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Land surface albedo is one of the key geophysical variables controlling the surface radiation budget. In recent
years, land surface albedo products have been generated using data from various satellites. However, some
problems exist in those products due to either the failure of the current retrieving procedures resulting
from persistent clouds and/or abrupt surface changes, or the reduced temporal or spatial coverage, which
may limit their applications. Rapidly generated albedo products that help reduce the impacts of cloud con-
tamination and improve the capture of events such as ephemeral snow and vegetation growth are in de-
mand.
In this study, we propose a method for estimating the land surface albedo fromModerate Resolution Imaging
Spectroradiometer (MODIS) data using a short temporal window. Instead of executing the atmospheric cor-
rection first and then fitting the surface reflectance in the current MODIS albedo procedure, the atmospheric
properties (e.g., aerosol optical depth) and surface properties (e.g., surface bidirectional reflectance) were es-
timated simultaneously. Validations were carried out using various data sources including ground measure-
ments (e.g., from the Surface Radiation (SURFRAD) Network and Greenland Climate Network (GC-Net)) and
MODIS AERONET-based Surface Reflectance Validation Network (MODASRVN) data. The results showed
comparable albedo estimates with both MODIS data and ground measurements, and the MODASRVN instan-
taneous surface reflectance was in good agreement with the reflectance estimation from our method. Aerosol
optical depth (AOD) retrievals over SURFRAD and MODASRVN sites were also compared with ground mea-
surements. Validation results showed estimation accuracies similar to those of MODIS aerosol products.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Land surface albedo is a key geophysical parameter controlling the
energy budget in land–atmosphere interactions (Dickinson, 1983).
Land surface albedo varies spatially and evolves seasonally based on
solar illumination changes, vegetation growth, and human activities
such as cutting/planting forests and slash-and-burn agricultural prac-
tices. A sensitivity analysis, which was done by estimating the impacts
of albedo uncertainties in climatemodeling, shows that an absolute albe-
do accuracy between ±0.02 and ±0.03, equivalent to ±10Wm−2, re-
sults in significant changes in regional climate simulations (Nobre et al.,
1991; Sellers et al., 1995).

Satellite remote sensing is an essential technique for estimating
land surface albedo at various spectral, spatial, temporal, and angular
resolutions. During the last decade, many satellite-generated albedo
products have been derived. However, in terms of albedo changes
rights reserved.
over the globe across a relatively long time period (several years to
decades), different trends have been found based on the analyses of
different global albedo products. A recent study on the 10-year
(2000–2009) MODIS albedo product showed significant differences
among albedo products generated by different satellite data (e.g.,
MODIS, ISCCP and GEWEX) (Zhang et al., 2010).

Many researchers have developed algorithms for various sen-
sors to derive albedo directly from satellite observations. The
AVHRR algorithm provides global coverage of albedo products
(Strugnell & Lucht, 2001). POLDER and MISR allow researchers
to use multi-angular information to obtain a better understand-
ing of surface reflectance anisotropy (Diner et al., 1999; Leroy
et al., 1997). The MODIS albedo product (Schaaf et al., 2002) uti-
lizes multiple spectral bands to derive accurate broadband albedo
estimations at both high spatial and high temporal resolutions.
With the development of geostationary satellite sensors, many
research interests have focused on deriving the diurnal changes
of surface albedo based on a much wider range of solar illumina-
tion angles, such as the Meteosat/SEVIRI albedo product (Geiger
et al., 2008; Pinty et al., 2000).
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Retrieval of data pertaining to aerosol distribution and properties
over land with the help of the “dark object” atmospheric correction
algorithm in products from satellite sensors such as MODIS and
SEVIRI have yielded valuable results. However, the use of this algo-
rithm is restricted to land surface with low reflectance (e.g., water
and dense vegetation), while over bright surfaces (snow covered
areas, etc.) it often fails to estimate the aerosol information accurate-
ly. In other words, this algorithm, which is based on densely vegetat-
ed areas, cannot rely on atmospheric correction to retrieve the surface
reflectance and albedo over highly reflective surfaces. Alternative so-
lutions have been proposed to estimate the albedo from bright sur-
faces using direct estimation methods (Liang, 2003; Liang et al.,
1999, 2005). These methods have shown good results in deriving
broadband shortwave albedo. However, the direct estimation
methods cannot estimate spectral albedo or surface reflectance.

The other problem of separating the atmospheric correction and the
surface bidirectional reflectance factor (BRF) fitting lies in the Lamber-
tian approximation in the radiative transfer procedure. Both the atmo-
spheric path and surface directional reflectance will change with solar
and viewing angles (as the scattering path changes). However, a Lam-
bertian surface is often assumed in atmospheric corrections when the
surface BRF is not known. As a result, biases emerge with “atmospheric
corrected surface reflectance” and further deteriorate the BRF fitting re-
sults. Furthermore, the long-time composite albedo products cannot
satisfy the needs of the weather forecast or the land surface modeling
when rapid changes occur such as snow fall/melt, forest fire/clear-cut
and crop harvesting. The diurnal albedo signature cannot be estimated
in the current algorithms because of the Lambertian approximation in
some of the atmospheric correction algorithms. Prior knowledge has
not been effectively utilized in the current algorithms. Moreover, the
current observation accumulation method makes it difficult to obtain
sufficient observationswhen persistent clouds exist within the accumu-
lation window.

In recent studies, surface reflectance and AOD were retrieved
jointly using the optimization method based on the SEVIRI data
(Govaerts et al., 2010; Wagner et al., 2010). In the algorithm, howev-
er, the aerosol's information is retrieved as the average of its daily dis-
tribution. Also, the climatology information is not fully utilized to
constrain the estimation. Given the fine temporal resolution of geo-
stationary satellite observations, the full use of the broad range of
solar angular distribution during a day can be made by adding the
aerosol variables to its retrieving procedure. Additionally, multiple
spectral bands in the shortwave range provide better capability in
terms of capturing the aerosol information and surface spectral infor-
mation in the estimation of the broadband energy budget. Based on a
similar principle, this paper proposes an improved algorithm using
multi-date MODIS data to account for both the surface anisotropy
and the temporal variations of the AOD to improve the estimation
of surface albedo and bidirectional reflectance. The theoretical con-
cepts and a brief introduction of the retrieving algorithm are pre-
sented in Section 2. Section 3 describes the implementation of our
algorithm on the pixel basis and the preparations of the input data
sets. Some validation results are presented in Section 4 and finally, a
brief conclusion is presented in Section 5.

