident

SEVIRI PMW overpass images, containing at least 3000

rainy grid boxes. This criterion was set to narrow the

comparison to relatively extensive rainfall events. For

each event, Eq. (12) was applied to the evaluation sta-

tistics of scenarios 5 and 12. Figure 3 summarizes the

gain/loss values associated with all 77 events. Except for

a few events, both scenarios 12 and 5 consistently out-

perform scenario 1 in terms of rain/no-rain detection

FIG. 3. Gain/loss percent of scenarios 5 (thin lines) and 12 (thick

lines) over scenario 1 (IR only), calculated from Eq. (12) for (a)

ETS, (b) CORR, and (c) RMSE. Notice that negative numbers for

RMSE gain represent improvement in skill over scenario 1.
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skill, as indicated by the ETS (Fig. 3a). With respect to

rain intensity, the correlation coefficient (Fig. 3b) and

root-mean-square error (Fig. 3c) also demonstrate the

superior skill of scenario 12. The skill of scenario 5,

which employs all ‘‘anytime’’ spectral bands with their

textural features, was not as consistent as scenario 12,

and in some cases it was below that of scenario 1. Similar

results are observed for scenario 4 (not shown), in-

dicating that infrared multispectral data are not as useful

for rain-rate estimation as for rain detection.

A visual event–scale exploration of a precipitation

event at 1157 UTC 9 July 2005 is shown in Fig. 4.

Brightness temperature (IR10.8), normalized albedo

(from VIS06) and PMW rain-rate maps are shown in

Figs. 4a–4c, respectively. The rain-rate estimates from

scenarios 1, 2, 5, 6, 7, 8, 9, and 12 are shown in Figs. 4d–4k.

FIG. 4. Comparison of selected combination scenarios for a precipitation event at 1157 UTC 9 Jul 2005: (a) Tb (10.8 mm), (b) normalized

albedo, (c) PMW rain rate, and (d)–(k) rain rate estimates for scenarios 1, 2, 5, 6, 7, 8, 9, and 12. Blacked-out blocks have no data.
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The ellipses in the scenario figures highlight noticeable

regions of false detection (black) and misses (red). The

performance measures for these eight scenarios are

shown in Table 3.

From Figs. 4d–4f it is clear that scenarios 1, 2, and 5,

which do not contain daytime-only channels, have rel-

atively low skill in screening cold and thin cloud, and

detecting rainfall from warm and relatively thick clouds.

Introducing the daytime-only channels (Figs. 4g–4k)

results in significant improvement in evaluation statis-

tics, and even using albedo without any textural features

(Fig. 4g) results in satisfactory performance. However,

scenario 6 does not show good skill for estimation of

intense rain rates, resulting in substantial underestima-

tion of total rain amount. Again, the addition of textural

features improves rain retrieval performance, as shown

in Table 3 and discerned by comparing Figs. 4e, 4h, and

4j with Figs. 4d, 4g, and 4i, respectively. Consequently,

from Fig. 4 and Table 3, one can also infer that using

additional spectral bands can lead to important im-

provements, particularly in delineation of the areal ex-

tent of precipitation.

For the above rainfall event and using scenario 8

(bispectral scenario: Tb and albedo), Fig. 5 illustrates

a classified cloud map and PMW rain coverage (Fig. 5a)

as well as the corresponding map of the SOFM clusters

(Fig. 5b). The figure geographically maps the SOFM

clusters associated with scenario 8 and is constructed by

assigning the corresponding cluster ID to each image

pixel. The resulting cluster image (Fig. 5a) is then col-

ored using the 2D color bar in Fig. 5b, which reflects the

cluster position in SOFM map described in Fig. 1. In

Fig. 5b, similar to Fig. 1, the rain rate fades in all di-

rections from its maximum value in the upper-right

corner (zone B) toward no rain in the three remaining

corners (zones A, C, and D), and the rain/no-rain

boundary denoted by the white line is identical to the

rain/no-rain boundary in Fig. 1d. Examining the rain

area delineated by the PMW rain estimates (area inside

the black line in Fig. 5a), the SOFM clusters help to

capture the areal extent of rainfall reasonably well. The

colors red and yellow are related to the image pixels of

low IR temperature and high albedo (also see Fig. 1),

which correspond well to the intense PMW rain area.

