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ABSTRACT

Snow cover plays an important role in the climate system by changing the energy and mass transfer between

the atmosphere and the surface. Reliable observations of the snow cover are difficult to obtain without sat-

ellites. This paper introduces a new algorithm for satellite-based snow-cover detection that is in operational

use for Meteosat in the European Organisation for the Exploitation of Meteorological Satellites Satellite

Application Facility on Land Surface Analysis (LSA SAF). The new version of the product is compared with

the old version and the NOAA/National Environmental Satellite, Data, and Information Service Interactive

Multisensor Snow and Ice Mapping System (IMS) snow-cover product. The new version of the LSA SAF

snow-cover product improves the accuracy of snow detection and is comparable to the IMS product in

cloud-free conditions.

1. Introduction

With the growing number of satellite platforms and

improvements in the processing and transmission of dig-

ital data obtained from them, it has become possible to

obtain frequent snow-cover information in near–real time

through a variety of different sources. Retrieving snow

products from satellite data is still a challenging task.

Topography, heterogeneity in snow distribution, the ef-

fects of slope, aspect, land use, wind, and other factors in

the accumulation and melting periods of snow make it

difficult to retrieve snow products from satellite data.

At present, the most useful satellite orbits for snow

detection at high latitudes are the near-polar orbit [used

by, e.g., the National Oceanic and Atmospheric Adminis-

tration, the Earth Observing System (EOS), Meteorologi-

cal Operation (MetOp), the future National Polar-orbiting

Operational Environmental Satellite System (NPOESS)

Preparatory Project (NPP), and the future Joint Polar

Satellite System (JPSS) satellites] and the geostationary

orbit [e.g., Meteosat, Geostationary Operational Envi-

ronmental Satellite (GOES), and Feng Yun 2 (FY-2)].

Both orbits have their strengths and weaknesses. In high

latitudes, where snow is most often present, the instru-

ments on board geostationary satellites have low viewing

angles, resulting in poor spatial resolution, whereas high

spatial resolution is an advantage of polar-orbiting satel-

lites. Instruments on board geostationary satellites also

have a constrained view of the earth, while polar-orbiting

satellites offer a global view. On the other hand, geo-

stationary satellites offer excellent temporal resolution

compared to polar-orbiting satellites. While polar-orbiting

satellites can produce 1–4 daily images from a specified

region in high latitudes, geostationary instruments pro-

duce images for a specified region every 15 min. Satellites

in a highly elliptical Molniya orbit (Kidder and Vonder

Haar 1990) would offer geostationary-like observations

with a better viewing angle for high latitudes, but such

satellites for meteorological use are only in the plan-

ning stages (e.g., Riisholgaard 2004).

This paper introduces a new geostationary snow-

cover product for Spinning Enhanced Visible and In-

frared Imager (SEVIRI) on board the second generation

of Meteosat (MSG) satellites. SEVIRI has 11 channels in

visual and IR areas of the radiomagnetic spectrum and

represents the state of the art in geostationary imager

instruments until the arrival of the next generation of

geostationary satellites and their instruments [e.g., Ad-

vanced Baseline Imager on board GOES-R (Schmit et al.

2005)]. In practice, visual and IR channels can be used

only to detect the existence of snow, not the depth or the

water equivalence of snow. This existence of snow is

usually disseminated in binary form for each pixel, but

fractional subpixel information can also be obtained in
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some circumstances [e.g., Matikainen et al. (2002) or

Metsämäki et al. (2005)]. Operational binary snow detec-

tion schemes based on visual and IR channels have been

constructed for both polar and geostationary satellites.

For polar-orbiting satellites there is a global snow

analysis scheme based on Moderate Resolution Imaging

Spectroradiometer (MODIS) on board EOS/Terra and

EOS/Aqua (Miller et al. 2005). Even though snow is

classified as part of many Advanced Very High Reso-

lution Radiometer (AVHRR) processing schemes (e.g.,

Dybbroe et al. 2005), it seems that no snow analysis

based on AVHRR data is in widespread use. Both

AVHRR and MODIS will be superseded by the Visible/

Infrared Imager/Radiometer Suite (VIIRS) on board the

future NPP and JPSS satellites with similar channels for

snow detection as MODIS (Miller et al. 2006).

For the geostationary instruments, there are systems for

GOES, Meteosat, and FY-2. Romanov et al. (2000) used

both geostationary GOES data and Special Sensor Mi-

crowave Imager (SSM/I) information from polar-orbiting

Defense Meteorological Satellites Program (DMSP) sat-

ellites to construct the snow product. The systems using

only GOES data for snow detection are presented by

Romanov and Tarpley (2003) and Li et al. (2007). For

Meteosat, de Wildt et al. (2007) used single SEVIRI im-

ages and temporal differences between images to produce

snow-cover maps. Through the ‘‘GEONETCast’’ network

(Moura 2006), the products obtained by the Visible and

Infrared Spin Scan Radiometer (VISSR) of FY-2 satellite

series (Dong and Zhang 2004), including the Snow Frac-

tion Product, are disseminated to the global community,

but to the authors’ best knowledge, no detailed information

about the algorithm has been published in English.

The major weakness of algorithms that use a combi-

nation of visual and IR channels for snow detection is

that they can be used only during daytime and in cloud-

free conditions. The high temporal resolution of the in-

struments on board a geostationary satellite helps to

mitigate this to some extent, as it is much more likely that,

for a certain area during one day, at least some of the

images are cloud free. Some regions, however, can remain

cloud covered for days. Active and passive microwave

methods would be better suited for cloud-covered areas,

but the spatial resolution of the passive microwave in-

struments [e.g., Advanced Microwave Scanning Radi-

ometer for EOS (AMSR-E)] is poor when compared with

optical channels, and passive microwave methods work

only for dry snow conditions (Ulaby et al. 1986). Active

microwave instruments, in practice synthetic aperture radar

(SAR) (on board, e.g., Radarsat), have better spatial reso-

lution, but unfortunately their swath width is compara-

tively narrow and daily observations of snow cannot be

obtained (Koskinen et al. 1997). The use of SAR images in

operational setting has been hindered by their relative high

cost and the difficulties of acquiring them in a timely

manner. It is hoped that this will change in the future. In

addition, no microwave instruments are currently on board

geostationary satellites, but the possibilities of geosta-

tionary microwave instruments are being studied actively.

The best way to validate the satellite-derived snow

cover would be to compare it with high-quality in situ

measurements, but such data are almost impossible to

collect on a large scale because of the serious limitations

in the way the weather stations report the snow-cover

measurements. The presence of snow is not always repor-

ted in many stations, and the absence of snow is not usually

reported at all. Automation of the observations does not

help, either. Commonly used automatic weather stations

do not provide reliable observations for thin (less than

2.5 cm) snow layers. Moreover, in comparison to satellite-

based snow analyses, the weather station network is also

quite sparse. Hyvärinen et al. (2009) compared several

snow analyses based on both in situ observations and sat-

ellite data, and the National Oceanic and Atmospheric

Administration/National Environmental Satellite, Data,

and Information Service (NOAA/NESDIS) Interactive

Multisensor Snow and Ice Mapping System (IMS) analysis

(Helfrich et al. 2007) gave a consistent snow analysis with

high resolution. In the absence of a reliable reference, and

because of its spatial coverage, the NOAA/NESDIS IMS

analysis is a good candidate for a verification dataset.