2. Methodology

2.1. Overall framework

Currently, to obtain the broadband shortwave albedo estimations
most albedo retrieving algorithms require threemajor procedures: atmo-
spheric correction, surface BRF fitting, and narrowband-to-broadband
conversion. With each procedure implemented separately, errors propa-
gate from the atmospheric correction to the final broadband albedo esti-
mates irrespective of the algorithms used. To avoid these increasing
errors, it is advantageous to combine those procedures. In the framework
of this proposed MODIS surface albedo estimation algorithm, several
components are included: atmospheric radiative transfer process with
anisotropic reflectance of land surface, surface albedo/BRF modeling,
and albedo climatology.

Based on the available prior information on albedo and the satel-
lite observations, the unknown variables (e.g., the surface BRF kernel
parameters, AOD) are determined in the context of the least-square
approach through the minimization of the cost function:

J Xð Þ ¼ A Xð Þ−AClm
� �

B−1 A Xð Þ−AClm
� �

þ REst Xð Þ−RObs
� �

O−1 REst Xð Þ−RObs
� �

þ Jc

ð1Þ

Here, X denotes the unknown variables to be estimated in one
sliding window and it includes the surface BRF model parameters
and AOD. Two general assumptions are made here to reduce the com-
plexity of the retrieving procedure and to generate the stable esti-
mates as well: 1) the surface BRF shape is stable within the sliding
window; 2) the aerosol type and its properties (e.g. Angström expo-
nent) do not change within the sliding window, but AOD varies
from time to time. Since the predefined aerosol types are used in
this study, the intrinsic properties for each of the aerosol types are
not part of the unknown variables to be estimated. Then, X can be
written in the following form:

X ¼ BRF1;BRF2;…;BRFNB;AOD1;AOD2;…;AODNO½ �T ; ð2Þ

NB is the number of spectral bands from a certain satellite sensor,
NO is the number of cloud-free observations involved in the inver-
sion, BRFi i∈ [1,NB]is a set of BRF model parameters (e.g. for kernel
models, one set of BRFi refers to three parameters: fiso, fvol, and fgeo),
AODj j∈ [1,NO] is the AOD value for the corresponding observation j,
and Ri, j

Obs and Ri, j
Est refer to the observed and modeled TOA reflectance

for a band and a given set of geometries (e.g., solar angle and viewing
angle), respectively.

Ri, j
Obs are obtained from satellite observations. However, Ri, jEst values

need to be derived by a forward simulation based on the radiative
transfer procedures from both surface and atmosphere components.
For this purpose, the use of the atmospheric radiative transfer formu-
lation with surface BRF is recommended. In this manner, Ri, jEst can be
expressed using both the surface properties (e.g., albedo and BRF)
and the atmospheric properties (e.g., AOD, water vapor, and ozone).

A(X) is the calculated broadband surface albedo, and AClm is the
prior information of broadband albedo from albedo climatology. Albe-
do climatology is used to constrain the retrieving procedure of surface
albedo and reflectance. It describes the major seasonal and inter-
annual changes in the surface signature. At this stage, multiyear satel-
lite albedo products are collected to form the spatially and temporally
continuous and complete albedo climatology. B and O are the error
matrices for the climatology and the fitting of satellite remotely
sensed data, respectively. As the uncertainties for both the climatology
and the data fitting involve a large number of components, most of
which are difficult to estimate, two simplifications need to be made
here: 1) the albedo climatology used here is unbiased, and B is calcu-
lated from the uncertainty of the albedo climatology using multi-
year satellite albedo products; 2) reflectances are band-independent
and the diagonal components of O are determined by the magnitude
of spectral reflectancemultiplied by the contribution to the shortwave
albedo for each band. Jc is the penalty function accounting for the va-
lidity of BRF values calculated from the estimated BRF parameters,
etc. For any particular geometry, when the reflectance or albedo calcu-
lated from the BRF model is negative or greater than one, Jc is set to a
large value (e.g., 100). In addition, all the BRF model parameters are
constrained to be non-negative, in particular for the kernel model
used in this study. To minimize the cost function J(X), the optimal
values of X having physical meaning need to be found. However,
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owing to the non-linearity of the atmospheric radiative transfer equa-
tions and the dimensions of the unknown variables, it is always diffi-
cult to find the optimal values that can minimize the cost function
globally. The algorithm of the shuffled complex evolution (SCE)
(Duan et al., 1993, 1994) is used here to obtain physically reasonable
global optimal estimations based on albedo climatology and surface
BRF model priors. The overall framework is shown in Fig. 1.

2.2. Atmosphere radiative transfer formulation with surface BRF models

The satellite-observed radiance contains information from both
the atmospheric components (aerosol, water vapor, ozone, etc.) and
the land surface reflectivity. Aerosol properties, such as optical
depth, size distribution, and refractive index have a great impact on
the representation of land surface information in the satellite obser-
vations. Instead of using a “dark object” algorithm, it is advantageous
to combine the retrieval of both the AOD and the surface BRF param-
eters from the TOA reflectance in the radiative transfer process. In
order to do so, the relationship between TOA reflectance, AOD, and
surface BRF needs to be established.

Theoretically, the overall procedure proposed here is similar to the
proposed algorithm based on the MSG/SEVIRI data (Govaerts et al.,
2010;Wagner et al., 2010), which retrieves the daily aerosol and surface
reflectance simultaneously. Since the overall retrieving procedure is
underdetermined, which means there are fewer observations than un-
known variables, an assumption needs to be made, as follows: as the
surface properties change slowly, the surface BRF shape is assumed to
be invariant within a slidingwindow (7 days or less). A smaller window
size results in better capability over a rapidly changing surface. Cloud-
free observations are collected within the sliding window. However,
the number of collected observations should be limited in order to re-
flect the rapid change in the surface. Only those observations that are
closest to the center of the sliding window are used in one procedure
to retrieve surface BRF and AOD simultaneously. Details on how the
minimumnumber of cloud-freeMODIS observations can be determined
are discussed in Section 3.1. Given the surface BRF and AOD retrievals,
the instantaneous “blue-sky” albedo can be calculated based on the
black-sky and white-sky albedo using diffuse skylight ratio:

αblue ¼ f dif ⋅αws þ 1−f dif
� �

⋅αbs ð3Þ

Here, αblue, αbs, and αws are the blue-sky, black-sky, and white-sky
albedo, respectively, and fdif is the diffuse skylight ratio.

Based on the comparison with the SEVIRI estimating procedure,
the proposed algorithm for MODIS has several improvements in
terms of coupling the land–atmosphere radiation interaction, as
follows:
Fig. 1. Flowchart of estimating surface albedo and reflectance.
1) The AOD is treated as non-identical throughout the retrieving
temporal window. Since satellite observations within the sliding
window can sometimes have a broad range of solar/viewing ze-
nith/azimuth angles, assuming only that the aerosol does not
change within the retrieving temporal window does not fully uti-
lize the abundant angular information that can capture the direc-
tional variation in the surface reflectivity. Moreover, this
assumption is not valid over such a long time period (one day or
more, etc.) and can bias the atmospheric correction at large angles.

