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ABSTRACT

A retrieval method is introduced for estimating the fraction of ground flashes in a set of N flashes observed

from either a low earth-orbiting or geostationary satellite lightning imager. The methodology exploits the fact

that mean optical characteristics of ground and cloud flashes differ, and hence a properly posed equation set

for mean conditions of a set of N observed flashes can be mathematically inverted to estimate the ground flash

fraction (and hence the cloud flash-to-ground flash ratio). Explicit analytic expressions for the retrieval errors

are derived, and numerical tests of the retrieval method are provided to quantify retrieval accuracy. It has

been found that the retrieval method works best when only one optimum optical parameter is used (the single-

characteristic solution approach) rather than a mixture of optical parameters (the multiple-characteristic

solution approach); that is, the suboptimum optical parameters in the mix degrade retrieval accuracy. Since

the retrieval method uses conterminous United States (CONUS)-averaged values of the lightning optical

measurements, retrieval errors tend to be smallest in geographical regions whose specific mean lightning

optical measurements are closest to the CONUS mean values. The rms ground flash fraction retrieval errors

for 52 widely distributed regions across CONUS ranged from as low as 0.061 to 0.111, depending on the true

ground flash fraction sought.

1. Introduction

The studies by Koshak (2007) and Koshak (2010)

provided the first detailed statistical distributions of

ground and cloud flash optical characteristics mea-

sured from the Optical Transient Detector (OTD). It

was found that these distributions overlapped consid-

erably, thereby making it difficult to build an algorithm

that can discriminate between ground and cloud flashes.

However, it was also found that the means of these

distributions were quite different for ground and cloud

flashes.

Therefore, following the recommendation in Koshak

(2010), our approach to the problem of flash-type dis-

crimination is to consider mean optical statistics rather

than individual optical measurements. Conceptually, we

use the Central Limit Theorem of statistics to convert

the original overlapping optical distributions into dis-

tributions of the means (see Fig. 10 of Koshak 2010).

The distributions of the means have little overlap when

the means are taken over a sufficiently large number of

flashes. Consequently, we focus on retrieving the frac-

tion of ground flashes in a set of N flashes instead of

discriminating flashes on a flash-by-flash basis. We give

special attention to two important optical parameters,

the maximum number of events in a group (MNEG) and

the maximum group area (MGA), since these were cited in

Koshak (2010) as particularly useful variables for ground

flash fraction retrieval.

By obtaining the ground flash fraction, one can de-

termine the ratio Z of cloud flashes to ground flashes.

The Z ratio is thought to be particularly useful in a num-

ber of areas including severe weather warning, lightning–

convection relationships, lightning nitrogen oxide (NOx)

production, the contribution of lightning to the global

electric circuit, and cross-sensor validation (see Koshak

2010 and Boccippio et al. 2001 for further discussion).
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In this study, we introduce a technique for retrieving

the ground flash fraction (and hence the Z ratio) of a set

of N lightning that occurs within a specific region and

that is observed by a spaced-based lightning imager [e.g.,

OTD, the Lightning Imaging Sensor (LIS), or the future

GOES-R Geostationary Lightning Mapper (GLM)]. The

retrieval method and the associated retrieval error the-

ory are described in sections 2–4. A more general ver-

sion of the retrieval method is introduced in section 5.

Section 6 discusses the relationship between the simple

and generalized forms of the retrieval method, and sec-

tion 7 discusses solution nonuniqueness. Section 8 shows

graphical representations of the solution retrieval pro-

cess and illustrates how retrieval errors are reduced when

the sample size of observations is increased. Finally,

section 9 applies the retrieval method to actual conter-

minous United States (CONUS) OTD lightning data that

have been partitioned into ground and cloud flashes using

independent ground-based observations; this assesses the

accuracy of the retrieval method. The retrieval errors are

shown to be encouragingly small when an optimal space-

based lightning imager observable [such as MNEG or

MGA] is used.

2. The mean equation and ground flash fraction

Consider a set of i 5 1, . . . , N flashes that are observed

over a time period Dt by a satellite lightning imager (e.g.,

a low earth-orbiting sensor like the LIS or OTD, or a

geostationary sensor like GLM). As shown in the ex-

ample of Fig. 1, each observed ground flash is indicated

by a ‘‘g’’ and each cloud flash by a ‘‘c’’; a small value of N

is shown solely for brevity and is no indication of an

acceptable value of N (indeed it will be shown later that

N must be sufficiently large to bring retrieval errors down

to an acceptable level).

For each of the N flashes, the sensor measures a par-

ticular flash optical characteristic x. For example, this

characteristic could be any one of the following: flash

radiance, flash area, flash duration, the number of opti-

cal groups in the flash, the number of optical events in

the flash, the maximum number of events in a 2-ms

sensor frame time for a given flash, radiance of the first

event in the flash, radiance of the brightest group, maxi-

mum number of events in a group, maximum group area,

and so on. Here, the basic terminology of OTD/LIS data

is used; that is, a flash is composed of optical groups, and

each optical group is composed of optical events (see

Mach et al. 2007).

Note that x is not limited to flash-level properties; for

example, one could use the area of the first group in

a flash rather than flash area itself or both. In general,

one is free to choose any optical information from the

optical data (including concocting derived variables from

the data); hence, the list of possible optical characteristics

is virtually unlimited. However, a certain set of optical

characteristics will outperform another set, in general.

Based on numerical results provided in section 9, we are

able to recommend reasonably optimal optical charac-

teristics to employ.

Considering a set of k 5 1, . . . , n characteristics given

by (xi1, xi2, . . . , xin) for the ith observed flash, the average

of the kth characteristic across the N flashes is
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where the mean ground and cloud flash characteristics are
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So (1) can be rewritten as

x
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The parameter a is the ground flash fraction that we are

interested in retrieving from the m 5 Nn satellite mea-

surements given by xik, with i 5 1, . . . , N; k 5 1, . . . , n.