Moreover, IMS is a vital part of the European Centre for

Medium-Range Weather Forecasts (ECMWF) snow

analysis (Drusch et al. 2004), so there is strong motivation

to compare the developed snow product with it.

The main sources for the NOAA/NESDIS IMS product

are visible and infrared spectral data from different polar

and geostationary satellites and, to a lesser extent, mi-

crowave products from polar-orbiting satellites. However,

the IMS algorithm is not fully automatic. The combination

of data from different sources into one analysis is done

subjectively by analysts at NOAA/NESDIS.

In this article, first the two versions of the Satellite

Application Facility (SAF) on Land Surface Analysis

(LSA) snow-cover (SC) algorithm are introduced. Then

the NOAA/NESDIS IMS product is used as a baseline to

which both LSA SC products are compared in Europe.

2. LSA SAF snow algorithm

The European Organisation for the Exploitation of

Meteorological Satellites (EUMETSAT) has several

dedicated programs for processing satellite data. Each of

these SAFs provides products and services on an opera-

tional basis. The main purpose of the LSA SAF is to in-

crease the benefits from MSG and EUMETSAT Polar
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System (EPS) data concerning land, land–atmosphere

interactions, and biophysical applications by developing

techniques, products, and algorithms that will allow data

from the EUMETSAT satellites to be used more effec-

tively. A major user of LSA SAF products is numerical

weather prediction (NWP), both for validation and for

use as a model input.

EUMETSAT’s LSA SAF has been producing the daily

snow-cover product with a baseline algorithm for the

areas covered by the MSG/SEVIRI instrument since

2005. The snow detection algorithm produces the snow-

cover product over the MSG/SEVIRI image area, which is

divided into four different geographical regions (Europe,

North Africa, South Africa, and South America), as is the

case for all LSA SAF products. A product using polar-

orbiting MetOp satellite data is currently under develop-

ment. The daily products are distributed to users through

the EUMETCast system. The daily products are archived

and are available on the LSA SAF Web site (http://

landsaf.meteo.pt). The single-image snow-cover product

is currently not available for public. At present, the daily

products are not reprocessed when the algorithms are

changed. Thus, potential users should be aware of the

differences in the product versions.

The first version of the LSA SAF snow-cover algo-

rithm was developed by the Swedish Meteorological and

Hydrological Institute (SMHI). Development of the

snow-cover product was transferred to the Finnish Me-

teorological Institute (FMI) in 2005.

The version 1 of the snow-cover algorithm determined

whether a satellite ground pixel is fully or partially snow

covered, through the use of different signatures of snow,

ice, and clouds on the reflectance of shortwave IR chan-

nels (SEVIRI 1.6 and 3.9 mm). Since the separation be-

tween cloud and surface ice–snow is a crucial procedure

for cloud detection, the above-mentioned thresholding

procedure has been included in the SAF on Support to

Nowcasting and Very Short Range Forecasting (NWC

SAF) software (Derrien and LeGléau 2005). The cloud-

mask product was analyzed and the pixels classified every

15 min. Cloudy pixels were reclassified as unclassified,

cloud-free pixels as snow free, and snow-contaminated

pixels as snow covered. Thus, version 1 of the SEVIRI

snow-cover algorithm relied on the cloud mask, derived

from the NWC SAF package, for a first pixel classifica-

tion, before performing snow spatial smoothing and

temporal integration of the previous 24-h satellite scenes.

Unfortunately, the accuracy of the snow detection was

limited in the version of the NWC SAF software used at

that time. Only one-third of cloud-free synoptic surface

observation stations (SYNOP; see World Meteorological

Organization 1995) stations with snow were correctly

classified as snow (Derrien and LeGléau 2005).

A new version 2 of the LSA SAF snow-cover product

was therefore developed at the FMI. This version was

developed specifically for snow detection; that is, it is not

a by-product of a cloud-mask product. Different variants

of this algorithm version have been used to generate the

LSA SAF snow-cover product pre-operationally since

summer 2007 and operationally since April 2009. The dif-

ferences between version 2 algorithm variants are minor or

related to changes in the input files.

The mandate of LSA SAF is to produce the snow

product for non-mountainous areas. However, mountain

areas are processed in the LSA SAF system and the data

are available in the product files, but there are no re-

quirements for the product quality and therefore moun-

tains are excluded in this study.

a. Algorithm development

The spectral properties of snow observed in nature

vary considerably (Dozier et al. 2009; Salminen et al.

2009; Wiscombe and Warren 1980a,b). The grain size of

snow changes over time and space, the wetness of snow

changes, and the reflecting properties change when the

surface is viewed from different angles and in different

solar illumination conditions. In addition, the effects of

vegetation—such as grass, fields, and different forests—

are highly variable, even in winter. This natural variability

makes it difficult to develop a general classification algo-

rithm for the snow cover. Finally, the atmosphere should

be taken into account when surface and laboratory mea-

surements are compared to satellite measurements. Thus

most operational algorithms are at least partly empirical,

based on the statistics of samples collected from different

surface types.

Development of the new version of the snow-cover

classification algorithm was started by subjective classi-

fication of selected areas in representative MSG/SEVIRI

images. Starting from 32 images for 12 days ranging from

November 2006 to September 2007, but concentrating on

28 March 2007 (13 images), samples of snow-covered and

snow-free areas, different cloud types, and areas where

the surface type could be seen through clouds were se-

lected. The day 28 March 2007 was an exceptionally cloud-

free day in northern Europe, which enabled the collection

of data from early morning to late evening. Particular at-

tention was paid to finding days when there was snow in

southern Europe. Although the snow-cover product is

calculated for African and South American regions, they

are mostly snow-free and data samples from those areas

were not sought for statistical analysis. However, the pro-

duct seems to be reasonably reliable also in these areas.

The actual extent of snow cover was determined sub-

jectively using different SEVIRI red–green–blue (RGB)

combinations, ground observations, and MODIS images.
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Over one-half million MSG/SEVIRI pixels were classi-

fied to form a dataset for algorithm development. How-

ever, the samples were collected in large batches, and

because the snow properties in most pixels were spatially

correlated with those of their neighbors, the effective

number of independent pixels is much smaller. Even so,

this increases variations in the surface properties and in

the satellite and sun angles.