2) Many forward models have been proposed recently to approxi-
mate different components of radiation fluxes at the media
boundary. These models include various two-stream methods
(Meador & Weaver, 1980) and four-stream methods (Liang &
Strahler, 1994, 1995). However, although two-stream models are
time-efficient, their accuracy is low. Instead of using the radiative
transfer model with a two-stream approximation, this study
adopted a simple and fast 3D formulation of radiative transfer by
incorporating the surface BRF models (Qin et al., 2001). The au-
thors state that this approach does not introduce any approxima-
tion into the formulation, and their numerical experiments
demonstrate that this formulation is very accurate (Qin et al.,
2001). The TOA reflectance ρa is expressed as

ρa Ωs;Ωvð Þ ¼ ρ0 Ωs;Ωvð Þ
þ T Ωsð ÞR Ωs;Ωvð ÞT Ωvð Þ−tdd Ωsð Þtdd Ωvð Þ R Ωs;Ωvð Þj jρ

1−rhhρ
ð4Þ

In the equation, Ωs∈(θs,ϕs) is the solar incoming direction and
Ωv∈(θv,ϕv) is the viewing direction. There are two groups of coeffi-
cients in the above equation that are independent of each other:
atmosphere-dependent and surface-dependent coefficients. The coef-
ficients in each group represent the inherent properties of either the
atmosphere or the surface and can be regarded as separate groups.

For the atmosphere, ρ0(Ωs,Ωv) is the atmospheric reflectance as-
sociated with path radiance, ρ is the atmospheric spherical albedo,
and T(Ωs) and T(Ωv) are defined as combinations of direct transmit-
tance (tdd) and directional-hemispheric (or hemispheric-directional)
transmittance (tdh and thd), respectively. For the algorithm implemen-
tation, it is usually very time-consuming to calculate each element in
the transmittance matrices together with the atmospheric reflec-
tance. To expedite the computation for the forward modeling, those
atmospheric variables are pre-calculated by simulation using the ra-
diative transfer software 6S (Kotchenova et al., 2006) and stored in
the look-up table (LUT). Details on the design of the LUT are given
in Section 3.2.

For the surface, the reflectance matrix is defined as

R Ωs;Ωvð Þ ¼ rdd Ωs;Ωvð Þ rdh Ωsð Þ
rhd Ωvð Þ rhh

� �
; ð5Þ

where rdd(Ωs,Ωv) is the bi-directional reflectance, rdh(Ωs) is the direc-
tional–hemispherical reflectance (also called black-sky albedo),
rhd(Ωv) is the hemispherical–directional reflectance (which is equal
to rdh(Ωv) under the reciprocity law), and rhh is bi-hemispherical re-
flectance (also called white-sky albedo).

The determinant |R| is easily calculated as

R Ωs;Ωvð Þj j ¼ rdd Ωs;Ωvð Þrhh−rdh Ωsð Þrdh Ωvð Þ; ð6Þ

It is evident that as long as the surface BRF is known, the surface
reflectance matrix can be determined.

2.3. BRF/albedo modeling

BRF models quantify the angular distribution of radiance reflected
by an illuminated surface. Various models have been proposed to

image of Fig.�1
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simulate or capture the anisotropic characteristics of the land surface
(Liang, 2007; Widlowski et al., 2007), including computer simulation
models (Gastellu-Etchegorry et al., 2004), physical models using the
canopy radiative transfer process (Kuusk, 1995a,b; Pinty et al.,
2006), and (semi)empirical models based on various approximations
of the radiative transfer process (Li & Strahler, 1992; Rahman et al.,
1993; Roujean et al., 1992). The quality of these models can be evalu-
ated either through a comparison with simulations by other models
of higher complexity, or through a comparison with measurements.
In order to expedite the inversion procedure, complex computer sim-
ulation and physical models are not considered to be the optimal BRF
model herein. Pokrovsky and Roujean (2003) made comparisons
based on different kernel-based BRF models and found that the Li-
Sparse and Roujeanmodels perform best when fitting the bidirection-
al reflectances. Maignan et al. (2004) evaluated a set of analytical
models based on POLDER measurements and proposed an improved
Ross–Li kernel model by adding an angular factor based on Breon's
finding (2002) to better account for the “hot spot” effect, which oc-
curs when the viewing and illumination directions coincide. By intro-
ducing the multiple scattering between the canopy and the soil, and
the relationship between the soil moisture and the soil reflectance
into the Ross–Li kernel models, a recent method was proposed to
build an angular and spectral kernel model (Liu et al., 2010). Howev-
er, this method requires prior knowledge of soil moisture, which is
difficult to obtain and therefore limits its operational application.
Therefore, in this study, the improved Ross–Li kernel model proposed
by Maignan et al. (2004) and Breon et al. (2002) is used to account for
the surface anisotropic reflectance. It is given by

R θs; θv;φð Þ ¼ f iso þ f volKvol θs; θv;φð Þ þ f geoKgeo θs; θv;φð Þ; ð7Þ

where θs, θv, and φ are the solar zenith, view zenith, and relative azi-
muth angles, respectively. Kvol(θs,θv,φ) and Kgeo(θs,θv,φ) are simpli-
fied kernels based on physical or empirical approximations over the
specific illumination and viewing geometries. Kvol is based on the ap-
proximation of the radiative transfer within the canopy, whereas Kgeo

is based on the distribution of the size and the orientation of surface
canopies within a certain area. fiso, fvol and fgeo are the coefficients
for those kernels. Further details can be found in the referenced
studies.

For the bias of the MODIS reflectance products, it has been
reported (Wang et al., 2010) that the derived reflectance is underes-
timated at high solar or view zenith angles but is overestimated at
low solar or view zenith angles. When the solar zenith angle increases
beyond 70°, increases in the negative bias and the RMSE compared to
the ground measurements have also been identified (Liu et al., 2009).
The problem of the separation of atmospheric correction and surface
BRF modeling could be one possible reason for this bias, which can be
solved using the method proposed in this study. A recent study (Pinty
et al., 2011) suggests that the possible underestimation of MODIS al-
bedos may come from the insufficient angular sampling of the surface
anisotropy. In order to resolve this second problem, one method is in-
troduced here to correct the change in albedo caused by the illumina-
tion geometry and the diffuse skylight impacts, especially for a solar
zenith angle larger than 70°. The method is based on the dependence
of surface albedo on the solar zenith angle over snow-free land sur-
faces and uses the intensive observations of surface shortwave fluxes
made by the U. S. Department of Energy Atmospheric Radiation Mea-
surement (ARM) Program and SURFRAD Network (Yang et al., 2008).