The first equation in (3) is fundamental. It expresses the

mean of a particular optical characteristic as a weighted

mixture of the associated ground and cloud flash optical

FIG. 1. A set of N flashes occurring in a region during time period

Dt. A ‘‘g’’ denotes a ground flash, and a ‘‘c’’ denotes a cloud flash.

The desire is to retrieve the fraction of ground flashes.
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properties. For example, if the ground flash fraction is

unity (all N flashes are ground flashes) then the mean

optical characteristic is simply the mean optical char-

acteristic of the ground flashes.

3. The applied form of the mean equation

In any real problem, one must be cognizant of sensor

measurement errors «ik and also those errors (egk, eck)

involved with estimating the unknowns (x
gk

, x
ck

). Inclusion

of these errors leads to the following set of expressions:
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The first expression in (4) can be derived by simply de-

fining the measurement of the kth characteristic in the

ith flash as qik [ xik 1 «ik and then averaging this ex-

pression over the N flashes. The remaining two equa-

tions in (4) are definitions. Using (4), one obtains the

generalization of the first equation in (3) as

q
k

5 a( f
gk
� e
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ck
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ck
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k
. (5)

The left side of this equation is the average (over all N

flashes) of the actual sensor measurement values of the

kth characteristic. [So, for example, if the kth charac-

teristic was flash radiance, one would take the average

of the N flash radiances to compute q
k
.] The radiance

measurement errors are («lk, . . . , «Nk) with average error

«
k

[this appears as the last term on the right side of (5)].

4. The single-characteristic solution and associated
retrieval errors

It is possible to retrieve the ground flash fraction using

a single characteristic. Using the form given in the first

equation of (3), we have q
k

5 a
k

f
gk

1 (1� a
k
) f

ck
.

That is, the same form in (3) is obeyed, and when the

quantities (q
k
, f

gk
, f

ck
) are respective approximations

to the quantities (xk, xgk, xck), then ak approximates a.

Hence, we immediately obtain the single-characteristic

solution ak given by

a
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ck
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Whereas the value qk on the right-hand side of (6) is

provided by the sensor, the variables ( fgk, fck) are re-

spective estimates of (xgk, xck). In principle, any rea-

sonable estimates of (xgk, xck) can be used. In this writing

we note that the variables (x
gk

, x
ck

) each have a statistical

distribution with respective population means (mgk, mck).

So our approach is to simply set (fgk [ m*gk, fck [ m*ck),

where (m*gk, m*ck) are sample mean estimates of the

population means; that is, m*gk ’ mgk, m*ck ’ mck (see

section 8 for additional details). Hence, the right-hand

side of (6) can be computed to obtain a value for ak. In

what follows, and to maintain generality, we continue

using the ( fgk, fck) notation in (6) with the understanding

that one can employ any reasonable method to assign

values to ( fgk, fck), and that the assignment ( fgk [ m*gk,

fck [ m*ck) is just one particular approach.

Now, the retrieval error is
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Using the relationships in (4), the expression in (7) can

be rewritten (after some algebra) as
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Hence, using the last two equations in (4), the retrieval

error has the following important properties:
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This means that whenever the estimate fgk is very close

in value to the estimate fck, the denominator in (8) will

be very close to zero, which results in magnifying the

errors in the numerator of (8). This results in the mag-

nitude of rk being unacceptably large. Conversely,

when the estimate fgk is sufficiently distinct in value from

the estimate fck, rk will be a smaller value and can even be

zero if the first condition cited in the first equation of (9)

is met.

5. The multiple-characteristic solution

Given the mean equation in (5), one can con-

sider generalizing the single-characteristic solution by

simultaneously considering all k 5 1, . . . , n character-

istics in the retrieval process. This is done by minimizing

a scalar cost function of the form

L(a9) [ �
n

k51
fq

k
� [a9f

gk
1 (1� a9) f

ck
]g2, (10)

where, once again, the values of ( fgk, fck) are fixed based

on assigning them reasonable values; for example, by
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making the assignments (fgk [ m*gk, fck [ m*ck) as dis-

cussed in the previous section. Minimizing (10) allows one

to find the value of a9 in the model fa9fgk 1 (1 2 a9)fckg
that optimally describes the measurements qk, with k 5

1, . . . , n.

In this approach (and for analyses in subsequent sec-

tions to follow), the following short-hand notation is in-

voked for convenience:
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Carrying out the algebra implied by (10) gives a qua-

dratic result

L(a9) 5 A(f)a92 1 B(f)a9 1 C(f), (12)

where the coefficients in the quadratic (and their signs)

are
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For brevity, the dependence of B and C on e has been

suppressed. The minimum of the quadratic function L(a9)

is obtained by taking the derivative and equating to zero

dL
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����
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Solving (14) yields the multiple-characteristic solution

amul given by
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where f is fixed by assignment. Note that (15) is in fact

a minimum of L since the second derivative test gives

d2L/da92 5 2A(f) $ 0, where the degenerate case A(f) 5

0 0 fgk 5 fck can be ignored since it corresponds to

a singularity—that is, an inability to retrieve the ground

flash fraction. For example, the condition m*gk 5 m*ck was

shown not to hold for a variety of characteristics ex-

amined in Koshak (2010).

The retrieval error associated with the multiple-

characteristic solution is derived in the following sec-

tion. As one might expect, the retrieval error is related

to rk in (8).

6. The relationship between the single- and
multiple-characteristic solutions

It is natural to wonder what the relationship is be-

tween the multiple-characteristic solution in (15) and the

single-characteristic solution given in (6). The relationship

can be found by rewriting (6) as qk � f ck 5 ak( f gk � f ck),

and then substituting this into (15) to get
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where the scaled weights are
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The scaled weights are nonnegative and range from a

minimum to a maximum value given by
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So the multiple-characteristic solution in (15) is a gen-

eral solution that reduces to the single-characteristic

solution given in (6) when n 5 1. It can be viewed as

a weighted mean of the single-characteristic solutions.

