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Validation of GOES-R Satellite Land Surface
Temperature Algorithm Using SURFRAD

Ground Measurements and Statistical
Estimates of Error Properties

Yunyue Yu, Dan Tarpley, Jeffrey L. Privette, Lawrence E. Flynn, Hui Xu,
Ming Chen, Konstantin Y. Vinnikov, Donglian Sun, and Yuhong Tian

Abstract—Validation of satellite land surface temperature
(LST) is a challenge because of spectral, spatial, and temporal
variabilities of land surface emissivity. Highly accurate in situ LST
measurements are required for validating satellite LST products
but are very hard to obtain, except at discrete points or for very
short time periods (e.g., during field campaigns). To compare
these field-measured point data with moderate-resolution (∼1 km)
satellite products requires a scaling process that can introduce er-
rors that ultimately exceed those in the satellite-derived LST prod-
ucts whose validation is sought. This paper presents a new method
of validating the Geostationary Operational Environmental Satel-
lite (GOES) R-Series (GOES-R) Advanced Baseline Imager (ABI)
LST algorithm. It considers the error structures of both ground
and satellite data sets. The method applies a linear fitting model
to the satellite data and coregistered “match-up” ground data for
estimating the precisions of both data sets. In this paper, GOES-8
Imager data were used as a proxy of the GOES-R ABI data for
the satellite LST derivation. The in situ data set was obtained from
the National Oceanic and Atmospheric Administration’s SURFace
RADiation (SURFRAD) budget network using a stringent
match-up process. The data cover one year of GOES-8 Imager
observations over six SURFRAD sites. For each site, more than
1000 cloud-free match-up data pairs were obtained for day and
night to ensure statistical significance. The average precision over
all six sites was found to be 1.58 K, as compared to the GOES-R
LST required precision of 2.3 K. The least precise comparison at
an individual SURFRAD site was 1.8 K. The conclusion is that, for
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these ground truth sites, the GOES-R LST algorithm meets the
specifications and that an upper boundary on the precision of the
satellite LSTs can be determined.

Index Terms—Algorithm evaluation, land surface temperature
(LST), satellite measurement, SURFace RADiation (SURFRAD).

I. INTRODUCTION

IN THE DEVELOPMENT and use of satellite land surface
temperature (LST) retrieval algorithms, validation is crucial

yet difficult. Validation provides the quantitative uncertainty
information required for the proper use and application of the
product. No algorithm or product would be widely accepted
without performing thorough calibration and validation. Tra-
ditionally, satellite LST validation is performed by comparing
the satellite-derived LST to ground, aircraft, or other satellite
LST estimates; both real and simulated satellite and ground
data have been used. For instance, Wan et al. [1] performed
direct and indirect validations of the LST product retrieved
from Earth Observation System MODerate-resolution Imaging
Spectroradiometer (MODIS) data using ground data collected
from several field campaigns. Coll et al. [2] conducted a field
campaign over a large, flat, and homogeneous rice crop area for
validation of LST products derived from MODIS and European
Space Agency Environmental Satellite Advanced Along-Track
Scanning Radiometer data. Yu et al. [3] applied their evaluation
results to the LST algorithms for Visible and Infrared Image Ra-
diometer Suite of the National Polar-orbiting Operational Envi-
ronmental Satellite System using a comprehensive simulation
data set and MODIS data. Pinheiro et al. [4] validated nonnadir
Advanced Very High Resolution Radiometer LST estimates
over Africa using field measurements combined with an angular
emission model. Vinnikov et al. [5] evaluated the satellite LSTs
from the LST diurnal variation feature derived from Geostation-
ary Operational Environmental Satellite (GOES) Imager data.

There are many challenges in such direct comparisons of
LST algorithms and products, including the following.