2.4. Integration of BRF and spectral albedo

An angular integration of BRF over all the viewing angles is re-
quired to calculate the albedo because only the directional reflectance
can be calculated directly from the BRF models. Instead of directly cal-
culating the integral, the same method proposed in the MODIS albedo
estimating procedure (Strugnell & Lucht, 2001) is used, based on the
improved kernel models above, fitting the black-sky albedo with a
polynomial function. In this study, a higher order of the polynomial
function was used to achieve better accuracy

αbs θsð Þ ¼ f iso a0 þ a1θs þ a2θ
2
s þ a3θ

3
s

� �
þ f vol b0 þ b1θs þ b2θ

2
s þ b3θ

3
s

� �
þf geo c0 þ c1θs þ c2θ

2
s þ c3θ

3
s

� �
;

ð8Þ

where θs is the solar zenith angle, and a, b, and c are the regression co-
efficients. Similarly, the white-sky albedo can be computed by using
the equation

αws ¼ f isoaw þ f volbw þ f geocw ð9Þ

The regression coefficients are listed in Table 1. Fig. 2 shows the
fitting capability of the black-sky albedo using the polynomial func-
tion (Eq. 8). The calculated black-sky albedo from the regression coef-
ficients matches the BRF-integrated albedo very well. Contrastingly,
simply using the MODIS equations and coefficients will result in a
0.02 albedo difference in this case when the solar zenith angle is
greater than 80°. Experiments on extending the polynomial function
to a higher order show no significant improvement in the BRF/albedo
fitting accuracy.

Most of the current land surface models and weather forecast ap-
plications use an albedo that can account for a wide range of wave-
lengths (e.g., total shortwave, total visible, and total near-infrared
band). However, the BRF models are designed to carry out the calcu-
lation of all the components defined in the reflectance matrix (Eq. 5)
individually for each spectral band. Moreover, the distribution of the
downward solar radiation varies significantly with the change in
aerosol density, precipitable water vapor content, ozone, and other
profiles of atmospheric variables. As a result, the reflected solar radi-
ation of the surface changes when the definition of the albedo
changes. The spectral albedo needs to be converted into broadband
albedo based on the spectral albedo characteristics over different sur-
faces and different atmospheric conditions. An approach for estab-
lishing the linear relationship between broadband albedo and the
spectral value from each band has been proposed by Liang (2001).
In the present study, the conversion equations are adopted from
Liang (2001) and Stroeve et al. (2005), the latter providing an im-
proved equation to derive the shortwave broadband albedo for
snow-covered surfaces.

2.5. Albedo climatology

The climatology of the surface broadband albedo reflects both the
seasonal and the inter-annual changes in the surface status. It is very
important because it places constraints on the BRF retrieving proce-
dure. The TOA radiance/reflectance observed by the satellite sensor
can be biased by the calibration error or an inaccurate estimation of
atmospheric components (e.g., ozone and water vapor). “Prior” infor-
mation is much more reliable when its associated (co)variance is
small whereas the calibrated TOA observations contain a large
amount of noise. The “prior” can help the optimization procedure to
achieve reasonable global optimal estimations. However, owing to
persistent and transient cloud contamination as well as ephemeral
and seasonal snow cover, most satellite albedo products contain a
large number of gaps for a snow-free land surface. In this study, 10
years (2000–2009) of MODIS broadband albedo products and the cor-
responding quality control data (for detailed information please refer
to the MODIS website) were collected. In the quality control data set,
the broadband albedo values are identified as “good quality” and
“other quality”. To avoid the effects (e.g., cloud contamination and
low BRF fitting accuracy), only “good-quality” data were used to



Table 1
Coefficients used to calculate albedo from BRF parameters.

Variable a0 a1 a2 a3 b0 b1 b2 b3
Value 1.0 0 0 0 −0.0374 0.5699 −1.1252 0.8432
Variable c0 c1 c2 c3 aw bw cw
Value −1.2665 −0.1662 0.1829 −0.1489 1.0 0.2260 −1.3763
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calculate the 10-year mean of the broadband albedo over North
America and Greenland. The standard deviation for multiyear broad-
band albedo data was calculated for the same time of year to reflect
the inter-annual variation in albedo over the same location. White-
sky albedo products were used in this study with no solar zenith de-
pendence (an example for Julian day 121 is shown in Fig. 3). Many
gaps can be found over west and north Canada. When the latitude is
greater than 50°, both themean and the variation of the shortwave al-
bedo values become very large. This indicates that the snow situation
over these areas changes annually at this time of year, whereas over
central North America and Greenland, the surface is quite stable.
The multiyear mean of shortwave albedo is used as the climatology
data in Eq. (1) and the one-year standard deviation is used as an ap-
proximation to the uncertainty of the climatology. In this study, a
simple method was used to build the albedo climatology. Generating
complete and continuous spatial–temporal albedo climatology is be-
yond the scope of this paper.

3. Data

3.1. MODIS TOA reflectance and atmospheric products

The sensor of MODIS has seven spectral bands within the short-
wave range that can be used for land applications. The MODIS Level
1B (Collection 5) calibrated radiance data, together with their corre-
sponding geo-location data, were collected and converted into the
TOA bidirectional reflectances. According to Eq. (4), the total un-
known variables to be estimated include three BRF kernel parameters
for each spectral band and AOD for each observation time given that
the aerosol type is known from MODIS product. For example, for n
clear observations cumulated within a sliding temporal window
(the surface is assumed to be stable in the temporal window), the
total number of unknown variables is 3×7+n. Here, to make the
whole procedure invertible, the number of variables should be no
more than the number of observations: 3×7+n≤n×7. Therefore, n
should be at least four, which implies that four sets of MODIS clear
sky TOA reflectances (one set=seven bands) need to be collected
within the temporal window to make it possible to retrieve the
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Fig. 2. Comparison of current polynomial and MODIS equation for angular integration
based on Maignan's BRF kernel model.
unknown variables. Since it is not always easy to obtain the angular
sampling suitably within such a short temporal window, the BRF pa-
rameter retrievals from the preceding day were used as “first guess”
constraints to limit the retrievals for the current procedure. MODIS
level 2 cloud mask products (MOD35_L2/MYD35_L2) were used to
screen cloudy observations. As a supplement to Terra MODIS, the
one onboard Aqua (launched 2002) provides TOA observations as
well. Commonly, over a mid-latitude location, there are two or
three overpasses a day, combining data from Terra and Aqua. Consid-
ering that around two-thirds of the observations are under cloudy
conditions over most of North America, the length of the temporal
sliding window is usually less than seven days in order that a suffi-
cient number of clear sky observations can be obtained for the re-
trieving procedure. During the winter season, the window size can
be slightly smaller when the sky tends to be clearer than in other sea-
sons. This is a great advantage for monitoring the rapid surface
changes, especially for snow conditions.