Hence, the characteristic with the largest scaled weight

has the greatest influence on the value of amul. Since each

(fgk, fck) is intended to estimate each mean (xgk, xck), the

characteristic whose ground flash mean is maximally

different from its cloud flash mean will have the greatest

influence on the value of amul.

If each estimate is perfect [i.e., ( f
gk

5 x
gk

, f
ck

5 x
ck

)

for k 5 1, . . . , n] and there is no measurement error

(i.e., «k 5 0 for k 5 1, . . . , n) then both (6) and (15) re-

duce to the true ground flash fraction a given in (3); that is,
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Here, the first equation in (3) was used as the definition

of a.

Finally, (7) can be rewritten as ak 5 a 1 rk, which

when substituted into (16) gives
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Hence, the retrieval errorR associated with the multiple-

characteristic solution is simply a weighted mean of the

individual retrieval errors rk for each kth characteristic;

that is,
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This is an interesting result. Given a set of character-

istics associated with the independent retrieval errors

(r1, . . . , rn), one can always order the numbering of the

characteristics such that (jr1j# jr2j# jr3j# . . . # jrnj).

Since the values of the scaled weights range between

0 2 1, and since the values of rk are arbitrary (i.e., negative,

zero, or positive), one can get both constructive and de-

structive interference of errors from the linear superpo-

sition in (21). In other words, jRj, jr1j could possibly

hold in the case of destructive interference. However, one

does not expect to be this lucky. What we have found (e.g.,

Table 3 of section 9) is that jr1j, Rj j.

7. Solution nonuniqueness

Up to this point, we have considered the vector f to be

fixed since we assigned its components to reasonable

estimates [e.g., ( fgk [ m*gk, fck [ m*ck) as discussed in

sections 4 and 5]. However, instead of making these as-

signments to f, one might wonder if it is possible to retrieve

optimum values for (f, a9) by minimizing the cost function

L(f, a9) [ �
n

k51
[q

k
� fa9f

gk
1 (1� a9) f

ck
g]2,

5 A(f)a92 1 B(f)a9 1 C(f). (22)

This cost function is identical to (10) and (12) except that

now L is considered as a function of the variables (f, a9)

rather than of just a9.

Since L in (22) is a sum of squared terms, we must

have L $ 0. Therefore, the absolute minimum of L is

clearly L 5 0. Given an arbitrary real vector f, the roots

of L (f, a9) are determined by setting (22) to zero. This

yields the standard quadratic equation A(f)~a2 1 B(f)~a 1

C(f) 5 0, with solution

~a 5
�B(f)

2A(f)
6

ffiffiffiffiffiffiffiffiffiffi
D(f)

p
2A(f)

. (23)

Here, the discriminant function is

D(f) [ B2(f)� 4A(f)C(f). (24)

Note that the first term on the right-hand side of (23) is

just the expression for the multiple-characteristic solu-

tion given in (15). Furthermore, we get the following

relationships

L(f, ~a) 5 0,

L(f, a9) 5 �
n

k51
[a(e

ck
� e

gk
)� e

ck
1 «
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]2, A(f) 5 0
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) 5
�D(f)

4A(f)
, A(f) . 0.

(25)

The second equation in (25) is obtained by noting from

(13) that fgk 5 fck when A 5 0 and applying (5). The third

equation in (25) is obtained by simply evaluating (22) at

a9 5 amul given in (15). In addition, A 5 0 implies that

D 5 0 [i.e., A 5 0 implies that fgk 5 fck, which implies

that B 5 0; hence D 5 B2 2 4AC 5 (0)2 2 4(0)C 5 0,

where C $ 0 from the third equation in (13)]. Using this

result and rearranging the third equation in (25) gives

D(f) 5
0 A(f) 5 0

�4A(f)L(f, a
mul

) A(f) . 0.

�
(26)

Since L and A are each a sum of squares, L $ 0 and A $ 0

must hold so that the discriminant is nonpositive
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D(f) # 0. (27)

Additionally, the appendix shows that the discriminant

is zero for the case A . 0 when each single-characteristic

solution given by (6) is equivalent to the multiple-

characteristic solution; that is,

D(f) 5
0

0, if a
k

5 a
mul

for k 51, . . . , n

A(f) 5 0

A(f) . 0.

�
(28)

The appendix also shows that the discriminant is nega-

tive solely because of the errors (e, e), and the discrim-

inant is zero when these errors are zero; that is, D(e 5 0,

e 5 0) 5 0. A zero discriminant can also occur with

nonzero errors if the errors cancel each other out (de-

structive interference).

In a real retrieval problem the errors will be nonzero,

the discriminant will be nonpositive, and so the solution

in (23) provides, in general, two complex roots. We would

be forced of course to pick the real part of this solution

(which is just the multiple-characteristic solution for an

arbitrary f). Moreover, employing the complex solution

in (23) is of no help because it will drive L to zero no

matter what value of f is chosen (even if e is large). In

other words, one f is as good as another, and so the

generalized cost function does not help us pick an op-

timum f.

However, from the second and third equations in (25),

one can see that it is also possible to arrive at the ab-

solute minimum L 5 0 by employing an arbitrary value

of a9 between 0 and 1 and a value of f for which egk 5

eck 5 «k (case A 5 0), or by employing the multiple-

characteristic solution and a value of f for which D(f) 5 0

(case A . 0). In practice, the normal situation will be

A . 0 (since by Koshak 2010 the ground and cloud flash

mean characteristics are typically distinct); hence, one

can perform a numerical minimization of the function

F(f) [ L(f, amul) 5 2D(f)/[4A(f)] to obtain the optimum

f; the corresponding ground flash fraction would then be

retrieved as amul(f) 5 2B(f)/[2A(f)].