1) The land surface is typically heterogeneous (both in tem-
perature and emissivity) over satellite pixel areas (e.g.,
∼1 km), while in situ LST measurements are usually col-
lected over significantly smaller and more homogeneous
areas (e.g., ∼0.01 km).
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2) Navigation errors cause the ground truth site to move
from place to place within the coincident pixel, and in
1%–2% of pixels, the ground site may be outside the “co-
incident” pixel. A navigation uncertainty is a significant
source of imprecision.

3) Accurate fine-resolution land surface emissivity data are
needed but hard to obtain.

4) The rate of LST change is usually high, so the time dif-
ferences between satellite LST and ground measurement
must be relatively small.

5) There are few field sites where in situ LST data are
routinely or episodically measured.

6) Cloud contamination in satellite data may have significant
negative impacts on the validation process.

7) Angular anisotropy (directional variability) of apparent
surface emissivity and temperature has significant impact
on the LST retrieval.

For these reasons, collecting and processing highly accurate
ground measurements that match the satellite LST measure-
ments can be a tedious and costly task.

Given these challenges, it is important to quantify the un-
certainty (accuracy and precision) of the properly scaled inde-
pendent “validation data set” as part of the validation process.
Flynn [6] described a statistical method for validating satellite
sounding products. Instead of directly comparing the satellite-
derived and in situ measurement data (e.g., scatterplots with a
reference line and histogram of difference), he explored proce-
dures for simultaneously estimating possible errors from both
the satellite data and ground measurements. His approach can
help quantify validation results and improve their interpretation.

In this paper, we applied Flynn’s method to estimate errors
in LST derived from the U.S. GOES Imager data. Our goal is
to evaluate the baseline LST algorithm for the new Advanced
Baseline Imager (ABI) instrument that will fly on a new gen-
eration of GOES satellites, i.e., the GOES R-Series (GOES-R)
[7]. In the following section, we provide details of the data sets
used in this study. Section III gives the theoretical fundamentals
and derived equations. We then show the results in Section IV,
followed by a discussion of results in Section V. Finally, we
provide some concluding remarks in Section VI.

II. DATA SETS

Two data sets were used in this study: SURFace RADia-
tion (SURFRAD) ground measurements and GOES-8 Imager
data. We created a set of coregistered “match-up” LST data
derived from GOES-8 Imager and ground measurements from
the SURFRAD budget network stations. We then used Flynn’s
method to evaluate satellite measurements in relation to in situ
measurements and to estimate the errors and consistency of the
satellite LSTs under a variety of scenarios.

A. SURFRAD Data

The SURFRAD network has been operational in the U.S.
since 1995. It provides high-quality in situ measurements of
upwelling and downwelling radiative fluxes, along with other
meteorological parameters [8]. In this paper, we used one year

TABLE I
LOCATION OF THE SIX SURFRAD SITES

(2001) of SURFRAD data over six sites, as described in Table I.
Surface-type information for the sites from the University of
Maryland land classification data set [9] is also provided in the
table.

The flux data were measured by a radiometer 10 m above
ground level. It collects a sample every 3 min in a spectral
window from 3 to 50 μm. These data are used to estimate broad-
band flux using predetermined laboratory radiometer calibra-
tion factors. A detailed description of the SURFRAD network
and associated instrumentation can be found in [8] and [10].

The SURFRAD LST estimates were determined using the
Stefan–Boltzmann law. The broad-band surface emissivity used
for such estimation for each SURFRAD site was based on a
linear regression form provided by Wang et al. [11] as

εw = 0.2122ε29 + 0.3859ε31 + 0.4029ε32 (1)

where εw is the broad-band emissivity; ε29, ε31, and ε32 are
the narrow-band emissivities of MODIS band 29 (8.3 μm),
31 (10.8 μm), and 32 (12.1 μm), respectively, which are avail-
able through the MODIS monthly emissivity data set.