The shades of purple are associated with low IR tem-

perature and medium albedo. Clouds with such prop-

erties are thin-layer cold clouds or cirrus and are

mainly consistent with observed no rain in Fig. 5a.

Similarly, the clusters in green shades are warm clouds

with medium reflectance. Clusters with dark greens

appear to be thick clouds with a potential to give warm

rain. Lastly, image pixels associated with the clusters

near the bottom-left corner of Fig. 5b are warm and

have low albedo, where no rain is observed. Although

the figure constructed here is based on VIS06 and

IR10.8, similar figures can be constructed for any spectral

combination regardless of the number of bands.

The evaluation against the PMW performed so far

in this section provides a measure of how well

PERSIANN-MSA is able to ‘‘fit’’ the target PMW data.

However, it does not provide a measure of the absolute

skill of the algorithm, and it does not provide an in-

dependent validation dataset. Consequently, validation

was also performed on a selected set of VIS/IR scenarios

using NASA’s TRMM level 2A near-surface rain-rate

estimate (TRMM-PR 2A25) as the ‘‘truth’’ rainfall rate.

The precipitation radar (PR) onboard TRMM is gener-

ally considered to be the most accurate source of rain

information for the study area, which is over the open

tropical ocean. The original horizontal resolution of the

PR rain estimate product is 5 km, and it was remapped to

30-min images of 0.088 3 0.088 (latitude 3 longitude) grid

boxes prior to evaluation.

Table 4 presents the overall PR-based evaluation

statistics for the three most distinct scenarios: IR only

(scenario 2), all IR-based channels (scenario 5), and all

studied channels (scenario 12). In addition, the table

includes the same PR-based statistics to evaluate PMW

rain estimates, which are exclusively from TMI, given

the requirement for coincident PR data. The evalua-

tion statistics are computed for the entire study period,

including both calibration and validation periods. The

statistics support the previous results, indicating that

including spectral channels helps to improve the rain

TABLE 3. Statistics for a precipitation event at 1157 UTC 9 Jul 2005, shown in Fig. 4.

Statistics index Scenario 1 Scenario 2 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 12

ETS 0.296 0.314 0.344 0.495 0.510 0.504 0.503 0.525

POD 0.476 0.521 0.557 0.677 0.680 0.727 0.699 0.722

FAR 0.441 0.446 0.423 0.275 0.255 0.307 0.284 0.275

BIASa 0.852 0.941 0.965 0.934 0.910 1.049 0.976 0.996

CORR 0.603 0.634 0.659 0.826 0.837 0.813 0.854 0.857

RMSE (mm h21) 1.613 1.571 1.555 1.200 1.054 1.153 1.044 1.071

BIASy 0.635 0.748 0.773 0.522 0.674 0.621 0.709 0.827
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estimation. For visual demonstration, Fig. 6 and Table 5

document a precipitation event at 1342 UTC 1 July 2005.

Maps of brightness temperature (from IR10.8), nor-

malized albedo (from VIS06), and PR rain estimate are

shown in the top row of Fig. 6. Scenarios 2, 5, and 12, and

the PMW rain estimate are displayed in the bottom row.

PMW (Fig. 6g) performs the best followed by scenarios

12 (Fig. 6f), 5 (Fig. 6e), and 2 (Fig. 6d). The superior

performance of the PMW estimates relative to the

PERSIANN-MSA scenarios is not at all surprising;

given that PERSIANN-MSA trained against PMW, the

best that could be hoped for would be a statistical tie.

Although the TRMM PR is expected to provide the

most reliable rain-rate estimates over the study area, it

has a poor temporal sampling, and thus its use requires

a much longer record of SEVIRI data to achieve any

statistically robust conclusion. Even pooling the de-

pendent and independent days as we did here cannot

provide as many samples as the PMW does during the

independent days. Consequently, more definite results will

only come from a much longer record of SEVIRI data.

5. Conclusions

In this paper, an algorithm called PERSIANN-MSA

was developed to estimate precipitation rate from

FIG. 5. Example of bidirectional mapping of (a) the 1157 UTC 9 Jul 2005 rain event displayed in Fig. 4 to (b) SOFM cluster centers. The

example displays scenario 8 (albedo and Tb). Blacked-out blocks have no data. We recommend viewing this image in conjunction with

Fig. 1 and Fig. 4(i).

TABLE 4. Overall PR-based evaluation of the estimated rainfall

from scenarios 2, 5, 12 and the combined PMW. Notice that the

evaluation is performed within the whole period of this study.