3.2. Atmospheric parameters

To implement a forward simulation of TOA bidirectional reflec-
tances using Eq. (4), parameters such as path reflectance, both up-
ward and downward direct/diffuse transmittance and spherical
albedo need to be calculated. In addition to simulating the TOA signal,
the diffuse light ratio needs to be generated to produce the actual sur-
face albedo considering the redistribution of solar illumination caused
by aerosol scattering. Instead of an online calculation of these atmo-
spheric functions on a point basis for every observation time, which
will be computationally expensive, they were prepared as a function
of the viewing geometries and AOD. The 6S software (Kotchenova
et al., 2006) was used for the calculation of the LUT. It enables accu-
rate simulations of satellite observation while accounting for elevated
targets, the use of anisotropic and Lambertian surfaces, and the calcu-
lation of gaseous absorption based on the method of successive or-
ders of scatterings approximations (Kotchenova et al., 2006). In this
study, the following values were used as the entries in the 6S simula-
tions: solar zenith angle (0°–75°, at 5° intervals), viewing zenith
angle (0°–75°, at 5° intervals), relative azimuth angle (0°–180°, at
10° intervals), AOD at 550 nm (0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6,
0.8, and 1.0) for five predefined aerosol types in 6S software (urban,
biomass, continental, desert, and maritime). Through the forward
simulation, for each particular solar/viewing geometry and aerosol
loading (AOD at 550 nm), 6S generates path reflectance, upward
and downward transmittances, spherical albedo, diffuse skylight
ratio, and AOD for each of the seven MODIS bands respectively.

3.3. Ground measurements

The ground observational data used for this study were obtained
from the SURFRAD website and the GC-Net web site. Details about in-
struments, data processing, and quality controls can be found on their
websites.

For vegetated areas, the SURFRAD instruments measure surface
downward and upward radiation. Based on the availability and qual-
ity of both satellite data and ground observations, this study used the
SURFRAD observations at several sites (names and locations are listed
in Table 2) for the year 2005. The SURFRAD sites provide the short-
wave upward flux together with the downward global flux every
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Fig. 3. Ten-year average white-sky shortwave albedo (a) and its multi-year standard deviation (b) for Julian day 121 from MODIS albedo product 2000–2009 over North America
and Greenland (white color means water/ocean or lack of data).
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three minutes. The “ground truth” blue-sky albedo was calculated by
averaging the ratio between the upward and downward radiation
within a 15-min range before and after the satellite observing time
to reduce the ground measurement errors and temporal/partial
cloud effects. In addition to radiation flux data, AOD measurements
are also available at these sites. Aerosol information is measured for
five channels (415, 500, 614, 670, 868, and 940 nm) at a 2-min tem-
poral resolution. In order to make comparisons with AOD retrievals
in this study, the ground measurements were converted to AOD at
550 nm with the Angström exponent data provided and then aver-
aged within ±10-min range of the MODIS overpass time.

Ground radiation measurements over Greenland are regularly col-
lected at GC-Net. This dataset provides unique and extensive observa-
tions, which can help verify the validity of this proposed algorithm
over snow-covered surfaces. Shortwave upward and downward radi-
ation at the surface is observed on an hourly basis. To account for the
reduced sensitivity of the GC-Net instruments, ground data were pre-
processed using the method proposed by Stroeve et al. (2005). The



Table 2
SURFRAD site information.

Site name Location Land cover type

Bondville, IL 40.05N, 88.37W Crop
Boulder, CO 40.13N, 105.24W Grass
Desert Rock, NV 36.63N, 116.02W Open shrub
Fort Peck, MT 48.31N, 105.10W Grass
Goodwin Creek, MS 34.25N, 89.87W Grass and forest
Penn State, PA 40.72N, 77.93W Crop
Sioux Falls, SD 43.73N, 96.62W Grass

Table 4
MODASRVN–AERONET site information.

Site
name

Location Land cover Site name Location Land
cover

Bondville 40.05N,
88.37W

Crop Mexico City 19.33N,
99.18W

Urban

GSFC 38.99N,
76.84W

Forest and
urban

Rimrock 46.49N,
116.99W

Grass

Missoula 46.92N,
114.08W

Grass and
urban

MD Science
Center

39.28N,
76.62W

Urban

SERC 38.88N,
76.50W

Forest and
wetland

KONZAEDC 39.10N,
96.61W

Grass

CARTEL 45.38N,
71.93W

Grass and
urban

BSRNBAO
Boulder

40.05N,
105.01W

Grass

Bratts
Lake

50.28N,
104.70W

Crop Railroad
Valley

38.50N,
115.96W

Grass

Sioux
Falls

43.76N,
96.63W

Grass Frenso 36.78N,
119.77W

Urban

Egbert 44.23N,
79.75W

Crop Halifax 44.64N,
63.59W

Urban
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“ground truth” blue-sky albedo was calculated based on that. Thir-
teen sites were chosen in this study according to data availability
and data quality during the year 2003 (information listed in Table 3).

3.4. MODASRVN data set

Due to the limited spatial representation of ground measure-
ments, it is always difficult to validate satellite pixel-based surface al-
bedo estimations solely through comparison with ground measured
data, especially when the pixel is not quite homogeneous. Using
other satellite-derived data sources can help verify the algorithm es-
timations. Based on the ancillary information on aerosol and water
vapor from the Aerosol Robotic Network (AERONET) sites, a set of
surface albedo and reflectance data is retrieved through an indepen-
dent atmospheric correction with the Ross–Li BRF kernel models
using TOA data from MODIS observations (Wang et al., 2009). The
MODASRVN data products from the year 2000 onwards are stored
with the AERONET site in the center of the image covering
50×50 km2 at 1-km resolution.

According to the location, land cover type, and MODASRVN data
availability from the AERONET sites, sixteen sites were chosen in
this study for the validation of the estimated surface reflectance
(see detailed information in Table 4). Similar to the ground measure-
ment section, data for the year 2005 for MODASRVN and MODIS L1B
TOA observations were collected and processed.

Cloud-screened AOD data from AERONET are available all year
round at minimum intervals of 3-min for almost all the MODASRVN
sites. Around 16 channels of AOD measurements are provided from
340 nm to 1640 nm. Data were converted into AOD at 550 nm for
comparison. Similar to the data processing for SURFRAD AOD, ±10-
min average AOD values were calculated.