B. GOES-8 Imager Data

We use GOES-8 Imager [12], [13] data as a proxy for ABI
data, because the Imager has two “split window” channels in
the thermal infrared spectrum, similar to those of the ABI. The
GOES-8 Imager data were obtained from the proxy data team
of GOES-R Algorithm Working Group (AWG). The GOES-8
Imager LST values were calculated using a split window al-
gorithm [15], which has recently been developed by the land
team of the GOES-R AWG. This study was designed to validate
this algorithm. Table II gives the algorithm formula and the
coefficients used for the GOES-8 LST calculation.

C. Data Match-Up Process

A data coregistration (“Match-up”) procedure for both time
and location must be performed for the satellite and ground data
before they can be compared. The GOES-8 Imager data have a
spatial resolution of 4 km at nadir and a temporal resolution
of 15 min. The LST product in this study was generated at a
30-min temporal interval. The SURFRAD data are effectively
“spot” measurements with a temporal resolution of 3 min. We
selected the imager pixels whose centroids were spatially near-
est to the SURFRAD locations. In the time domain, we used
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TABLE II
GOES-R LST ALGORITHM COEFFICIENTS APPLIED

ON THE GOES-8 IMAGER DATA

only the SURFRAD values that were the closest to the GOES-8
measurements; therefore, the maximum temporal difference
between the SURFRAD and the satellite measurements was
less than 2 min.

Next, we applied a more stringent cloud filtering process
compared to our previous study [14] to remove all cloudy
data from the match-up data sets. We performed a traditional
cloud filtering method [15], [16] that detects cloudy conditions
using the following: 1) threshold values of visible and infrared
channels; 2) spatial variation of channel data; and 3) temporal
variation of the infrared channel data in a short period. We also
used the SURFRAD irradiance measurements for additional
cloud filtering. For most cloud-free conditions during daytime,
the solar irradiance temporal profile varies smoothly (except
when thin cirrus clouds occur, which have very little effect on
the variation of solar irradiance). Therefore, we excluded LST
data during periods when solar irradiance profiles showed high
variability or discontinuities indicative of clouds. Further pro-
cessing details of the GOES-8 Imager and SURFRAD match-
up data sets can be found in Yu et al. [14].

Note that some cloud-free data may be eliminated through
this cloud filtering procedure. Our goal, however, was to ensure
that the remaining match-up data are reliably cloud free so that
the cloud contamination effect is minimized in this evaluation
study. Therefore, a conservative cloud filter is appropriate and
was used.

III. METHOD

The examples presented in Flynn’s work [6] deal with two
sets of independent and simultaneous observations and one set
of “truth” data. While Flynn used the method to evaluate cases
of satellite sounding data with a single ground station, we apply
the method to our satellite LST algorithm evaluation using the
SURFRAD ground measurements.

Let LSTg represent the LST derived from the GOES-8
Imager data and LST represent the “true” LST. We assume that
LSTg is linearly related to the true LST , as

LSTg = μgLST + bg + εg. (2)

Physically, if we are able to plot the LSTg and LST in an
x−y coordinate system, the μg in (2) represents the slope of
the best fit line between the two variables, bg denotes the bias
of the line fitting, and εg denotes the random error with zero
mean to the fitting line. In other words, εg represents the error
instance of the LSTg to the true LST .

Similarly, let LSTs represent the SURFRAD ground LST
measurement, assuming that LSTs is linearly related to the true
LST, as

LSTs = μsLST + bs + εs (3)

where μs represents the slope of the best fit line between LSTs

and LST , bs represents the bias of the fitting, and εs represents
the error of the LSTs relative to the true LST . Note that μg

and μs will be close to unity if LSTg and LSTs approximate
the LST well, respectively.