Statistics index Scenario 2 Scenario 5 Scenario 12 PMW

ETS 0.295 0.313 0.397 0.470

POD 0.420 0.442 0.530 0.711

FAR 0.460 0.443 0.355 0.394

BIASa 0.778 0.793 0.822 1.173

CORR 0.344 0.365 0.513 0.711

RMSE (mm h21) 1.074 1.079 0.981 0.781

BIASy 0.856 0.874 0.897 0.973
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multidimensional inputs. The proposed algorithm was

tested over the equatorial Atlantic Ocean west of Africa,

using 10 SEVIRI spectral bands. An unsupervised fea-

ture classification technique, SOFM, was used to classify

input spectral features to a predetermined number

clusters. The mean rain rate (MRR) for each SOFM

cluster was calculated based on time/space-matched

PMW rain rate and SEVIRI data. Finally, a probability

matching method was used to assign grid boxes with

higher rainfall values to clusters with higher MRR. This

technique extends the IR-only histogram matching con-

cept to multiple dimensions.

The role of multispectral data and textural features

in improving rain estimation, and rain and no-rain de-

tection skills was investigated by defining 12 input sce-

narios and calculating performance metrics using PMW

precipitation estimate as the reference precipitation.

Our results indicate the following:

1) Visible channels add significant information, mainly

regarding cloud thickness. Including at least one

visible channel (either VIS06 or VIS08) can signifi-

cantly improve both rain-rate estimation and rain

area detection.

2) Other spectral channels were also found useful for

improving the algorithm’s skill for both rain de-

tection and estimation. However, these improve-

ments were not as significant when VIS information

is excluded, as is the case at night. For anytime (day

FIG. 6. Visual demonstration of a precipitation event at 1342 UTC 1 Jul 2005. (a) Tb (10.8 mm), (b) normalized albedo, (c) PR rain rate,

and (d)–(g) rain rate estimates for scenarios 2, 5, 12, and combined PMW; (d)–(g) share the color bar in (c). Blacked-out blocks have no

data, and the thin black lines delimit the PR swath’s location.

TABLE 5. Statistics for a precipitation event at 1342 UTC 1 Jul

2005, shown in Fig. 6. Notice that the estimated rain from TRMM

PR serves as the reference rain rate.

Statistics index Scenario 2 Scenario 5 Scenario 12 PMW

ETS 0.209 0.226 0.386 0.463

POD 0.373 0.421 0.667 0.880

FAR 0.456 0.467 0.384 0.402

BIASa 0.687 0.790 1.081 1.470

CORR 0.382 0.404 0.507 0.641

RMSE (mm h21) 1.490 1.464 1.518 1.254

BIASy 0.727 0.737 1.228 1.061
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and night) scenarios, adding the water vapor chan-

nel was found to be effective. Further studies are

needed to determine the effectiveness of each single

channel.

3) The textural features, as defined herein, provide in-

formation about the gridbox neighborhood and can

improve statistics. Therefore, extraction of textural

features in conjunction with multispectral bands is

once more demonstrated as a valuable source of in-

formation for precipitation retrieval.

4) PCA is an effective tool for the compression of high-

dimension multispectral data. Our analysis demon-

strates that the first few principal components are

sufficient to extract the majority of the independent

information, with the benefit of a significant re-

duction of the input dimensionality as well as the

computational cost of multispectral rain estimation.

However, PCA can lead to a loss of information; one

must proceed cautiously, because there is no guar-

antee that the selected directions of maximum vari-

ances include the best features for rain retrieval. Plus,

a low-order truncation might fail to adequately cap-

ture specific rare—but meteorologically important—

situations.

Global observations in the visible, water vapor, and

thermal IR bands are currently available with relatively

high temporal and spatial resolution from existing GEO

satellites. As more spectral bands become available

from recently launched (e.g., SEVIRI) and future (e.g.,

ABI) sensors, more emphasis on the analysis and de-

velopment of multispectral precipitation retrieval algo-

rithms is expected. In this paper, we investigated the

value of spectral bands in improving precipitation

retrieval using the proposed method. More detailed

studies are needed, but we are hopeful that these efforts

in conjunction with the anticipated launch and operation

of NASA’s Global Precipitation Measurement (GPM)

mission will help to provide more consistent, higher

quality global rainfall observations.
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