Unfortunately, this approach also will not work. The

reason is as follows. Given a ground flash fraction a9 5

amul, the value of L 5 0 when each kth summand in

(22) is zero; that is, q
k

5 a
mul

f
gk

1 (1� a
mul

) f
ck

5
L(f, a

mul
) 5 0. Rearranging this expression and using

(26) gives
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5L(f, a
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) 5 0 5D(f) 5 0, A(f) . 0. (29)

This is just an alternate expression of what is given in

(A4) of the appendix. Now, when one attempts to solve

the problem by minimizing F(f), (29) says that there are

actually many possible values of f that make F(f) 5 0.

In fact, there are an infinity of solutions since the ex-

pression on the left-hand side in (29) is the equation of

a line for the continuous variables fgk and fck; we call this

line a line of ambiguity (LOA). [Note: there are actually

k 5 1, . . . , n LOAs defined in (29), each with a slope

(amul 2 1)/amul and ‘‘y-intercept’’ qk/amul.] In effect,

there is more than one solution f that can perfectly

generate the observed mean values (q
1
, . . . , q

n
). This is

what is meant by ‘‘solution nonuniqueness.’’ Hence, the

solution obtained by minimizing F(f) depends on the

starting point in the parameter search space. Few iter-

ations are required, and the search quickly terminates at

a nearby zero of F(f). This situation is obviously un-

acceptable because one is just picking a mathematically

acceptable solution, but the solution can be quite far

from the correct answer (the truth).

When a9 is arbitrary—that is, not necessarily equal to

the multiple-characteristic solution—then an examina-

tion of (22) produces an expression more general than in

(29) that is given by

f
gk

5
a9� 1

a9

� �
f

ck
1

q
k

a9
5L(f, a9) 5 0. (30)

Solution nonuniqueness can be illustrated in a compact

graphical form by dividing the left-hand side of (30) by

qk to obtain the kth ‘‘scaled’’ LOA

r
gk

5
a9� 1

a9

� �
r

ck
1

1

a9
, (31)

where rgk [ f gk/qk, and rck [ f ck/qk. The acceptable

values of a9 are restricted to the range 0–1, and the

family of lines given by (31) for the particular values

(a9 5 0., 0.1, 0.2, 0.3, . . . , 1) are provided in Fig. 2. Un-

acceptable values are also indicated (a9 , 0, a9 . 1, and

a9 undefined).

Once again, because f is allowed to vary continuously,

the LOAs defined in (31) result in an infinite number of

zeros of L and therefore an infinite number of possible

solutions. This is certainly true when one just considers

the mathematical form of the cost function. However, in

any actual problem, one must remember that the num-

ber of flashes observed N is finite. This means that there

cannot actually be an infinite number of possible solutions.

In general, the number of possible solutions h generated

by each kth characteristic is given as a sum of combina-

torial terms

h 5 �
N

N
g
50

N!

(N �N
g
)!N

g
!
5 2N . (32)
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The h solutions fall on the lines described by (31). Table 1

shows how quickly the number of possible solutions in-

creases with increasing N. The table also shows how

the ‘‘granularity’’ of a9, denoted by G, improves with

N; for example, for N 5 3, the only possibilities are a9 5

0, 1/3, 2/3, 1 whereas for N 5 5, the possibilities are a9 5

0, 0.2, 0.4, 0.6, 0.8, 1.

To investigate this situation more closely, consider the

simple example of only one characteristic (n 5 1) and

N 5 5 flashes. A satellite lightning imager records 5 op-

tical values given by (1, 4, 5, 7, 8), in arbitrary units, for

the single lightning characteristic; measurement errors

are ignored (i.e., qk 5 xk). Since n 5 1, the cost function

in (22) has just one (squared) term. From (32) there

must be h 5 32 possible solutions. Suppose, however,

that we also know from independent measurements

[say from National Lightning Detection Network (NLDN)

data] that the third and fifth flashes are ground flashes,

and the first, second, and fourth flashes are cloud

flashes. This implies that xgk 5 (5 1 8)/2 5 6.5, and

xck 5 (1 1 4 1 7)/3 5 4.0, where k 5 1. The true ground

flash fraction is therefore a9 5 a 5 2/5 5 0.4, and the

average is x
k

5 (1 1 4 1 5 1 7 1 8)/5 5 5.0. Note that

the average is appropriately reproduced when the true

values (xgk 5 6.5, xck 5 4.0, a 5 0.2) are substituted into

the first equation in (3). Now, as shown in Table 2,

there are 31 additional choices that also give a value of

xk 5 5.0. That is, since one does not know in general

which flashes are ground flashes and which are cloud

flashes, one has to consider all 32 possibilities. The true

situation (bold italicized in Table 2) is just one of many

possibilities. These multiple (but finite number of) solu-

tions must fall on the LOAs defined by (31).

To relate the general result in (31) to the specific ex-

ample in Table 2, the results in Table 2 are plotted in Fig.

2. The 32 solutions in Table 2 correspond to 32 ordered

pairs (rck, rgk), but solution 1 has rck undefined and so-

lution 32 has rgk undefined. Solution 11 has the same

value of (rck, rgk) as solution 10; similarly, solutions 14,

21, 24, and 29 repeat other solutions. This leaves a total

of 25 (532 2 2 2 5) distinct solution points (rck, rgk) to

plot, and these 25 points are shown in Fig. 2 as the black

dots. These black dots serve as a reminder that, in any

real problem, the value of N is finite so that an infinite

number of solutions do not exist.

8. Graphical representation of solution process

The retrieval of the ground flash fraction using the single-

characteristic solution provided in (6) can be understood in

a graphical way. Since the multiple-characteristic solution

TABLE 1. The number of possible solutions, the number of dis-

tinct values of a9, and the granularity in a9 as a function of the

number of flashes observed. Values are rounded at the third dec-

imal place.