In this study, we analyze a set of data pairs {LSTg, LSTs},
where LSTg and LSTs are the satellite and SURFRAD match-
up data pair values described in the previous section. Variances
of the two data sets can be expressed using (2) and (3) as

VAR(LSTg) =μ2
gVAR(LST ) + 2μgCOV(LST, εg)

+ VAR(εg) (4)
VAR(LSTs) =μ2

sVAR(LST ) + 2μsCOV(LST, εs)

+ VAR(εs) (5)

where VAR and COV are notations of variance and covari-
ance, respectively. Note that VAR(εg) = σ2

g and VAR(εs) =
σ2
s , where σg and σs represent the precision of LSTg and

that of LSTs, respectively. We follow the standard statistical
definition of precision as a measure of the random variability
or repeatability of an estimate. Note also that the bias terms
were eliminated in the aforementioned variance calculation.
Furthermore, to estimate the true LST term, the covariances of
LSTg and LSTs can be determined as

COV(LSTg, LSTs)=μgμsVAR(LST )+μsCOV(LST, εg)

+ μgCOV(LST, εs)+COV(εg, εs).

(6)

The purpose of the aforementioned derivation is to esti-
mate, or at least bound, the precision (σg) of the satellite
measurement LSTg . Some primary assumptions are required
for this estimation. First, we assume that LSTg and LSTs

are independent measurements so that their error distributions
are uncorrelated. Therefore, COV(εg, εs) is near zero. Second,
we assume that the errors in LSTg and LSTs, namely, εg
and εs, are uncorrelated with the true LST, so that both the
COV(LST, εg) and COV(LST, εs) can be ignored. Therefore,
we have the following estimations:

VAR(LST ) ≈ COV(LSTg, LSTs)

μgμs
(7)

σ2
g ≈VAR(LSTg)− μCOV(LSTg, LSTs) (8)

σ2
s ≈VAR(LSTs)−

1

μ
COV(LSTg, LSTs) (9)

where μ = μg/μs.
The above equations show that the precision of the two LST

approaches (σg and σs) can be calculated from the variance of
the LST estimates and the covariance between the respective
estimates. Equations (8) and (9) provide an estimate of the
precision of the GOES LST data, given the knowledge of the
slope ratio μ.
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TABLE III
NUMBER OF MATCH-UP DATA PAIRS OF GOES-8 IMAGER LSTs AND SURFRAD GROUND LST OBSERVATIONS,

FOR EACH SURFRAD SITE FOR EACH MONTH OF THE YEAR 2001

In addition, the slope ratio μ is constrained by (8) and (9),
since the precisions σg and σs must be greater than zero.
That is

μ =
μg

μs
∈

[
mgs,

1

msg

]
(10)

where

mgs =
COV(LSTg, LSTs)

VAR(LSTs)
(11)

msg =
COV(LSTg, LSTs)

VAR(LSTg)
(12)

respectively, which define the boundary values of the slope.
Therefore, the precision range of the satellite data (LSTg), as
well as the precision range of the SURFRAD data (LSTs), can
be estimated if the slope ratio is known. Alternatively, the slope
ratio can be estimated if the relative precisions are known.

For completeness, there are three additional statistical param-
eters that may be useful to evaluate the satellite LST algorithm
and product. First, the Pearson linear correlation coefficient
which indicates how well the LSTg and LSTs are correlated

ρ =
√
msgmgs =

COV(LSTg, LSTs)√
VAR(LSTg)VAR(LSTs)

. (13)

This parameter can be used as first check of the “goodness”
of the SURFRAD LST data for the satellite LST data evalua-
tion. Also, the mean difference and standard deviation of the
differences between the satellite and SURFRAD LST estimates
are useful for comparisons.

IV. RESULTS

Results of the data match-up process are presented in
Table III. It lists the match-up data pair count for the satellite
LSTs and the SURFRAD LSTs over each SURFRAD ground
station for each month of 2001. The data pairs were sepa-

rated into daytime and nighttime categories since atmospheric
conditions may be significantly different from day to night,
and the LST estimation from both the satellite and the ground
observations varies as well. The numbers of match-up data
pairs are statistically significant over each SURFRAD site for
each month, except for March and July of site 1 (Pennsylvania
State University, University Park). Note that the number of the
match-up data collected during the daytime is usually smaller
than that for nighttime, indicating that either cloudy conditions
occurred more often in daytime or the daytime cloud filtering
process is more stringent.