Based on the dataset that was collected, the differences

in various classes were investigated using the different

channels. The classification of different surface types us-

ing information from channels around 0.6, 0.8, and 1.6 mm

is the basis for all snow and cloud classification schemes

(Hall et al. 2002; Dybbroe et al. 2005; Derrien and LeGléau

2005). As to discriminating between surface and clouds,

the capabilities of channels around 1.6 and 3.9 mm to

discriminate low clouds and snow have been reported

widely (Matson 1991; Kidder and Wu 1984). Thus, using

the radiance ratio of SEVIRI channels 2 (0.8 mm) and 3

(1.6 mm) and the brightness temperature difference of

channels 10 (12.0 mm) and 4 (3.9 mm) (Fig. 1a) clouds can

be distinguished from a cloud-free surface. Moreover, the

radiance ratio of SEVIRI channels 2 and 3 and the sun

azimuth angle (Fig. 1b) difference between snow and

snow free seem to be promising. These ratios are very

similar to the normalized difference snow index (NDSI)

used by de Wildt et al. (2007).

The driving philosophy behind the LSA SAF snow-

cover algorithm is to avoid mistakes, even if this approach

produces relatively more unclassified pixels. The LSA

SAF snow-cover algorithm does not try to identify cloud-

free regions for classification before the snow-cover tests.

Instead, it has rules for presence of snow and snow-free

surface, and other pixels are left as unclassified whether

they are cloudy, too dark, or just too difficult to classify

reliably. Rules themselves are based on channel differ-

ences and channel ratios that are very similar to other

published algorithms, as is shown above.

b. Algorithm implementation

The LSA SAF snow-cover algorithm is a thresholding

method based on the different properties of the snow-

covered and snow-free surfaces and clouds. The LSA SAF

snow cover is a daily product, produced in two separate

phases. Phase 1 is the SC1 snow-cover product based on

one cycle of SEVIRI images (every 15 min). All of the

available SC1 products are used to produce the daily LSA

SAF snow-cover product (SC2). This phase produces 96

snow-cover maps each day if all time slots are available.

Product resolution is full SEVIRI resolution in each of the

four regions used in LSA SAF.

In this study, the mountain definition of the SAF on

Support to Operational Hydrology and Water Management

(H-SAF) was followed, because the similar mountain snow

product is part of the H-SAF. The area was defined to be

mountainous if the mean altitude exceeded 2000 m or the

mean altitude exceeded 700 m and the standard deviation

of the slope was greater than 28 in a 10 km 3 10 km area

(Lahtinen et al. 2009). This area is shown in Fig. 2a.

The algorithm utilizes the top-of-atmosphere radi-

ances of 6 SEVIRI channels (0.6, 0.8, 1.6, 3.9, 10.8, and

12.0 mm) and brightness temperatures of three channels

(3.9, 10.8, and 12.0 mm), sun and satellite zenith and

azimuth angles, the International Geosphere-Biosphere

Programme (IGBP) land-cover type by the U.S. Geo-

logical Survey (USGS), and the land surface temperature

(LST) classification produced by the LSA SAF (Table 1).

Our plan is to start using the Global Land Cover 2000

Project (GLC2000) (Bartholomé and Belward 2005) land-

cover data in the future versions of the algorithm.

FIG. 1. Examples of the densities of the scatterplots from the

development dataset. The thick lines show thresholds for SNOW

(black) and NO SNOW (blue), based on the rules in Table 2: (a)

SNOW: rules (R9)–(R12) and NO SNOW: rule (R14); (b) SNOW:

rule (R5) and NO SNOW: rules (R6)–(R8). For definitions of the

variables, see Table 1.
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It is quite straightforward to estimate whether the

surface is totally snow free or totally snow covered, but it

is difficult to define when to change from a snow-free to a

snow-covered surface. Even a thin layer of snow should

be defined as snow covered, because it changes the albedo

and radiative properties of the surface. This is quite often

the case when there is a new layer of snow. During the

melting season, snow cover can be very variable; the sur-

face is a patchwork of snow-covered and snow-free areas

of different shapes and sizes. Trees are also a challenge for

definition, because the trees can be snow covered or snow

free even if the surface is fully covered.

Most of the snow-covered, snow-free, and cloud-covered

pixels are fairly easy to detect. Some of the rules are used to

classify these pixels. The difficulties occur near the edges

of snow and clouds, and also in poorly lit areas. To reduce

errors, classification is avoided when there is uncertainty

about the surface status. Near the clouds, this means that

the unclassified pixel type is preferred. Near the edge

between snow-covered and snow-free surfaces some rules

will find partially snow-covered pixels although most of

these are still classified as snow covered or in some cases

left unclassified.

In the beginning of the snow detection, the algorithm

sets all pixels as unclassified. Then the tests of Table 2 are

applied one by one in the order shown. Finally, each pixel

is classified to one of the snow-cover (or snow free)

classes or it remains unclassified. Some of the rules are

FIG. 2. (a) The height of the terrain in the study area. The snow product is only valid in the

low areas. (b) The land-cover classification for the study area according to the GLC2000

Project. Only land-cover classes covering more than 5% of the area under study are shown. The

class numbers are according to the original GLC2000 classes.
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overlapping, and many rules may apply to the same pixel.

The relative importance of these rules is currently being

analyzed and the decision-making process improved so

that the number of misclassified pixels can be reduced and,

possibly, the detection of partially snow-covered pixels,

which are often near the edge of the snow-covered area,

can be improved.

Cloud cover is the most common reason for not clas-

sifying a pixel. A pixel is also unclassified if it is too dark

or in an area where the satellite elevation angle is too low

[i.e., rules (R15)–(R17)]. There are also rules that remove

obvious misclassifications, such as pixels where the land

surface is too warm to contain snow [rules (R18), (R19)

and (R21)]. These rules must come after all other rules.

Most of the cloudy and cloud-free areas can be sepa-

rated using the brightness temperature difference between

channels 10 and 4 and the radiance ratio of channels 3 and

2, although there is some overlap (Fig. 1a). As opposed to

cloud detection, the aim is to find cloud-free pixels and

thus to avoid such erroneous classifications where cloudy

and possibly cloud-contaminated pixels are defined as

snow covered. Classification rules (R1)–(R3) and (R9)–

(R12) are based on this figure. Rule (R4) is used to find

cloudy areas based on a 3D view of three radiance ratios of

channels 1 to 3.

Classification rules (R5)–(R8) are based on the in-

formation from Fig. 1b. The radiance ratio of channels 3

and 2 against the sun azimuth angle differentiates between

snow and snow-free pixels very well. The reason for this is

the strong relation of the reflective properties of the sur-

face to the bidirectional reflectance distribution function

(BRDF), which is different for snow (Peltoniemi et al.

2005a) and different vegetation types (Peltoniemi et al.

2005b). Currently, these rules are defined conservatively

to avoid misclassifications, but new rules to classify cur-

rently unclassified pixels are being investigated.

TABLE 1. List of the inputs for the LSA SAF SC1 snow-cover

algorithm.