N (no. of

flashes

observed)

h (no. of

possible

solutions)

n 5 N 1 1

(no. of

distinct a9)

G 5 1/N

(granularity

in a9)

1 2 2 1.000

2 4 3 0.500

3 8 4 0.333

4 16 5 0.250

5 32 6 0.200

6 64 7 0.167

7 128 8 0.143

8 256 9 0.125

9 512 10 0.111

10 1024 11 0.100

11 2048 12 0.091

12 4096 13 0.083

13 8192 14 0.077

14 16 384 15 0.071

15 32 768 16 0.067

16 65 536 17 0.063

17 131 072 18 0.059

18 262 144 19 0.056

19 524 288 20 0.053

20 1 048 576 21 0.050

30 1.074 3 109 31 0.033

40 1.100 3 1012 41 0.025

50 1.126 3 1015 51 0.020

60 1.153 3 1018 61 0.017

70 1.181 3 1021 71 0.014

80 1.209 3 1024 81 0.013

90 1.238 3 1027 91 0.011

100 1.268 3 1030 101 0.010

FIG. 2. The family of lines identifying the nonunique solution

space for a9. Any real problem has N finite, so there will be a finite

number of nonunique solutions on the lines drawn. The black

points shown correspond to the example in Table 2 and are de-

scribed in the main text.
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is just a linear superposition of single-characteristic solu-

tions as shown in (16), this section also helps one better

understand the multiple-characteristic solution.

Figure 3a illustrates the solution process and the role

of solution nonuniqueness; it begins with the case of N 5

100 observed flashes. For these 100 flashes, the true value

of the ground flash fraction a is assumed to be 0.3. So this

implies that there are Ng 5 30 ground flashes and Nc 5

70 cloud flashes. We consider just one characteristic,

say MNEG, so all ‘‘k’’ subscripts are dropped from

appropriate variables. To retrieve an answer using the

single-characteristic solution in (6), we must have a sen-

sor measurement x (i.e., « 5 0 is assumed here) and two

estimates fg and fc.

Using the form of the first equation in (30) and re-

garding the variables fg and fc as coordinate axes, we

have the LOA given by

f
g

5
a� 1

a

� �
f

c
1

x

a
. (33)

This line has a ‘‘y intercept’’ of x/a and an ‘‘x intercept’’

x/(1� a). The LOA is shown as the black slanting line

in Fig. 3a. Note that the LOA passes through the point

(x, x) —that is, point A. In nature, the mean MNEG has

a statistical distribution. The mean MNEG for ground

flashes xg has a distribution as shown in red, and the

mean MNEG for cloud flashes xc has a distribution as

shown in blue. Because of the Central Limit Theorem,

these are each assumed to be close enough to normal

distributions since the sample sizes used to compute the

means are equal to, or exceed, 30 (i.e., Ng 5 30 and Nc 5

70 as mentioned above). The peaks of each normal dis-

tribution are scaled to unity for plot clarity. The observed

mean MNEG of the mixture of ground and cloud flashes

x has a value given as ‘‘xbar’’ in the plot and is indicated

graphically as the pink box with corner point A.

The true mean value of the ground flash MNEG optical

characteristic is given by the horizontal black line f
g

5 x
g
,

and the true mean value of the cloud flash MNEG optical

characteristic is given as the black vertical line f c 5 xc.

TABLE 2. An example of solution nonuniqueness for a case of N 5 5 flashes where the satellite lightning imager measured 5 values

(1, 4, 5, 7, 8) for a particular kth characteristic. The bold italicized line (solution 25) represents the correct solution (i.e., the truth).

Solution Ground Cloud Ng Nc a9 fgk fck q
k

1 1, 4, 5, 7, 8 — 5 0 1.000 5.000 Undefined 5.000

2 4, 5, 7, 8 1 4 1 0.8 6.000 1.000 5.000

3 1, 5, 7, 8 4 4 1 0.8 5.250 4.000 5.000

4 1, 4, 7, 8 5 4 1 0.8 5.000 5.000 5.000

5 1, 4, 5, 8 7 4 1 0.8 4.500 7.000 5.000

6 1, 4, 5, 7 8 4 1 0.8 4.250 8.000 5.000

7 5, 7, 8 1, 4 3 2 0.6 6.666 2.500 5.000

8 4, 7, 8 1, 5 3 2 0.6 6.333 3.000 5.000

9 4, 5, 8 1, 7 3 2 0.6 5.666 4.000 5.000

10 4, 5, 7 1, 8 3 2 0.6 5.333 4.500 5.000

11 1, 7, 8 4, 5 3 2 0.6 5.333 4.500 5.000

12 1, 5, 8 4, 7 3 2 0.6 4.666 5.500 5.000

13 1, 5, 7 4, 8 3 2 0.6 4.333 6.000 5.000

14 1, 4, 8 5, 7 3 2 0.6 4.333 6.000 5.000

15 1, 4, 7 5, 8 3 2 0.6 4.000 6.500 5.000

16 1, 4, 5 7, 8 3 2 0.6 3.333 7.500 5.000

17 1, 4 5, 7, 8 2 3 0.4 2.500 6.666 5.000

18 1, 5 4, 7, 8 2 3 0.4 3.000 6.333 5.000

19 1, 7 4, 5, 8 2 3 0.4 4.000 5.666 5.000

20 1, 8 4, 5, 7 2 3 0.4 4.500 5.333 5.000

21 4, 5 1, 7, 8 2 3 0.4 4.500 5.333 5.000

22 4, 7 1, 5, 8 2 3 0.4 5.500 4.666 5.000

23 4, 8 1, 5, 7 2 3 0.4 6.000 4.333 5.000

24 5, 7 1, 4, 8 2 3 0.4 6.000 4.333 5.000

25 5, 8 1, 4, 7 2 3 0.4 6.500 4.000 5.000

26 7, 8 1, 4, 5 2 3 0.4 7.500 3.333 5.000

27 1 4, 5, 7, 8 1 4 0.2 1.000 6.000 5.000

28 4 1, 5, 7, 8 1 4 0.2 4.000 5.250 5.000

29 5 1, 4, 7, 8 1 4 0.2 5.000 5.000 5.000

30 7 1, 4, 5, 8 1 4 0.2 7.000 4.500 5.000

31 8 1, 4, 5, 7 1 4 0.2 8.000 4.250 5.000

32 — 1, 4, 5, 7, 8 0 5 0.0 Undefined 5.000 5.000
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These two lines intersect at point B. The LOA passing

through the points A and B defines the true value a,

whose value is shown at the top left of the plot, in black,

as 0.3; that is, the slope of the black line through points

A and B is (a 2 1)/a as indicated in (33).