Table IV presents the precision calculation results for all the
sites and for the data pairs collected day and night. A range
of precision estimates for GOES-8 LSTs (σg) and SURFRAD
LSTs (σs) were calculated using (8) and (9), respectively, along
with the possible slope ratio μ determined in (10). That is, the
covariance between the two measurements is allocated between
the two “systems.” In the table, we evenly divided the range of
the ratio μ into ten intervals and calculated the corresponding
precision at each of the endpoints of the intervals (we call them
N steps). The values of μ and its range are different from site to
site, indicating that the SURFRAD LST estimates approaching
the true LST [e.g., (3)] vary from site to site if we assume that
the uncertainty of the GOES-8 LST estimates [e.g., (2)] to the
true LST is the same at different sites.

Interestingly, the precision of the GOES-8 LST (σg) is at
its worst when the slope ratio μ is at the low boundary value
(mgs), as shown in Table IV. It then improves in an almost
linear fashion as μ increases. The opposite occurs for the
precision of the SURFRAD LSTs (σs). Near the middle of
the μ steps, the precisions σg and σs are very close to each
other. Thus, the noise levels of the two LST measurements can
be determined if they are about the same; otherwise, they are
reciprocally related. This is a mathematical consequence. If
we assume that all of the random error is from one estimate
(e.g., LSTs), then the proper slope to use is the one obtained
with it as the dependent variable—one end of the slope range.
Note that slopes may have up to 5% difference between sites
because of the site difference among SURFRAD stations. The
satellite pixel area will be different at each SURFRAD station,
introducing different errors. Some studies have been conducted
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TABLE IV
PRECISION (IN DEGREES KELVIN) OF THE SATELLITE LST MEASUREMENTS (σg) AND SURFRAD LST MEASUREMENTS (σs), FROM THE

SIX SURFRAD SITE MATCH-UP DATA SETS. A RANGE OF SLOPES μ IS DETERMINED BY USING (9) FOR EACH SITE, AND IT WAS EVENLY

DIVIDED INTO TEN INTERVALS (N = 1, . . . , 11) FOR THE PRECISION CALCULATIONS. THE RESULTS WERE DERIVED FROM ALL THE DATA SETS

Fig. 1. Plots of measurement precision versus ratio μ values (in the possible range).

for estimating such errors by generating a site-to-pixel charac-
terization model (e.g., Hale et al. [17] and Román et al. [18]).
Within the μ range, the worst precision of both the GOES
satellite LSTs and the SURFRAD LSTs occurred at site 4,
where the σ value is 1.8 K.

To further investigate this feature, we calculated the pre-
cisions σg and σs for the daytime and nighttime data sets,
respectively, for each site and plotted them against the step (N )

of the slope ratio increment. The results are shown in Fig. 1.
Again, for each site, the precisions σg and σs vary reciprocally:
σg increases with a decrease of the slope ratio μ and vice
versa for precision σs. Note also that, at daytime, σg and σs

at each μ step generally agree well with their counterparts at
nighttime, except for site 2 (Bondville). We suspect that this is
because of significant water vapor difference between daytime
and nighttime.
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TABLE V
VARIANCES (VAR) AND COVARIANCES (COV) OF THE GOES-8 SATELLITE (LSTg) AND SURFRAD (LSTs) MEASUREMENT