Input type Code Description

Satellite channels R1 Radiance in channel 1 (0.6 mm)

R2 Radiance in channel 2 (0.8 mm)

R3 Radiance in channel 3 (1.6 mm)

R4 Radiance in channel 4 (3.9 mm)

R9 Radiance in channel 9 (10.8 mm)

R10 Radiance in channel 10 (12.0 mm)

TB4 Brightness temperature in

channel 4 (3.9 mm)

TB9 Brightness temperature in

channel 9 (10.8 mm)

TB10 Brightness temperature in

channel 10 (12.0 mm)

Angles SAA Sun azimuth angle

SZA Sun zenith angle

VAA Satellite azimuth angle

VZA Satellite zenith angle

Other LC Land-cover type

LST LSA SAF land surface

temperature (8C)

TABLE 2. List of classification rules of the LSA SAF SC1 snow-cover algorithm. These rules are applied one by one. If the condition is

true, the snow-cover status is set to the defined value. The final snow-cover status is the value set after all the rules have been checked. Here,

DTB 5 TB10 2 TB4; for other definitions see Table 1. Logical AND is marked by ^, and logical OR is marked by _.

DTB $ 0 ^ R3/R2 , 0.6 0 PARTIAL (R1)

DTB $ 2.5 0 PARTIAL (R2)

DTB # 22.5 ^ R3/R2 , 0.90 0 UNCLASS (R3)

R3/R2 , 0.96 ^ R3/R2 $ 0.62 ^ R3/R1 , 1.22 ^ R3/R1 $ 0.77 (R4)

^R2/R1 , 1.49 ^ R2/R1 $ 1.15 0 UNCLASS

DTB $ 1.5 ^ SAA , 220 ^ SAA . 700(R3/R2)4 1 90 0 SNOW (R5)

DTB $ 1.5 ^ SAA , 220 ^ SAA , 500(R3/R2)4 1 90 ^ SAA . 5.0 0 NO SNOW (R6)

DTB $ 1.5 ^ SAA , 220 ^ R3/R2 $ 0.82 0 NO SNOW (R7)

DTB $ 1.5 ^ SAA $ 260 ^ R3/R2 $ 0.30 0 NO SNOW (R8)

R3/R2 , 0.18 0 SNOW (R9)

DTB $ 22.0 ^ DTB # 1.5 ^ R3/R2 , 0.5 0 SNOW (R10)

DTB $ 22.0 ^ _DTB # 20.0 ^ R3/R2 , 0.290 0 SNOW (R11)

DTB $ 5.8 0 SNOW (R12)

R3/R1 $ 1.50 ^ DTB . 225 0 NO SNOW (R13)

R3/R2 $ 1.05 ^ DTB . 215 0 NO SNOW (R14)

SZA . 80.0 0 UNCLASS (R15)

VZA . 85.0 0 UNCLASS (R16)

SZA . 70.0 ^ (SAA , 90.0 _ SAA . 270.0) 0 UNCLASS (R17)

(TB9 1 TB10)/2 $ 278.0 ^ (SNOW _ PARTIAL) ^ (LC is not forest) 0 NO SNOW (R18)

Date between June and October ^ (TB9 1 TB10)/2 $ 278.0 ^
(R19)

(SNOW _ PARTIAL) ^ (LC is forest)) 0 NO SNOW

Any one of R1, R2, R3, R4, R9, or R10 , 0.001 0 UNCLASS (R20)

LST $ 3.0 0 NO SNOW (R21)
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Once per day, the daily snow-cover (SC2) product is

calculated using the SC1 products for the day. Again the

system classifies each pixel as snow free, partially snow

covered, or totally snow covered. For the daily LSA SAF

snow-cover product, all of the snow-cover maps produced

every 15 min are combined. The algorithm counts the

number of different classifications for each pixel and then

determines the final daily classification if there have been

reasonable amount of cloud-free observations during the

day. The actual rules are presented in Table 3.

The class of partial snow is used if the pixel is classified

as snow free and snow covered during the same day or if

it is probable that snow does not cover the whole pixel.

This class is not yet well defined, because only a very

limited number of reliable surface observations could be

used to estimate the accuracy of this classification. In the

future, this class may be replaced by the snow-covered

area (SCA) product.

The last phase of the product generation is quality

flagging. Surface type such as forests, solar illumination

conditions such as night, sun glint, high terrain, and quality

flags are set. Currently all classified pixels (i.e., snow,

partial snow, or snow free) are set as high quality, but

this will change when an improved quality flagging will

be introduced.

3. Validation data and methods

a. Use of IMS as the reference analysis

The NOAA/NESDIS IMS analyses are available as

gridded data in American Standard Code for Information

Interchange (ASCII) format on the Internet. The higher-

resolution version of 4 km (6144 3 6144 grid) was used in

this study. IMS products are disseminated in a polar ste-

reographic projection; they were reprojected to same

projection as the LSA SAF SC. This projection is not

an area-preserving projection, and pixels correspond to

areas of different sizes. However, as it is the projection in

which the LSA SAF SC is disseminated, it was the natural

projection for the comparison.

b. Validation measures

The results of a comparison between two products can

be shown in a 2 3 2 contingency table (Table 4). Hits a is

the number of cases in which both analyses reported snow,

correct rejections d is the number of cases in which neither

of the analyses reported snow, false alarms b is the number

of cases in which only the LSA SAF SC, the analysis under

investigation, reported snow, and misses c is the number of

cases in which only the baseline analysis, IMS, reported

snow. The measures used are summarized in the appendix.

In this study, attention should be paid to the number of

correct rejections. In Europe, almost all snow melts in

summer, as is shown below. Then the number of correct

rejections, d, is several magnitudes greater than a, b, or c

and proportion correct (PC) tends to 1. After some ma-

nipulation, it is easily shown for Heidke skill score (HSS)

that

lim
d!‘

HSS 5
2a

2a 1 b 1 c
, (1)

which is the critical success index (CSI) where a double

weight has been given to hits a [in, e.g., the clustering

community where the CSI is known as the Jaccard index

or coefficient, this is known as the Sorensen’s similarity

coefficient (Kaufman and Rousseeuw 1990)]. Thus, in

this study, HSS and the CSI are closely related, and the

decision was made to concentrate on the HSS. Further, if

b is less than a and c, HSS and CSI obtain values similar to

hit rate (H).

c. Validation strategy

Because of clouds or inadequate solar illumination, not

all pixels can be classified by LSA SAF SC, and the number

of pixels classified varied from day to day. No attempt was

made to mitigate this; LSA SAF SC was compared to IMS

only for pixels classified by LSA SAF SC.

The data of this study can be thought of as a three-

dimensional grid consisting of two-dimensional maps and

time. Each data point has one of the four possible values

TABLE 3. List of the rules for the daily product: N is the total

number of classified observations during the day for each pixel; S,

P, and F are the numbers of snow-covered, partially snow-covered,

and snow-free observations, respectively. These rules are used one

after the other from the top, and the final daily classification is the

classification in effect after the last rule. Logical AND is marked by

^, and logical OR is marked by _.