3.5. Algorithm implementation

Asmentioned in the previous section, MODIS TOA reflectances were
calculated from the 1km MODIS L1B dataset and collected within the
sliding temporal window. Cloud pixels were excluded based on the
MODIS cloud mask product. Following the flowchart in Fig. 1, all the
clear sky observations were used in the retrieving procedure as long
as they satisfied the minimum number required. The aerosol type was
adopted from the MODIS aerosol product (MOD04/MYD04). Monthly
statistics of AOD were calculated from the ground aerosol observations
(Augustine et al., 2008; Holben et al., 2001) and used as a “first guess” in
the retrieving process to constrain the AOD retrievals. BRF kernel pa-
rameters from the preceding day supported the radiative transfer and
Table 3
GC-Net site information.

Site name Location Site name Location

Swiss Camp 69.57N, 49.30W NASA-SE 66.48N, 42.50W
JAR1 69.50N, 49.68W NASA-E 75.00N, 30.00W
JAR3 69.40N, 50.31W GITS 77.14N, 61.10W
Summit 72.58N, 38.50W DYE-2 66.48N, 46.28W
Saddle 66.00N, 44.50W
optimization process by providing the “first guess” BRF shape. This
prior information can also help reduce the uncertainty that may be in-
troduced by the insufficient angular sampling of the TOA signal during
a short period of time. The SCE algorithm then searched for the optimal
kernel parameters and instantaneous AODs, which best fit the satellite
observations and the albedo climatology considering the error distribu-
tions for both parts of Eq. (1). The retrieved BRFmodels can generate bi-
directional reflectances for all the seven spectral bands as well as
spectral black-sky/white-sky albedos through angular integration
based on Eqs. (8) and (9). With the retrieved AOD as an inference, the
“blue-sky” albedo was calculated using Eq. (3) following the
narrowband-to-broadband conversion based on spectral albedos.

4. Results and discussions

4.1. SURFRAD sites

Ground measurements from SURFRAD sites have been extensively
used for validating the MODIS albedo product (Jin et al., 2003; Liu et al.,
2009; Salomon et al., 2006). The direct comparisons of the retrieved albe-
do values with ground measurements and MODIS data over the seven
SURFRAD sites are shown in the time series in Fig. 4, and the statistics
listed in Table 5(a). MODIS 1-km albedo products (MCD43B3) and the
corresponding quality products (MCD43B2) were used in this study.
Only the best qualityMODIS albedo values are shown for snow-free con-
ditions in the comparison. While theMODIS albedo algorithm intends to
produce snow-free albedo values, the total shortwave albedo products
for snowy conditions are always flagged as having lower quality. Those
snow data are included in the comparison, in black color.

Generally, the retrieved albedo values have a good match with the
field measurements and MODIS albedos. The proposed algorithm in
this study generates albedo estimates, which are very close to the
MODIS data since large albedo changes are rarely encountered over
the snow-free period especially for these vegetated sites. For the
non-snow cases (Desert Rock and Goodwin Creek), the Root Mean
Square Errors (RMSE) are quite small, although the R2 values are
rather low due to the small range of albedo variations. At Goodwin
Creek, both our estimations and the MODIS products are slightly
lower than the field measurements.

Both our retrievals and the MODIS albedo data can represent the
seasonal snow albedo over Bondville and Sioux Falls reasonably
well. However, due to the failure of the MODIS albedo algorithm,
the albedo values cannot reflect the snow covered situations in
some cases, either due to a mismatch of the snow or a non-snow con-
dition (e.g., around DOY 40 over Bondville) or to having filled values
in winter (e.g., over Fort Peck).



Fig. 4. Verification of time series shortwave albedo from MODIS observations in 2005 over seven SURFRAD sites (red diamond: ground measured shortwave albedo; blue diamond:
estimated albedo from MODIS observations; green diamond: MODIS 16-day snow-free albedo; black cross: MODIS 16-day snow albedo).
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The proposed algorithm has difficulty deriving surface albedo over
the site of Penn State in winter and early spring because of lack of
available clear sky observations within the sliding window while
the MODIS magnitude algorithm can produce some estimates.

Overall, the proposed algorithm in this study provides good esti-
mations at all the seven sites with a small bias (−0.0016) and
RMSE (0.0268) for no snow conditions, and reasonable results for
snow events (bias: 0.0324, RMSE: 0.1319, R2: 0.3855). Besides resid-
ual cloud contamination, the pixel mixture (e.g., partial snow and sur-
face heterogeneity during the non-snow season) problem could be
one of the main reasons for the bias found at Fort Peck and Goodwin
Creek. It should be noted that the surface condition is very stable over
some sites mainly covered by grass (e.g. Boulder, Desert Rock and
Goodwin Creek). In these cases, the R2 can be quite low due to the
small change in surface albedo and the reduced RMSE is observed as
well.
Comparisons of AOD estimations from the proposed algorithm
and the MODIS algorithm with ground measurements are provided
along with the statistics in Table 5(b). MODIS instantaneous AOD
data (Collection 5) from both Terra (MOD04_L2) and Aqua
(MYD04_L2) observations were used in this comparison. For Bond-
ville, significant positive bias and RMSE are found for both the re-
trieved AODs and MODIS estimations. The site's close vicinity to the
urban area could be a main reason for the large aerosol variations,
which may contribute to an underestimation of the albedo. The slight
underestimation over Boulder is one of the possible reasons for the
introduction of the positive bias in the albedo estimation. There are
some overestimations over Desert Rock where the RMSE (0.0451) is
the smallest among all the sites, indicating accurate surface albedo es-
timations and non-significant surface changes. However, the MODIS
aerosol algorithm generates very few values over Desert Rock,
which makes the comparison impossible. This is probably caused by



Fig. 4 (continued).

Table 5
Statistics of the retrieved values from this study with comparison to ground measure-
ments over SURFRAD sites.