Note that for the finite sampling of N flashes, the

mean values of xg and xc in nature need not be asso-

ciated with the peaks of the red and blue normal

distributions; these peaks only represent the most

probable values of x
g

and x
c
. To emphasize this point,

we show x
g

to be 0.75sg/
ffiffiffiffiffiffi
Ng

p
below its population

mean, and we show xc to be 0.5sc/
ffiffiffiffiffiffi
Nc

p
above its

population mean.

The most probable solution aMP is associated with the

intersection of the horizontal green line fg 5 mg and the

vertical green line fc 5 mc. These two lines intersect at

point C. The value aMP is shown at the top middle of the

plot, in green, as 0.2445. The resulting retrieval error in

this example is r 5 aMP 2a 5 20.0555, as shown in the

upper-right portion of the plot. Note that substituting

aMP in for a in (33) defines another LOA (the green

slanted line through the points A and C).

Now, in any actual problem, we do not know the

values of (mc, mg) for a particular geographic location. In

the single-characteristic solution approach, we estimate

these population means using the CONUS OTD results

for MNEG in Koshak (2010); that is,

m
c
’ m

c
* 5 2.301 09,

m
g

’ m
g
* 5 5.725 87. (34)

So errors in these estimates would technically also prop-

agate into the final retrieval error; however, the examples

in Fig. 3 neglect this error contribution. In addition, sat-

ellite measurement errors are also neglected in these

examples.

Figure 3b shows what happens when the value of N

increases. In this sensitivity analysis, the values (xc, xg)

remain at the same proportionate values used previously;

that is, they are always 0.5sc/
ffiffiffiffiffiffi
Nc

p
and 0.75sg/

ffiffiffiffiffiffi
Ng

p
from

their respective means (mc, mg). As one can see, increasing

N necessarily decreases the retrieval error r. This is a

fundamental advantage of this technique, especially

since thunderstorms can produce high flash rates, making

N large in a relatively short time.

Finally, Fig. 3c shows the same type of results as in

Fig. 3b except that a larger truth value of a 5 0.7 is

assumed. Because of (8), and since eg , ec , 0 holds in

these two examples, the retrieval error in Fig. 3c is

larger in magnitude than in Fig. 3b. That is, r is pro-

portional to aeg 1 (1 2 a)ec when no satellite measure-

ment errors are present. This equals 0.3eg 1 0.7ec for the

case in Fig. 3b, and the (more negative) value 0.7eg 1

0.3ec for the case in Fig. 3c.

9. Numerical tests

To test our retrieval methods, we applied them to

actual CONUS OTD data. NLDN data was used to

independently determine what the true ground flash

fraction was within any particular region of the CONUS.

Comparing our ground flash fraction retrieval to the

known value enabled us to directly assess retrieval errors.

Both the single- and multiple-characteristic solution

methods were tested. For each of these methods, the

values ( fck, fgk) were estimated using the population

mean estimates obtained by Koshak (2010). So, for

example, the explicit form of the single-characteristic

solution retrieval formula (when the MNEG charac-

teristic is employed) is

a
MNEG

5
q

MNEG
� m

c
*

m
g
*� m

c
*

, (35)

where the starred constants are given in (34), and q
MNEG

is obtained from the OTD data.

A total of 52 locations across the CONUS were con-

sidered. At each location, a total of N 5 1000 OTD

flashes were analyzed; that is, a circular ring was cen-

tered on each location, and the ring radius was increased

until it enclosed 1000 flashes. Since these 1000 flashes

were partitioned into ground and cloud flashes using

NLDN, the true ground flash fraction was obtained for

each of the 52 circular regions.

Figure 4 shows the cloud flashes (blue dots) and

ground flashes (red dots) across CONUS, and the total

number of each of these flashes is provided in the upper-

right-hand corner of each plot. To test retrievals of larger

ground flash fraction values, we simply removed some

cloud flashes; this implies making the circular ring larger so

that N remains at a value of 1000. The NLDN-confirmed

average (6standard deviation) ground flash fraction for

the 52 regions is provided in the upper-left-hand corner

of each plot. Note that the 52 locations (i.e., centers of

each circular region) are easiest to see in the bottom plot

of Fig. 4.

A retrieval using (35) is performed for each of the 52

regions, and the retrieval errors (r1, r2, . . . , r52) are

obtained. The root-mean-square (rms) retrieval error

rrms for the 52 regions is then computed; the value of rrms

is provided in the upper left of each plot in Fig. 4. Since the

ground flash fraction varies in general from 021, we re-

gard the rms errors shown as acceptably small; that is, rrms

is a reasonably small fraction of unity (the full-scale range
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of the ground flash fraction). Hence, the single-characteristic

solution in (35) appears to be a reasonable way for esti-

mating ground flash fraction across CONUS.

Table 3 shows an example of how the other optical

characteristics performed for the middle plot in Fig. 4

[note: the value a 5 0.506 6 0.124 shown at the top of

Table 3 is just the average of the actual ground flash

values for the 52 regions, as also provided in the middle

plot of Fig. 4]. In this particular case, the MGA slightly

outperformed the MNEG (see last column in Table 3);

most of the time the MNEG slightly outperformed MGA

for the cases we examined. Table 3 lists the single optical

characteristics from worst performer (flash duration)

to best performer (MGA). The mean, standard devia-

tion (std dev), and ratio (std dev/mean) of each optical

characteristic for the 52 regions are provided. An optical

characteristic that fluctuates widely across CONUS would

not be a good variable to use in the single-characteristic

solution process. That is, estimating the two values ( fck,

fgk) in (6) with the fixed estimates (m*ck, m*gk) of the pop-

ulation means obtained by Koshak (2010) is inaccurate if

one has evidence that the values (x
ck

, x
gk

) vary consider-

ably over CONUS. Fortunately, both MGA and MNEG

do not vary as much across CONUS as the other optical

characteristics shown. Finally, Table 3 shows that the best

single-characteristic solutions (i.e., using MGA or MNEG)

outperformed the various multiple-characteristic solutions

computed.