Set default value 0 UNCLASS (D1)

S . N/4 ^ S . 5 ^ F , 3 0 SNOW (D2)

F . N/3 ^ F . 3 0 NOSNOW (D3)

P . N/3 ^ P . 3 ^ F 5 0 ^
S . 1 ^ S # 4 0

PARTIAL (D4)

P . N/3 ^P . 3 ^ F . 1 ^F # 6 ^
S . 1 ^ S # 6 0

PARTIAL (D5)

P . N/3 ^ P . 3 ^ F 5 0 ^ S . 4 0 SNOW (D6)

P . N/3 ^ P . 3 ^ F . 0 ^ S 5 0 0 NOSNOW (D7)

TABLE 4. Contingency table of the comparison between two

categorical snow analyses. The symbols a–d represent the different

number of pixels observed to occur in each category.

Analysis 2 (baseline)

Analysis 1 Snow No snow

Snow a (hit) b (false alarm)

No snow c (miss) d (correct rejection)
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shown in Table 4. First, the data points were merged for

all dimensions, resulting in one contingency table. Sec-

ond, the values on each map were merged, resulting in

one contingency table for each map; the results can be

shown as time series.

Third, the values in the time dimension were merged,

producing a map where each pixel has a contingency ta-

ble of its own. This makes it possible to assess the spatial

performance of the algorithm. It is reasonable to suppose

that snow behaves differently over different terrain types.

Whereas the IGBP land cover was used for the devel-

opment and the operational run of the algorithm, the

GLC2000 land cover was used for the validation work

(Fig. 2b). The GLC2000 was chosen because, first, it was

more up to date than the IGBP and, second, it was an

independent data source, which is useful in validation.

The effect of land cover was investigated subjectively

first by examining the maps showing the distribution of

measures and then objectively, in quantitative fashion.

Using a verification measure (e.g., PC or HSS), it was

calculated whether certain areas (e.g., needle-leaved ev-

ergreen forest) were more probable to have values higher

or lower than the median value. The median, instead of

the mean, was used, because the distribution of values is

far from Gaussian. This ratio of probabilities can be ap-

proximated by the ratio of pixels with values higher and

lower than the median value ~X of the whole map:

P(X . ~X)

P(X , ~X)
5

No: pixels . ~X

No: pixels

No: pixels , ~X

No: pixels

5
No: pixels . ~X

No: pixels , ~X
. (2)

Values around the unity mean that there is no notable

difference in the ratio of high and low values, and the

verification measure is not dependent on the character-

istics of the area. A ratio less (greater) than 1 suggests that

the lower (higher) values are more likely for the area.

Confidence intervals were computed with bootstrapping

using the method outlined in Hamill (1999). This method

assumes that there is a high correlation between spatial

observations (grid points) but no correlation between

days (grids). However, our data may not be in line with

the latter assumption, and so the true confidence intervals

may be somewhat greater.

4. Validation results

The algorithm was tested using data from Europe for

the period of January 2007 to December 2009. From

January 2007 to July 2007, version 1 was operational, and

after that, version 2, so operational version 2 processed

more than 4 times as many images as operational version

1. For the comparison between algorithms to be mean-

ingful some days should be processed with both algo-

rithms. So, in spring 2007, 25 days were processed with

version 2, but some of these images were used for devel-

opment of the algorithm and, all in all, there are 20 days

that were not used for the algorithm development and

that were processed by both versions of the software.

So that the results concerning the differences between

algorithm versions would be less ambiguous, it would be

necessary to reprocess all of the days from January 2007

to July 2007 with version 2, but unfortunately this would

require substantial work beyond our current resources.

a. Visual inspection of products for one day

For subjective evaluation, false-color RGB combina-

tions provide a useful tool. The image is constructed from

three grayscale images of satellite channels, each with

different characteristics, and the colors can be given a

physical interpretation. Different false-color RGB com-

binations can be constructed that emphasize different

phenomena. Here the main aim was to emphasize snow

and the RGB combination of SEVIRI channels VIS0.6,

IR1.6, and inverted IR10.8 was used. This combination

clearly separates snow from low clouds, usually made of

water droplets, but is not as good in separating snow from

high clouds that are usually made of ice particles. The

colors in the image have a physical interpretation: the

snow-free surface reflects better in IR1.6 (the green

component) than in VIS0.6 (the red component) and is

relatively warm (the blue component is small, because

values are inverted), and therefore it shows greenish in the

RGB image. Relatively warm low clouds made of water

droplets reflect well both in VIS0.6 and IR1.6, which make

their color much lighter yellowish; colder water clouds

more white-yellowish. Snow on surface reflects well in

VIS0.6, but very little in IR1.6, and are rather cold (the

blue component is larger), making snow purple. Ice clouds

are of lighter shades of purple because their reflectance in

VIS0.6 and IR1.6 is similar to snow on the ground, while

they are usually much colder than the surface (the blue

component is larger).

The RGB composite of SEVIRI images at 1200 UTC

26 January 2007 and LSA SAF SC (version 2) and IMS

products for the same day are shown in Fig. 3. The day was

relatively cloud free, with snow even in southern Europe.

The poor illumination of northern regions can also be

seen. The IMS snow-cover analysis (Fig. 3b) classifies all

of the pixels, but several snow edges seem too smooth and

unphysical (e.g., in the area north of the Black Sea, 1 in

Fig. 3b). The LSA SAF snow-cover algorithm (Fig. 3c)

has used all of the images available during the day and

thus covers more surface than the 1200 UTC image (Fig.

3a). The area left unclassified, mostly because of clouds, is
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quite large, but the snow analysis in cloud-free areas

shows some interesting differences between the products.

Denmark is snow covered in the IMS but snow free in

LSA SAF SC, and the satellite image suggests the latter (2

in Fig. 3b). The edge of the snow-covered area in France

(3 in Fig. 3b) is different in the products and LSA SAF SC

again agrees better with the satellite image. The third

example can be seen in southern Turkey (4 in Fig. 3b),

where the IMS shows a large snow-covered area. In the

LSA SAF SC, the snow-covered area is much smaller and

much more patchy, which seems to be in good agreement

with satellite images, although this area is classified as

mountainous region and is thus outside the scope of LSA

SAF SC.

b. Results merged to one contingency table

All data of different versions of LSA SAF SC were

merged, resulting in one contingency table for version 1,

test cases, and an operational run of version 2 (Table 5).

From the IMS product it can be calculated that there are

about half million land surface pixels that can be classified.

Both version 1 and version 2 leave a substantial amount of

pixels unclassified, about 25% and 40%, respectively, be-

cause of clouds or inadequate solar illumination. In addi-

tion, some pixels, mainly at the cloud and snow edges, are

not classified because the pixels do not match any of the

rules used. Version 2 is more conservative as to what pixels

to classify than version 1, as version 2 avoids classification

in conditions where misclassifications are probable.

In Europe, most of surface is snow free most of the time,

and thus correct rejections occurred for about 90% of the

pixels in all of the images. In spring 2007, version 2 had less

misses than version 1, which yielded more hits in version 2

than in version 1, but the differences in false alarms and in

correct rejections were negligible. For version 2, the dif-

ferences between false alarms and misses were also rather

small in spring 2007 and in the operational run, but there

were more hits and fewer correct rejections in spring 2007

because the operational run includes summers when very

little snow was present.