(a)

Site name Bias RMSE R2

Bondville −0.0097 0.0615 0.6268
Boulder 0.0245 0.0781 0.0086
Desert Rock −0.0033 0.0271 0.0013
Fort Peck 0.0241 0.0541 0.9714
Goodwin Creek −0.0403 0.0581 0.1035
Penn State −0.0135 0.0390 0.4537
Sioux Falls −0.0031 0.0762 0.7884
All sites for no snow −0.0016 0.0268 0.0783
All sites for snow 0.0324 0.1319 0.3855

(b)

Site name Retrieved AOD vs
ground measurements

MODIS AOD vs ground
measurements

Bias RMSE Bias RMSE

Bondville 0.0529 0.1283 0.0579 0.1416
Boulder −0.0059 0.0567 0.0025 0.0612
Desert Rock 0.0186 0.0451 n/a n/a
Fort Peck 0.0330 0.0654 0.0357 0.0986
Goodwin Creek 0.0095 0.1271 −0.0445 0.1290
Penn State n/a n/a n/a n/a
Sioux Falls 0.0232 0.0901 −0.0480 0.1210
All sites 0.0243 0.0984 −0.0009 0.1187

Fig. 5. Verification of time series total shortwave albedo fromMODIS observations in 2003 over
albedo fromMODIS observations; green diamond: MODIS 16-day albedo).
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the increased surface reflectivity, which its algorithm is not capable of
processing. Both Fort Peck and Goodwin Creek have large AOD varia-
tions; the uncertainty of aerosol retrievals may have deteriorated the
albedo estimations. Due to the lack of ground measurements over
Penn State, no comparison is made for this dataset. For Sioux Falls,
the positive bias (0.0232) corresponds to the slight underestimation
of albedo, while the impact is not very significant. Combining the
comparisons for all the sites, the AOD values generated by the pro-
posed algorithm have accuracy levels similar to those of the MODIS
aerosol products. A positive bias (0.0243) is found for the retrievals
with a slightly smaller RMSE (0.0984) compared to that of the
MODIS AOD (RMSE: 0.1187). The positive biases of the MODIS AOD
data over Bondville (0.0579) and Fort Peck (0.0357) are offset by
the negative ones over Goodwin Creek (−0.0445) and Sioux Falls
(−0.0480) leading to a small bias (−0.0009).
4.2. GC-Net sites

Similar to the comparisons made over the SUFRAD sites, the MODIS
1-km albedo and quality data were processed for the GC-Net sites. Time
series comparisons of ground measurements, retrieved albedo values,
and MODIS albedo products over the GC-Net sites are given in Fig. 5.
From the results shown here, snow and snow-melt events were clearly
captured by the retrievals of our proposed algorithm. The results based
on daily observations show variations in ground measurements and
six GC-Net sites (red diamond: groundmeasured visible albedo; blue diamond: estimated
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Table 6
Statistics of the retrieved values from this study with comparison to ground measure-
ments over GC-Net sites.

Site name Bias RMSE R2

Swiss Camp 0.062 0.1110 0.700
GITS −0.011 0.0356 0.077
Summit 0.0098 0.0467 0.027
DYE-2 −0.0039 0.0333 0.006
JAR1 0.015 0.0910 0.872
Saddle 0.015 0.0304 0.060
NASA-E −0.024 0.0341 0.002
NASA-SE 0.0074 0.0351 0.001
JAR3 0.0012 0.0767 0.774
All sites 0.012 0.0654 0.842

Fig. 6. Scattering plots of the retrieved albedo over nine GC-Net sites.
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retrieved albedo data whereas the 16-day MODIS albedo curves are
smooth over most cases. The albedo variations are caused by the
changes in solar zenith angle, since MODIS can have multiple over-
passes over Greenland in one day (combined Terra and Aqua). As
more observations can be obtained over Greenland compared to those
of the SURFRAD sites, the time range for collecting the cloud free obser-
vations becomes shorter over the Greenland sites, which gives the algo-
rithm better capability for capturing rapid changes. The statistics of the
comparisons between the instantaneous retrievals and ground mea-
sured albedo data over all the sites are given in Table 6. This algorithm
gives a satisfactory result over all sites with a small positive bias
(0.012). The overall R2 (0.842) shows that the albedo retrievals have a
good correlation with the ground measurements indicating that the
snow surface changes can be well captured, although sometimes the
sliding window size is still larger than the real situation given that the
RMSEs are higher than 0.05 over some sites. Fig. 6 shows the compari-
son of the 16-day MODIS products and averaged retrievals and ground
measurements over the same time period. The MODIS albedo data
have a negative bias (−0.027) while the retrieved values here have a
much smaller bias of 0.013. Furthermore, the retrieved albedos have a
higher correlation with the ground measurements (R2: 0.838) and a
smaller RMSE (0.0589) than those from MODIS (R2: 0.773, RMSE:
0.076). Unlike the seasonal albedo changes at the sites close to the sea-
shore (e.g. Swiss Camp, JAR1, and JAR3), the snow albedo does not
change significantly at the rest of the chosen sites due to fewer snow
fall/melt events. The values of R2 and RMSE are much lower for sites
close to the center of Greenland due to the small albedo variation and
possible misidentification of clouds over snow surface.

4.3. Comparisons with MODASRVN data set

Sixteen sites were chosen for validation of the surface reflectance
using the MODASRVN data set. Time series comparisons of the red
band and near-infrared band data over six vegetation sites are given
in Fig. 7. The retrieved surface reflectances in these two bands capture
the seasonal trends and match the MODASRVN instantaneous reflec-
tance products very well. The difference plot in Fig. 7 shows that most
of the errors lie in the range of ±0.05 for both bands and the errors
are randomly distributed for a short time period. However, since in
most cases the MODASRVN data failed to provide the reflectance
over the snow covered surfaces, it is difficult to validate the proposed
algorithm over bright surfaces using this dataset. Moreover, as this
dataset relies only on the MODIS sensor onboard Terra, fewer re-
trievals are available than those in our results presented in this paper.

Direct comparisons are given in Fig. 8 (statistics listed in Table 7)
over all sixteen sites for all 7 MODIS bands. The overall correlation of
the retrievals and the MODASRVN data is very good for each individ-
ual band and the bias and RMSE are small. The R2 values are relatively
small for band 3 and band 4 because there is only a narrow range for
the reflectances (0–0.2). Some outliers are found in the comparison,
probably due to the misclassification of the cloud mask, which is
one of the major input components for this algorithm. Given the var-
iability of surface cover types over all the sixteen sites, the results
show that the algorithm proposed here is capable of handling differ-
ent types of land cover regardless of its homogeneity.