10. Summary

It was pointed out in Koshak (2010) that the distribu-

tions of optical properties for ground and cloud flashes

overlap extensively, and this makes flash-type discrimi-

nation fundamentally difficult. However, Koshak (2010)

also showed that the mean optical properties of the

ground and cloud distributions are quite distinct and

therefore suggested that the mean data from a finite

sampling of flashes should be closely examined to infer

the relative frequency of ground and cloud flashes within

the sample. This is the course of action we have under-

taken in this paper.

We have introduced a theory for relating mean optical

properties of a set of N flashes to the ground flash frac-

tion. The fundamental equation is given in (3), and it is

essentially an expression of mixtures. That is, when a set

of ground flashes (having some mean optical characteristic)

is mixed with a set of cloud flashes (having some

FIG. 3. (a) A graphical representation of the relationship between the retrieved ground flash

fraction (intersection of green lines), the true ground flash fraction (intersection of black lines),

the ‘‘lines of ambiguity’’, and the distributions involved. The peaks of the normal distributions

have been scaled to unity for plot clarity; the distribution of xg (red) and xc(blue) are shown.
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distinctly different mean optical characteristic), the

mean optical characteristic of the mixture depends on

how many ground and cloud flashes are mixed. This

mixture process is analogous to what one finds in basic

chemistry where various chemical types are mixed to-

gether in a flask; in our problem, there are only two

‘‘chemical types’’ (i.e., ground flashes and cloud flashes).

Hence, average cloud-top lightning optical charac-

teristics derived from OTD/LIS, or the future GLM,

implicitly provide information about the relative num-

ber of ground and cloud flashes in a set of N observed

flashes. The questions are as follows: how well can this

information be extracted, and what is the best approach

for doing so? This paper represents just an initial attempt

to retrieve the ground flash fraction information. It is

important to note that the retrieval problem is funda-

mentally difficult, and there are many different ways

to approach the retrieval problem. The straightforward

mean mixing theory used here is just one first-order

approach, and we believe it will not be the final (optimal)

approach. Nonetheless, it is an important first step that

elucidates many aspects of the overall inverse problem.

Though the mixing theory in (3) is straightforward,

inclusion of practical errors and the desire to explore the

use of using multiple optical characteristics in a single

retrieval complicates the mathematics. The generaliza-

tion of (3) to include practical errors is given in (5), and

this leads to the basic expression in (6) for retrieving the

ground flash fraction. The formula for extending the re-

trieval to multiple optical characteristics is provided in

(15). The relationship between the single and multiple

optical characteristic solutions has been derived, and an-

alytic expressions for the retrieval errors associated with

each methodology are provided. Rather than using the

multiple-characteristic solution process, we demonstrate

that it is best to test several optical characteristics first (e.g.,

via simulated retrievals using the single-characteristic

solution) and then choose from this set the best

FIG. 3. (b) A continuation of (a) for larger values of the number of flashes N analyzed. Note that as N is increased, the

retrieval error, r (‘‘rho’’), decreases. Neglecting satellite measurement errors, absolute convergence of r to zero will

only occur if the means of the ground (red) and cloud (blue) normal distributions match the actual population means for

the particular geographic location studied.
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performer. In addition, solution nonuniqueness is dis-

cussed in detail, and practical illustrations of solution

ambiguity are provided.

In an attempt to ‘‘pull everything together,’’ we pro-

vide graphical representations of the single-characteristic

solution retrieval process. Figure 3 illustrated how the

distributions of the mean ground and cloud flash opti-

cal characteristics ‘‘pick out’’ a solution given the mean

mixture observation x. These plots are particularly well

suited at simultaneously illustrating the beneficial effects

of the Central Limit Theorem; as the sample size N in-

creases, the retrieval errors decrease.

To directly understand how well the single-characteristic

solution retrieval works across CONUS, we tested it for

52 different regions using actual OTD lightning data.

The OTD data were independently partitioned into

ground and cloud flashes using NLDN data, so that the

true ground flash fraction was known for each region.

Comparing our retrieval results with the truth allowed

us to compute retrieval errors. The rms errors were en-

couragingly small (less than 11.1% in all cases, and as low

as 6.1%). This implies that the sample ground and cloud

flash CONUS means of MNEG are in fact reasonable

respective estimates of the true ground and cloud flash

mean MNEG at any given region (of the 52 regions we

examined across CONUS).

If the CONUS means of MNEG (or MGA) are rea-

sonable estimates of the true population mean MNEG (or

MGA) values at arbitrary locations across the globe, then

the single-characteristic solution retrieval method could in

principle be applied worldwide. Even though the CONUS

has diverse lightning, diverse thunderstorm types, and

a variety of cloud morphologies with highly distinct light

scattering properties, we have found that the mean MNEG

(and MGA) optical properties do not fluctuate to the de-

gree that would make ground flash fraction retrieval errors

unacceptably large across CONUS. Nonetheless, the au-

thors are of the opinion that an optimal retrieval algorithm

would attempt to retrieve not only the ground flash fraction

but the specific population mean MNEG (or MGA) values

for the arbitrary region of the world under consideration.

Within the mathematical framework we have provided

here, such an attempt leads to solution nonuniqueness,

but other approaches might be possible.