In spring 2007, all measures had better values for the

test cases of version 2 than for version 1. The operational

FIG. 3. (a) The RGB combination of SEVIRI channels VIS0.6,

IR1.6, and IR10.8, (b) the NOAA/NESDIS IMS snow product, and

(c) the LSA SAF snow-cover product for 26 Jan 2007. In both sat-

ellite products, snow is white and snow-free areas are green, sea

areas are blue, and unclassified areas are red. In the RGB combi-

nation, snow is purple, snow-free areas are green, sea areas are dark

blue, water clouds are yellow, and ice clouds range from light purple

to light blue. The numbers in (b) refer to the discussion in the text.

TABLE 5. Aggregated results from January 2007 to December 2009. From January 2007 to July 2007, version 1 was operational but some

days were run with version 2. After July 2007, version 2 was run operationally.

Spring 2007 Summer 2007–09

Version 1 Version 2 (test cases) Version 2 (operational)

Hit a 2202274 (4.4%) 564022 (8.5%) 6898843 (3.9%)

False alarm b 344737 (0.7%) 29952 (0.5%) 686785 (0.4%)

Miss c 2546168 (5.1%) 72760 (1.1%) 1553271 (0.9%)

Correct rejection d 45116671 (89.9%) 5976827 (90.0%) 169307675 (94.9%)

Bias 0.536 0.933 0.897

F 0.008 0.005 0.004

H 0.464 0.886 0.816

FAR 0.135 0.050 0.091

PC 0.942 0.985 0.987

HSS 0.576 0.908 0.854

Images 190 42 842

Unclassified pixels 24% 54% 39%
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version 2 had slightly lower values than test cases, but this

is understandable, as test cases covered only a limited

time span and some days were used in development of the

algorithm; this means that some overfitting may have

occurred.

All versions detected less snow than IMS as the bias

was less than 1 in all versions and was the least in version

1 (bias ’ 0.5 in version 1 and bias ’ 0.9 in version 2).

When IMS detected snow, it was detected by version 1

only half of the time (H ’ 0.5), while version 2 detected

80% (H ’ 0.8). But when LSA SAF SC detected snow,

usually it was also detected by IMS, only around 10% of

this snow was not detected by IMS [in both versions, the

false-alarm ratio (FAR) ’ 0.1], and this amounted to

less than 1% of snow-free areas in IMS [in both versions,

the false-alarm rate (F) , 0.01].

Using PC as a measure, both version 2 and version 1

agree well with IMS (PC . 0.9). High PC values are

derived from correct rejections, which dominate the

other components and PC can be considered somewhat

overoptimistic in depicting the skill of LSA SAF SC. Skill

scores yield more realistic results. And indeed, the differ-

ence between IMS and LSA SAF SC is more pronounced

in HSS, where HSS ’ 0.6 for version 1 and HSS ’ 0.9 for

version 2.

c. Results for days when both versions were available

In Table 5, the results for version 2 in spring 2007 in-

cluded days that where used for the algorithm develop-

ment. Here the focus is on 20 days that were not used to

develop the algorithm, but for which both version 1 and

version 2 were run. During these days, three different

areas can be distinguished: an area were both algorithms

where run (BOTH), an area where only version 1 was run

(OLDONLY), and an area where only version 2 was run

(NEWONLY). However, the amount of pixels in

NEWONLY is only about 3% of pixels in BOTH and was

not investigated further. But the amount of pixels in

OLDONLY is still about 40% of the pixels in BOTH and

meaningful comparisons can be made. For these days a

contingency table was calculated, from which further

measures can be calculated.

In the first test, the daily results of version 1 in BOTH

were compared to those of version 1 in OLDONLY. The

values for different measures (H, FAR, PC, and HSS,

only PC, and HSS are shown) of version 1 in BOTH were

subtracted from the values of version 1 in OLDONLY

(Fig. 4a). If results of different areas are not significantly

different, the differences should be around zero. But this

is not the case, version 1 yielded better results in BOTH

than in OLDONLY. This can be interpreted so that

OLDONLY is harder to classify than BOTH and version

2 has made a good choice in refusing to classify that area.

In the second test, version 1 in BOTH was compared

with version 2 in BOTH (Fig. 4b). In this case, version 2

yielded better values than version 1. So even if version 1

had not classified difficult areas of OLDONLY, it would

still give inferior results to version 2.

The results were statistically significant at the 95%

level with the exception of the second test for FAR, but

even then results were significant at the 90% level.

d. Seasonal variability of results

The results as time series, when a contingency table is

calculated from each image, give a detailed view of the

seasonal variability of snow. The amount of snow varies,

as the dataset includes three winters and three summers.

The maximum extent of snow is in February (Fig. 5a); the

snow starts to melt in mid-March and has melted almost

completely by the end of May. The remaining snow is

found on mountaintops and glaciers, which are mostly

outside the scope of LSA SAF SC. New snow starts to

accumulate in November. The surface area that is clas-

sified varies both because of the varying cloud cover and

also with the season, as during the winter the zenith angle

can be too high to enable classification for all day in

FIG. 4. Twenty-day run of version 1 and version 2. Daily results

(using PC and HSS) of version 1 in the area where both version 1

and version 2 were calculated (version 1 in BOTH) are compared

with (a) version 1 in the area where version 2 was not calculated

(version 1 in OLDONLY) and (b) version 2 for the common area

(version 2 in BOTH). The differences are shown as box-and-whisker

plots. (The median is shown as a thick line. The hinges show the first

and third quartile. The whiskers extend to a data point no more than

1.5 times the interquartile range (IQR) from the median, while data

points still farther from the median are plotted.) The p value is

calculated for a two-sided t test that the mean of differences is equal

to zero.
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northern regions. In addition, the results should be given

less emphasis when the absolute amount of snow is very

small in summer, as the results vary greatly owing to even

slight differences in snow cover between products. There-

fore, days when there are more than 20 times more correct

rejections than other classes are depicted with a different

color in the rest of the plots in Fig. 5.

When a considerable amount of snow is present, ver-

sion 1 constantly detects less snow than IMS, and bias is

constantly less than one (Fig. 5b). The difference between

version 2 and IMS is not as pronounced, but even so LSA

SAF SC is inclined to detect less snow. In summer, when

the absolute amount of snow is very small, bias may vary

erratically and can be considerably more than or less than

one. During winter 2007, test cases of version 2 had

consistently better values than test cases of version 1, but

the difference disappeared as spring progressed.

The amount of snow detected by LSAF SAF SC when

IMS detected none was slight in both versions and F was

near zero throughout the test period (not shown). In

winter, most of the snow detected by LSAF SAF SC was

also present in IMS; FAR started out with low values in

winter, but the values increased as the snow melted (Fig.

5c). In summer, FAR can reach unity, meaning that none

of the snow detected in LSAF SAF SC is present in IMS.