MATCH-UP DATA SETS OVER THE SIX SURFRAD GROUND SITES. THE TEMPERATURE UNIT IS IN DEGREES KELVIN

TABLE VI
CORRELATION COEFFICIENTS, MEAN VALUES OF THE DIFFERENCE

(Satellite LST Minus SURFRAD LST), AND STANDARD DEVIATIONS

OF THE DIFFERENCE FOR EACH SITE. THE RESULTS WERE

DERIVED FROM ALL THE DATA SETS. THE NUMBER

OF THE DATA PAIRS USED FOR THE

CALCULATION IS ALSO LISTED

Another study that should be performed is of the variances
and covariances of the match-up data sets. Flynn [6] pointed
out that the variances and covariances may indicate which
data set more closely reflects the variation of the real area-
averaged LST. Table V gives the calculation results for the
daytime and nighttime cases of the match-up data sets over the
six SURFRAD sites. Comparison summaries are listed in
the most right column of the table, where Vs and Vg represent
the variances VAR(LSTs) and VAR(LSTg), respectively. It
is shown that, during daytime, the variance of the GOES-8
LSTg (Vg) is a little bit larger than the variance of the
SURFRAD LSTs (Vs) for the sites 2, 3, 5, and 6, indicating
that the satellite measurements may be a little bit noisier than
the SURFRAD measurements in these sites; this is true for the
nighttime cases also, except site 2. For site 4, Vs is always larger
than Vg , for both the daytime and nighttime cases, indicating
the noisier SURFRAD measurements. Note that the difference
between Vg and Vs for all the sites, for daytime and nighttime,
is relatively small, which is expected since both the data sets
represent the same true LST variation.

Finally, we list in Table VI the results for the correlation
coefficients, mean values of the difference, and standard devi-
ations of the difference between the two measurements. The
corresponding scatterplots in Fig. 2 show a direct comparison
between the satellite and ground LST data. Over all sites, the
correlation coefficients are fairly high, which indicates that, if
the SURFRAD LST measurement [i.e., (3)] is a good estima-
tion of the true LST, the precision evaluation for the GOES
satellite LST would be reasonable. The mean difference and
standard deviation of the difference indicate the relative accu-
racy of the two data sets. Interestingly, the standard deviation
values for site 4 are the largest, which is coincident with the
largest random error level shown in Table IV for this site. In

fact, the standard deviation values are the same (or very close)
to the precisions of GOES LSTs in Table IV at step N = 1,
when the SURFRAD LST precision is perfect (zero precision
error). For any nonzero random error of the in situ data, this
implies that the precision of the satellite LST is better than the
traditionally calculated standard deviation between the satellite
data and the in situ data.

V. DISCUSSION

There are two fundamental assumptions in this validation
study. First, we assumed that both the GOES satellite and the
SURFRAD LST measurements are linearly related to the true
LST as defined in (2) and (3). Note that the linear fitting model
separates the measurement errors into a constant (bias) term and
a random error term, which allowed us to perform the error
estimation through the linear algebra mechanism. Second, we
assumed that the errors of the two measurements are indepen-
dent since they were obtained from different platforms, which
implies that the covariance of the two measurements represents
the true LST variance [as is shown in (6)].

A slope applied in the linear fitting model means that, in
addition to the bias and the random error, an LST-dependent
error will occur if the slope is not unity. This is more likely
with the SURFRAD LST approach than with the satellite LST
approach since the former estimates the true LST from a point
measurement that may differ significantly from the true LST
over a satellite pixel from a different season. If we assume
that μg equals unity, then μ = 1/μs. Therefore, μ may indicate
features of the SURFRAD site-to-pixel estimation error: The
SURFRAD LST is likely underestimated/overestimated for
the measurements below/above the crossover point of the
SURFRAD LST fitting line and the true LST line if μ is greater
than one (e.g., sites 2, 5, and 6 in Table IV) and vice versa if μ
is less than one (e.g., sites 1, 3, and 4 in Table IV). We observed
both cases in Table IV.