FIG. 3. (c) As in the previous figure, but for a larger value of the ground flash fraction; that is, a 5 0.7.
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FIG. 4. The rms retrieval error rrms in the ground flash fraction for 52 circular regions

(centered on the black dots) analyzed across CONUS using the single-characteristic solution

with the MNEG optical characteristic. Some cloud flashes are removed in the middle and

bottom plots to increase the (spatially dependent) known test ground flash fraction in each

region. The CONUS-averaged value a (6std dev) for the 52 regions is given in the upper-left

corner of each plot. See text for additional discussion.
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APPENDIX

The Roots of the Discriminant Function

A general condition for describing when D 5 0 can be

obtained using (26). With A . 0 so that the multiple-

characteristic solution in (15) is defined, the right-hand

side of (26) is

L(f, a
mul

) 5 �
n

k51
[q

k
� fa

mul
f

gk
1 (1� a

mul
) f

ck
g]2,

5 �
n

k51
[(q

k
� f

ck
)� ( f

gk
� f

ck
)a

mul
]2. (A1)

This is zero if, and only if, each summand is zero; that is,

(q
k
� f

ck
)� ( f

gk
� f

ck
)a

mul
5 0 5L(f, a

mul
) 5 0.

(A2)

The right-hand side can be simplified to

q
k
� f

ck

f
gk
� f

ck

5 a
mul

. (A3)

But the left-hand side of (A3) is just the form of the

single-characteristic solution given in (6). Hence, given

A . 0 and a set of k 5 1, . . . , n characteristics, if each

single-characteristic solution is equivalent to the multiple-

characteristic solution for the set, the discriminant must

be zero. To summarize, this can be expressed as

a
k

5 a
mul

, k 5 1, . . . , n

5L(f, a
mul

) 5 0 5D(f) 5 0; A(f) . 0. (A4)

For completeness, it is worth clarifying the effect of

errors on the discriminant. By analytically propagating

all the errors, it can be shown that the discriminant in

(24) is zero when all the errors are zero. For brevity, we

had not previously written (A, B, C, D) as explicit func-

tions of the various errors, but of course these variables

do depend on the errors in the problem. From (4), (11),

(13), and (24) we have

A(x, e) 5 �
n

k51
(x

gk
1 e

gk
� x

ck
� e

ck
)2,

B(x, e, e) 5�2 �
n

k51
(x

gk
1 e

gk
� x

ck
� e

ck
)(x

k
1 «

k

� x
ck
� e

ck
),

C(x, e, e) 5 �
n

k51
(x

k
1 «

k
� x

ck
� e

ck
)2, and

D(x, e, e) 5 B2(x, e, e)� 4A(x, e)C(x, e, e). (A5)

By a considerable amount of algebra, the discriminant

function can be written

D(f, e) 5 D(x, e, e) 5 D(x, 0, e) 1 V(x, e, e), (A6)

where

TABLE 3. Example of the variability of the 7 optical characteristics across CONUS and the associated rms retrieval error. The MNEG

was slightly better than MGA in most cases that we looked at, but MGA slightly beats MNEG in the case given below. Some multiple-

characteristic solutions are shown (last three rows) for comparison.

a 5 0.506 6 0.124

Optical characteristics

Ground flashes Cloud flashes

Mean Std dev Std dev/Mean Mean Std dev Std dev/Mean rrms

Flash duration 0.171 0.038 0.223 0.125 0.025 0.198 0.650

No. groups in a flash 6.33 1.26 0.199 4.41 1.39 0.314 0.427

No. events in a flash 19.32 3.84 0.199 7.52 1.96 0.261 0.186

Flash radiance 0.721 0.098 0.136 0.216 0.121 0.561 0.157

Flash area 562.4 59.0 0.105 242.4 20.0 0.082 0.106

MNEG 5.69 0.517 0.091 2.25 0.204 0.090 0.085

MGA 488.7 39.5 0.081 213.7 16.8 0.079 0.081

Flash radiance, flash area — — — — — — 0.106

Flash area, MNEG, MGA — — — — — — 0.092

All 7 — — — — — — 0.092
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D(x, 0, e) 5 �2 �
n

k51
(x

gk
� x

ck
)«

k

" #2

� 4A(x, 0) �
n

k51
«2

k,

V(x, e, e) 5 u2 1 2B(x, 0, e)u� 4[jC(x, 0, e) 1 fA(x, 0) 1 jf],

u 5�2 �
n

k51
(q

k
� x

ck
)(e

gk
� e

ck
) 1 2 �

n

k51
e

ck
[(x

gk
� x

ck
) 1 (e

gk
� e

ck
)],

j 5 2 �
n

k51
(x

gk
� x

ck
)(e

gk
� e

ck
) 1 �

n

k51
(e

gk
� e

ck
)2,

f 5�2 �
n

k51
(q

k
� x

ck
)e

ck
1 �

n

k51
e2

ck. (A7)

The expression in (A6) is the error representation of

the discriminant function. It explicitly shows that when

all the errors are zero, the discriminant is zero; that is,

D(x, e 5 0, e 5 0) 5 0. This conclusion can also be

reached by straightforward algebra using the definitions

in (A5) and the first equation in (3).

In addition, note that the discriminant can equal zero

even when the errors are nonzero. For example, setting

e
gk

5 e
ck

5 «
k

in (A5) and applying the first equation in

(3) results in the nullification D 5 B2 – 4AC 5 4a2A2 –

4A(a2A) 5 0.

Hence, the errors alone are responsible for making D

negative, but under the right conditions, nonzero errors

can cancel out and thereby result in a zero discriminant.

So in general, with an imperfect sensor (i.e., e 6¼ 0) and

an imperfect estimation of x (i.e., e 6¼ 0), the discrimi-

nant will be driven to a nonpositive value. As a last re-

mark, note that the nonpositivity of the discriminant

provided in (27) can also be proven using the Cauchy–

Schwarz inequality

�
n

k51
V

k
W

k

 !2

# �
n

k51
V2

k

 !
�

n

k51
W2

k

 !
, (A8)

with V
k

[ f
gk
� f

ck
, W

k
[ q

k
� f

ck
and the use of the

definitions in (13).
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