Especially in summer 2007, this coincides with bias . 1,

FIG. 5. (a) Amount of cloud-free land pixels (blue dashed line, IMS; red circle, version 1; black circle, version 2),

and amount of snow-covered pixels (blue line, IMS; red line, version 1; black line, version 2). (b) Bias, (c) FAR, (d) H,

(e) PC, and (f) HSS for version 1 (red circle) and version 2 (black circle) when compared with the IMS product. When

the correct rejections exceed the other classes by more than 20 times, version 1 is shown in pink and version 2 in gray

crosses. Vertical dotted lines show the transition from version 1 to version 2.02 (red), version 2.05 (gray), and version

2.10 (black). Curves show the two-month moving average of the data.
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but FAR can be quite high when bias ’ 1. In such a case,

the snow would be in completely different areas even if

the amounts of snow were comparative. In the summer of

2007, FAR rose to near unity for a considerable period,

which was corrected by introducing special rules for

summer. The difference between the test cases of version

2 and version 1 is not clearly visible.

On average, LSAF SAF SC detected about 80% of the

snow detected by IMS (H ’ 0.8), but the amount varies

and can be near unity or even zero (Fig. 5d). The sea-

sonal variability in H was not as apparent as it was for

FAR. In spring 2007, version 2 consistently had better

values than version 1.

According to PC (Fig. 5e), version 2 and IMS did not

differ to any large extent and the differences all but

disappeared during summer. Version 1 had lower values

during winter but comparable values in summer. During

other winters, the operational PC dropped lower than in

the test cases but was still higher than version 1.

During the winter HSS agreed with PC that version 2

was not very far from the IMS snow cover, even if the

values were somewhat lower (Fig. 5f), but as the snow

melted the skill substantially diminishes because not

much skill is needed to say that no snow is present during

summer. CSI yielded similar results, only with slightly

lower values than HSS (not shown). The pattern of HSS

was also very similar to that of H, but the HSS values

were lower in summer. There was a period of very low

values in the second half of 2007. Version 1 gave lower

values for HSS than version 2 during winter, but after

the snow started to melt the difference was no longer as

evident. It is encouraging that there is no evident dif-

ference between the test cases in spring 2007 and the

operational run afterward.

e. Spatial variability of results

During the operational period when only version 2 was

available, LSA SAF SC differed from IMS at the very edge

of the satellite view, as PC had low values there (Fig. 6a).

Otherwise, the spatial distribution of PC had very high

values for most of the area. Additionally, HSS had low

values in the areas where the snow cover was mostly

transitory (Fig. 6b). When the snow cover was present

for only a couple of days, a constant analysis of no snow

would still yield good grades for PC, but would not show

much skill and would yield low grades for HSS. LSA

SAF SC detected more snow mainly in southern Eu-

rope, where bias , 1, and less in the north (Fig. 6c).

However, there were areas where HSS and bias could

not be calculated, as when no snow was detected by ei-

ther products (or both products detected snow in all

cases) and only correct rejections (or hits) had nonzero

values, in which case HSS and bias had zero in the

denominator. Areas where HSS or bias could not be

computed are ignored in the rest of the analysis.

f. Spatial results for different land-cover classes

The spatial performance of version 2 over different

terrain types was investigated using only land classes

covering more than 5% of the area under study. Thus

only 8 out of the 22 classes of GLC2000 were used, but

they covered more than 95% of the area. The largest

terrain types were cultivated and managed areas (43%)

and different forest types (27% of the area). For each

class, ratios of probabilities of HSS and PC were calcu-

lated (Fig. 7). Our intuition was that most problematic

areas would be forests, as forests block the snow surface

from being visible and the shadows of the trees decrease

the reflectance observed above the forest canopy (Salminen

et al. 2009). And, indeed, for both HSS and PC, the ratios

for tree-covered areas were less than unity; meaning

those areas are more likely to have smaller values than

the median of the values. For the other vegetation types,

the results were not as clear. For shrub and herbaceous

areas, HSS suggested low values whereas PC suggested

no difference or high values. Sparse shrub and herba-

ceous areas gave little indication of to high values, but the

ratios are seldom unity. Mostly smooth areas (cultivated

and managed areas and bare area) were more likely to get

higher, better values. However, most ratios were not very

far from unity, and most of the time they were only about

twice as likely to get values higher or lower than median

values. Still, these results encourage taking terrain types

more into account in further development of the algo-

rithm. Furthermore, performing the same experiment

using the IGBP land-cover classification produced similar

results (not shown), so the results are fairly robust and not

confined to one land-cover classification scheme.

5. Discussion and conclusions

This article introduces the LSA SAF snow-cover

product and also continues the validation work started in

Hyvärinen et al. (2009), where no snow product was

deemed to present the truth. In this study the NOAA/

NESDIS IMS product was chosen as the reference for

verification measures. Version 2 of LSA SAF classified

fewer surfaces than version 1 but had higher values of the

validation measures in those areas, thereby increasing the

usability of the product for NWP, where the accuracy of

the data is much more relevant than large areal coverage.

Because of the lack of snow in southern Europe, there

were large areas where many verification measures had

zero in the denominator and were thus undefined.

How to handle these areas in a more principled way

would be an interesting topic for future study. A more
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Bayesian-oriented analysis might be able to give scores for

these areas using some a priori distribution of values that

would then be adjusted on the basis of observations. An-

other approach would be to assign some predefined value

to these areas. This has been discussed for similar measures,

but in a different context, by Batagelj and Bren (1995).

Both version 2 and the NOAA/NESDIS IMS product

presented a reasonable and realistic snow-cover analysis,

particularly during the winter season. The disagreement

between products was at its largest outside the winter

season and in areas where the snow cover was mostly

transitory. Especially when there is great temporal vari-

ability in the snow cover, it may no longer be feasible to

use NOAA/NESDIS IMS as the ground truth for verifi-

cation measures, as it is hard to say whether NOAA/

NESDIS IMS really presents the truth. For example, on

12 October 2007, there was a snow-covered belt across

Scandinavia that was not detected by the IMS product,

but which the LSA SAF snow-cover algorithm detected

correctly. This correct detection was of course penalized

FIG. 6. Spatial distribution of (a) PC, (b) HSS, and (c) Bias in version 2 from July 2007 to

December 2009. HSS and bias cannot be computed in areas where the denominator is zero.
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when compared with IMS. Further validation must rely

on surface observations. Automatic snow observations

have given less than satisfactory results, but advances

in ground-based observations are taking place. For ex-

ample, a digital camera attached to a measuring tower

could provide an adequate estimate of the fractional snow

cover (M. Takala 2010, personal communication). In ad-

dition to operational observations, measurement cam-

paigns, such as Snow Reflectance Transition Experiment

(SNORTEX; Roujean et al. 2009), offer valuable support

for the validation of products. The feasibility of a method

to measure fractional snow cover is being studied, but the

results are not yet available.

The different versions of the algorithm gave somewhat

surprising results, as our simple version 2 performed

better than version 1 based on the state-of-the-art algo-

rithm presented by NWC SAF. The surprising outcome

can be explained by the tendency of version 2 to refuse to

classify hard-to-classify areas. This comes at a price, as our

algorithm classifies less surface area. For NWP, however,

this withholding of some data is not a serious problem. On

average, the background field gives a good estimate of the

actual snow cover, and therefore gaps in the observations

are generally not a serious obstacle. Biased or otherwise

misleading snow observations would be a much worse

problem.