As noted in the Introduction, the purpose of this study was
to validate the satellite LST product. Using the linear fitting
model, we obtained precision ranges over the six validation
sites. A better estimation of the satellite LST precision relies on
better knowledge of precision of the SURFRAD LST measure-
ment, which is possible by further analyzing the SURFRAD
data site by site. There are three possible scenarios to further
narrow down the satellite LST precision estimation. If the
SURFRAD LSTs are less noisy/noisier than the GOES LSTs,
then we may safely reduce the GOES LST precision range into
the values of first/last four ratio steps (Table IV). Alternatively,
the GOES LST precision can be determined with that at the fifth
to sixth ratio steps if the random error levels of the two data
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Fig. 2. Scatterplots of the satellite LSTs and SUFRAD LSTs.

sets are similar. Nevertheless, in the cases shown in Table IV,
the worst precision of the GOES LSTg (σg) is 1.8 K at site
4; the average precision of the worst σg (mean of σg over
the first row of Table IV) is 1.58 K, which is significantly
better than the precision requirement (2.3 K) of the GOES-R
mission [20], [21]. Interestingly, this result is also better than
our previous GOES-R LST evaluation [14], which implies that
the traditional LST validation process may count the in situ data
noise into the satellite data since the in situ data are considered
as the truth.

As mentioned earlier, a random error in the SURFRAD
LST is likely site dependent. Characterizing the spot-to-pixel
difference between the SURFRAD and the satellite measure-
ments may provide meaningful information in determining the
SURFRAD LST precision.

Note also that the method described in this study does not
provide estimation of the bias and root-mean-square errors.
The precision estimate is important and difficult to obtain. The
mean difference between the satellite LSTs and the SURFRAD
LSTs shown in Table VI may be the best estimate of the bias.
Obviously, accurate determination of the bias relies on accurate
in situ data. Such in situ data may be collected from specially
designed field campaigns with very limited match-up data pairs.
Wan et al. described examples on their MODIS LST product

evaluation [1], [21]. The bias may also be determined through
the satellite LST applications.

Importantly, the linear approach model defined in (2) and
(3) “wrapped up” all the differences between the satellite and
in situ measurements. This is particularly useful for the satellite
LST validation. Traditionally, the satellite LST validation is
a difficult task because a satellite measurement usually rep-
resents the mean value over a pixel area (e.g., ∼4× 4 km
for GOES); due to the heterogeneity in land surface fea-
tures, LST may vary significantly within a satellite pixel area.
While in situ observations are usually collected at point scale
(∼m), a challenge remains in scaling these measurements to
satellite pixel representation. In addition, the LST (and emis-
sivity) anisotropic property both in the satellite and in situ
measurements is a big concern. By using the linear approach
model, all those differences are counted in the bias and random
errors.

VI. CONCLUDING REMARKS

In this paper, we have presented a new method for evaluating
satellite LST products. The method is applied to the GOES-R
ABI LST products using GOES-8 Imager data as proxy and
in situ data collected from the SURFRAD program. It is based
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on a linear fitting model first described by Flynn [6]. It assumes
that the match-up satellite data and in situ data are indepen-
dent, which means that the error distributions of the two data
sets are uncorrelated. We have demonstrated that a precision
range of the GOES LST can be estimated by calculating the
variances and the covariances of the match-up GOES LST
and SURFRAD LST data. Such precision range can be further
narrowed if the precision of the ground validation data set is
known. Our experimental results over six SURFRAD sites in
2001 demonstrate that the precision of the GOES LST is, on
average, about 1.58 K.

Determining the bias error is more difficult using this
method. However, we consider bias estimation to be less impor-
tant in prelaunch LST algorithm development. An estimation of
the bias error may be obtained from calculating the mean dif-
ference between the satellite LSTs and in situ LSTs. However,
errors may be introduced if the in situ data are biased and/or the
slope of its fitting to the truth is not unity.

Further determination of the satellite LST precision depends
on better knowledge of the in situ data errors. Therefore, we
recommend further investigations on how to estimate random
error levels of in situ data such as the SURFRAD data used in
this study.
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