The direct comparison of retrieved instantaneous AOD values with
AERONET observations is shown in Fig. 9(a). The errors in the AOD esti-
mates follow a normal distributionwhich shows a positive bias less than
0.03. The overall results have a large RMSE (0.1017)which is larger than
the MODIS AOD products shown in Fig. 9(b). Analysis has been carried
out to investigate the performance of the algorithm in estimating AOD
and therefore surface reflectance, and the statistics listed in Table 8. As
MODIS passes over the same location only twice a day around local
noon for mid-latitude sites (including Terra and Aqua), solar zenith is
used here as the inference of the season — small values in summer
and large values in winter. Solar zenith is divided into 6 segments:
15°–25°, 25°–35°, 35°–45°, 45°–55°, 55°–65°, and 65°–75°. The AOD es-
timation accuracies generally decrease with the increase of solar angles,
whichmeans better accuracies can be achieved duringwinter. There are
two reasons for this. One is that summer has lower solar zenith but
more variation of aerosol, while winter has large solar zenith with
small aerosol accumulation. The other is that a large solar zenith angle
provides a longer path from earth's surface to the satellite as well as
more information on aerosol. The uncertainties of reflectance estimates
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Fig. 7. Verification of time series instantaneous reflectance from MODIS observations in 2005 over six AERONET sites (dark blue circle: estimated red band reflectance; green cross:
MODASRVN red band reflectance; red square: estimated near-infrared band reflectance; light blue triangle: MODASRVN near-infrared band reflectance) and time series of differ-
ences between the retrieved values and MODASRVN data (red square: difference for red band; blue cross: difference for near-infrared band).
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also generally decrease with the increase of solar zenith when it is less
than 55°. When the solar angle increases to 55°–65°, there is a negative
bias for each of the two bands. The underestimationmay result from the
difference of the two algorithms in accumulating the observations in the
time period of partial snow.

Table 8(b) shows the impacts of AOD estimation errors on the sur-
face reflectance retrieving accuracies. Absolute AODerror values are di-
vided intofive ranges: b0.05, 0.05–0.10, 0.10–0.15, 0.15–0.20, and>0.20.
According to the statistics, the algorithmgenerates larger errors in reflec-
tance for both bandswhen theAODuncertainties become larger. Asmost
of the AOD errors lie within the range of ±0.05, the overall reflectance
retrievals can have good accuracies in terms of the averaged errors.

5. Summary and conclusions

Based on the integration of the land–atmosphere radiation interac-
tion framework, this study focuses on estimating the MODIS surface
albedo and directional reflectance algorithm for possible use as a proto-
type of future Geostationary Operational Environmental Satellite R-
Series (GOES-R) Advanced Baseline Imager (ABI) albedo estimation
procedure because of its similar spectral bands. Themajor contributions
of this study are as follows:

1) As existing algorithms deriving albedo products from geostationary
satellite datamainly focus on the partitioning the contributions from
atmosphere and surface, the “dark object” algorithm may bias the
estimation of surface anisotropy. The proposed approach in this
study is designed tomitigate this problem. This is the first prototype
algorithm that estimates the surface albedo and reflectance for use
with the future geostationary satellite GOES-R ABI sensor. This
study provides the complete algorithm framework for the albedo re-
trieving procedure using MODIS observations as proxy data.

2) By using different “truth” datasets, this study provides extensive val-
idation of the proposed algorithm by comparing the broadband
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Fig. 8. Scatter plot of estimated and MODASRVN instantaneous bidirectional reflectance for each of the seven MODIS bands over all the selected AERONET sites during 2005.
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albedos, spectral reflectances and instantaneous AODs. The overall
results show that the retrievals are a good representation of the sea-
sonal curves of the albedo and reflectance changes all year round.
Compared with theMODIS albedo algorithm and MODIS AOD prod-
ucts, this proposed algorithm with a smaller sliding window
provides reasonable results with relation to ground measurements
for both surface albedo and AOD, while the capabilities in terms of
handling rapid surface albedo changes caused by snowfall and
snow-melt situations still need further investigations. This will
help climate models in the simulation and forecast applications.
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Table 7
Statistics of the retrieved reflectance values from this study with comparison to MOD-
ASRVN reflectance products ground measurements over sixteen AERONET sites.

Band no. Bias RMSE R2

1 0.0084 0.0269 0.698
2 0.0025 0.0471 0.732
3 −0.0062 0.0305 0.303
4 0.0097 0.0366 0.422
5 0.0045 0.0288 0.889
6 0.015 0.0495 0.662
7 0.015 0.0418 0.635

Table 8
Impacts of solar zenith angle and estimation accuracies of AOD on surface reflectance
estimations.

(a) SZA on AOD and reflectance

SZA 15°–25° 25°–35° 35°–45° 45°–55° 55°–65° 65°–75°
Mean (EAOD*) 0.0311 0.0428 0.0333 0.0120 0.0079 0.0022
STD (EAOD*) 0.1204 0.1238 0.1015 0.0324 0.0251 0.0495
Mean (EB1**) 0.0121 0.0107 0.0186 −0.0017 −0.0139 n/a
STD (EB1**) 0.0142 0.0190 0.0262 0.0128 0.0204 n/a
Mean (EB2***) 0.0347 0.0292 0.0075 0.0016 −0.0136 n/a
STD (EB2***) 0.0318 0.0442 0.0301 0.0226 0.0178 n/a

(b) AOD on reflectance

Abs (EAOD*) b0.05 0.05–0.10 0.10–0.15 0.15–0.20 >0.20
Mean (ER1**) 0.0035 0.0066 0.0204 0.0289 0.0184
STD (ER1**) 0.0189 0.0224 0.0204 0.0347 0.0246
Mean (ER1***) 0.0049 0.0278 0.0604 0.0278 −0.0221
STD (ER1***) 0.0254 0.0348 0.0534 0.0571 0.0394

EAOD*: estimated AOD — AERONET AOD.
EB1**: estimated reflectance — MODASRVN reflectance for MODIS band 1.
EB2***: estimated reflectance — MODASRVN reflectance for MODIS band 2.

299T. He et al. / Remote Sensing of Environment 119 (2012) 286–300
Future work will focus on several major problems. First, efforts
will be made on the mitigation of cloud effects and improvements
over rapid change surfaces. Time series of previous retrievals/obser-
vations can be better used if clouds are persistent in the sliding win-
dow. Temporary cloud contamination or partial snow cover impacts
can also be mitigated by introducing the previous retrievals as con-
straints in the current retrieving procedure. Since direct broadband
albedo estimation can be carried out when limited clear skies are
available, efforts will be made to incorporate and extend this algo-
rithm to estimate both the broadband and spectral band albedos.

Second, the retrieved albedo values have some correlation with the
climatology used in this study.While the observation data and climatol-
ogy maps come from the same data source — MODIS, further efforts
should be made to derive an unbiased climatology from multiple data
sources. In addition, factors such as disturbance, precipitation and soil
Fig. 9. AOD estimation accuracies from (a) the proposed algorithm
moisture changes, will be taken into account in building the climatology.
More effortswill bemade on analyzing the covariance betweendifferent
input data in Eq. (1).

Finally yet importantly, extensive validations need to be carried out
using various sources of data that include finer-resolution satellite prod-
ucts. In addition, proxy data from a geostationary satellite (e.g., MSG/
and (b) the MODIS algorithm at MODASRVN sites during 2005.

image of Fig.�9
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SEVIRI) will be used in evaluating this retrieving procedure for better
understanding of the algorithm performance for future GOES-R ABI.
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