Future plans for the algorithm development are con-

centrating on improvements in the individual classifica-

tion rules, fractional snow-cover analysis, and a version of

the algorithm for the AVHRR instrument available on

polar-orbiting satellites such as MetOp.
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APPENDIX

Validation Measures

There is an extensive literature on different measures

calculated from Table 4. Many of them have been named

many times and the terminology can be confusing. Over-

views of the measures and their history can be found in, for

example, Jolliffe and Stephenson (2003) and Wilks (2006).

FIG. 7. The probability of high and low values of HSS and PC as a function of land cover.

Only GLC2000 classes covering more than 5% of the study area were used. The class numbers

are according to the original GLC2000 classes.
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This paper follows the terminology of Jolliffe and

Stephenson (2003). The basic descriptive measure is the

bias:

bias 5
a 1 b

a 1 c
, (A1)

the ratio of the number of snow pixels in the test analysis

to the number of snow pixels in the baseline analysis.

The best value for bias is 1; less than 1 means un-

derestimation and more than 1 means overestimation.

The contingency table gives the joint distribution of

analyses. From this distribution the following condi-

tional distributions are constructed for use as perfor-

mance measures:

The hit rate H or probability of detection (POD) is

H 5
a

a 1 c
, (A2)

and in the perfect analysis this should be 1. The false-

alarm rate F is

F 5
b

b 1 d
, (A3)

and in the perfect analysis this should be 0. The false-

alarm ratio (FAR) is

FAR 5
b

a 1 b
, (A4)

and in the perfect analysis this should be 0.

An intuitive measure of accuracy is proportion

correct:

PC 5
a 1 d

a 1 b 1 c 1 d
, (A5)

the fraction of items classified the same way in both

analyses. The best value for PC is 1 and the worst is 0. PC

alone is insufficient, in particular when one of the cate-

gories dominates. A refinement often used is the critical

success index:

CSI 5
a

a 1 b 1 c
, (A6)

which ignores correct rejections. Like PC, its best value

is 1 and the worst is 0.

Skill scores measure the relative skill by comparing

the results with the reference. The reference often used

is the random hits, which in this study would be snow

correctly detected as snow by chance in the absence of

skill. When the reference is the random hits, from PC we

can devise the Heidke skill score:

HSS 5
2(ad� bc)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d)
, (A7)

its best value being 1 and its worst being 21.
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Derrien, M., and H. LeGléau, 2005: MSG/SEVIRI cloud mask and

type from SAFNWC. Int. J. Remote Sens., 26, 4707–4732.

de Wildt, M. R., G. Siez, and A. Gruen, 2007: Operational snow

mapping using multitemporal Meteosat SEVIRI imagery.

Remote Sens. Environ., 109, 29–41.

Dong, C., and W. Zhang, 2004: China’s current and future meteo-

rological satellites systems. Proc. 2004 EUMETSAT Meteoro-

logical Satellite Conf., Prague, Czech Republic, EUMETSAT,

17–24.

Dozier, J., R. O. Green, A. W. Nolin, and T. H. Painter, 2009: In-

terpretation of snow properties from imaging spectrometry.

Remote Sens. Environ., 113 (Suppl.), S25–S37, doi:10.1016/

j.rse.2007.07.029.

Drusch, M., D. Vasiljevic, and P. Viterbo, 2004: ECMWF’s global

snow analysis: Assessment and revision based on satellite

observations. J. Appl. Meteor., 43, 1282–1294.

Dybbroe, A., K. Karlsson, and A. Thoss, 2005: NWCSAF AVHRR

cloud detection and analysis using dynamic thresholds and

radiative transfer modeling. Part I: Algorithm description.

J. Appl. Meteor., 44, 39–54.

Hall, D., G. Riggs, V. Salomonson, N. DiGirolamo, and K. Bayr, 2002:

MODIS snow products. Remote Sens. Environ., 83, 181–194.

Hamill, T., 1999: Hypothesis tests for evaluating numerical pre-

cipitation forecasts. Wea. Forecasting, 14, 155–167.

Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and

T. Kasheta, 2007: Enhancements to, and forthcoming de-

velopments in the Interactive Multisensor Snow and Ice

Mapping System (IMS). Hydrol. Processes, 21, 1576–1586.

Hyvärinen, O., K. Eerola, N. Siljamo, and J. Koskinen, 2009:

Comparison of snow cover from satellite and numerical weather

prediction models in Northern Hemisphere and northern Eu-

rope. J. Appl. Meteor. Climatol., 48, 1199–1216.

Jolliffe, I. T., and D. B. Stephenson, Eds., 2003: Forecast Verification:

A Practitioner’s Guide in Atmospheric Science. John Wiley and

Sons, 240 pp.

Kaufman, L., and P. J. Rousseeuw, 1990: Finding Groups in

Data: An Introduction to Cluster Analysis. Wiley-Interscience,

368 pp.

Kidder, S. Q., and H.-T. Wu, 1984: Dramatic contrast between low

clouds and snow cover in daytime 3.7 mm imagery. Mon. Wea.

Rev., 112, 2345–2346.

——, and T. H. Vonder Haar, 1990: On the use of satellites in

Molniya orbits for meteorological observation of middle and

high latitudes. J. Atmos. Oceanic Technol., 7, 517–522.

Koskinen, J. T., J. T. Pulliainen, and M. T. Hallikainen, 1997: The

use of ERS-1 SAR data in snow melt monitoring. IEEE Trans.

Geosci. Remote Sens., 35, 601–610.

Lahtinen, P., A. Ertürk, J. Pulliainen, and J. Koskinen, 2009:

Merging flat/forest and mountainous snow products for ex-

tended European area. Proc. 2009 IEEE Int. Geoscience and

JUNE 2011 S I L J A M O A N D H Y V Ä R I N E N 1289
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H. Suokanerva, 2009: The behaviour of snow and snow-free

surface reflectance in boreal forests: Implications to the per-

formance of snow covered area monitoring. Remote Sens.

Environ., 113, 907–918.

Schmit, T., M. Gunshor, W. Menzel, J. G. J. Li, and A. Bachmeier,

2005: Introducing the next-generation advanced baseline im-

ager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079–1096.

Ulaby, F. T., R. K. Moore, and A. K. Fung, 1986: From Theory to

Applications. Vol. III, Microwave Remote Sensing, Active and

Passive, Addison Wesley, 1097 pp.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences.

2nd ed. Academic Press, 648 pp.

Wiscombe, W. J., and S. G. Warren, 1980a: Model for the spectral

albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 2712–2733.

——, and ——, 1980b: Model for the spectral albedo of snow. II:

Snow containing atmospheric aerosols. J. Atmos. Sci., 37,

2734–2745.

World Meteorological Organization, 1995: Manual on codes.

Volume I.1, No. 306, 229 pp.

1290 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 50


