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[1] Ash clouds emanating from volcanic eruption columns often form trails of ash
extending thousands of kilometers through the Earth’s atmosphere, disrupting air traffic
and posing a significant hazard to air travel. To mitigate such hazards, the community
charged with reducing flight risk must accurately assess risk of ash ingestion for any flight
path and provide robust forecasts of volcanic ash dispersal. In response to this need, a
number of different transport models have been developed for this purpose and applied
to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a
framework for optimal forecasts and their uncertainties given any model and any
observational data. This involves random sampling of the probability distributions of input
(source) parameters to a transport model and iteratively running the model with different
inputs, each time assessing the predictions that the model makes about ash dispersal by
direct comparison with satellite data. The results of these comparisons are embodied in a
likelihood function whose maximum corresponds to the minimum misfit between model
output and observations. Bayes theorem is then used to determine a normalized posterior
probability distribution and from that a forecast of future uncertainty in ash dispersal.
The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood
estimate in which most of the probability is localized to narrow ranges of model source
parameters. This property is used here to accelerate probability assessment, producing a
method to rapidly generate a prediction of future ash concentrations and their distribution
based upon assimilation of satellite data as well as model and data uncertainties. Applying
this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and
6 h forecasts of ash cloud location probability encompassed the location of observed
satellite-determined ash cloud loads, providing an efficient means to assess all of the hazards
associated with these ash clouds.
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1. Introduction

[2] Volcanic eruptions often push robust eruption columns
high into the atmosphere, forcibly injecting large quantities
of fine ash that are carried downwind for thousands of kilo-
meters, disrupting air travel and posing a hazard for human
life and property. The frequency and density of air travel
worldwide has increased the likelihood that an eruption
anywhere in the world will disrupt air travel and place flights
at risk. Quantitative prediction of the path of ash clouds in the
atmosphere is essential to effective hazards mitigation, and

quantifying uncertainty associated with the position of these
clouds is essential to assessing that risk.
[3] In April and May 2010, Eyjafjallajökull volcano in

Iceland erupted and sent ash in multiple ash clouds through
European airspace. The transport of this ash was tracked by
the European SEVIRI satellite [Stohl et al., 2011], airplane
mounted lidar [Marenco et al., 2011; Schumann et al., 2011;
Turnbull et al., 2011], as well as Icelandic radar and ground
observations [Arason et al., 2011]. The ash cloud was mod-
eled separately by Montreal, London, and Toulouse Volcanic
Ash Advisory Centers (VAACs) using Lagrangian and semi-
Lagrangian transport models (http://www.unige.ch/sciences/
terre/mineral/CERG/Workshop/results.html).
[4] The April 14–17 eruption disrupted European airspace

for weeks, and focused scientific effort on tracking and
characterizing volcanic ash clouds. This high impact event
led to an examination of dispersion and transport models at
a World Meteorological Organization sponsored conference
in Geneva in September 2010, where most existing models
and practices were reviewed. The results of this review
are available at http://www.unige.ch/sciences/terre/mineral/
CERG/Workshop/results.html. Chief among the technical
aspects discussed was the operational use of dispersion
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model forecasts for volcanic ash clouds, and the sensitivity
of these forecasts to uncertainties in wind, eruption column
dynamics, and the time-varying nature of the delivery of ash
to the atmosphere.
[5] A number of recent papers have compared transport

models to observation data to determine optimal source
parameters for the columns feeding ash clouds. Comparisons
of highly developed transport models to a variety of different
measurements of the 2010 Eyjafjallajökull ash clouds are
presented by Dacre et al. [2011], Kristiansen et al. [2012],
and Stohl et al. [2011]. Stohl et al. [2011] and Kristiansen
et al. [2012] incorporate uncertainties as they invert for
eruption source parameters for April and May, 2010, mini-
mizing a cost function that closely follows Eckhardt et al.
[2008] for clouds of volcanic gas. Similar results are found
by Dacre et al. [2011], fitting a different transport model
(NAME) to a wide range of data to track the April 14–17 ash
cloud across Europe. These papers are representative of
studies that show that ash cloud transport models using
complex wind fields, obtained either from global forecast
systems or from re-analyzed wind data, can be used to infer
source parameters for ash injected into the wind by a volcanic
eruption. These models, which passively transport ash, can
generate useful maximum likelihood estimates (MLE) for the
most probable combination of model input parameters with
only a few hours of satellite data [Kristiansen et al., 2012;
Stohl et al., 2011], and generate a posterior probability dis-
tribution for model input parameters. The results presented in
these papers show that the sources of ash in the eruption
column are characterized by a strong maximum with altitude
or in the variation of emission rate with altitude. This char-
acteristic may be used to constrain predictions of future ash
transport.
[6] In this paper we exploit the nature of observed ash

clouds in heterogeneous wind fields (e.g., in the presence of
horizontal and vertical wind shear) to develop a method to
forecast the uncertainty of future ash distributions by mea-
suring the uncertainty in the source parameters. Two of the
most important source parameters, plume height and ash
emission rate with time and altitude within the plume, are
chosen, though other parameters could be included as could
uncertainty in atmospheric conditions. Observations of ash
clouds are provided by imagery from the geosynchronous
Spinning Enhanced Visible/Infrared Imager (SEVIRI) oper-
ated by Eumetsat (http://www.eumetsat.int/publications).
From these data, ash is identified [Pavolonis et al., 2006;
Pavolonis, 2010] and the total column loading (mass/unit
area in g/m2 or tonnes/km2) of volcanic ash is determined
[Pavolonis and Sieglaff, 2010; M. J. Pavolonis et al., Auto-
mated retrievals of volcanic ash and dust cloud properties
from upwelling infrared measurements, manuscript in prep-
aration, 2012]. SEVIRI is capable of detecting volcanic ash
when not obstructed (from above) by liquid water or ice
clouds and when the ash concentration filtering radiation
observed by the satellite is at least 0.02 mg/m3. The time
period of study was chosen to correspond with conditions
favorable for satellite retrievals of ash loading. Comparing
these satellite-derived data with model output for cloud load
we determine a preliminaryMLE for model input parameters.
Using Bayes theorem, the MLE is combined with prior
constraints on model input to determine the posterior proba-
bility of model input parameters. In addition, we show that

applying a saddle point approximation to posterior distribu-
tions is equivalent to minimizing the cost function used by
Kristiansen et al. [2012], Stohl et al. [2011], and Eckhardt
et al. [2008] to determine the posterior distribution of
model input parameters. The posterior distribution is then
integrated to forecast the uncertainty of future ash distribu-
tions 3 and 6 h in advance, and these forecasts are converted
to cloud loads and compared with observed satellite-derived
cloud loads at those times. For these forecast intervals, the
probability of ash occurrence along any flight path can be
integrated to determine the probability of ingesting ash along
that path, given the uncertainties in model and satellite data,
and can be used for hazards estimation.

2. Method of Analysis

[7] The fit of a model Hi with an ensemble of parameter
inputs w to satellite observations D provides an estimate of
the likelihood P(D|w, Hi) of observing D with that particular
set of model inputs. The best fit (or minimum residual misfit)
is the most probable set of values for the input parameters
wMP. Using Bayes theorem [Mackay, 2003], the posterior
probability of the parameter input ensemble w is

PðwjD;HiÞ ¼ PðDjw;HiÞPðwjHiÞ
PðDjHiÞ ð1Þ

where the prior probability P(w|Hi) is found from the ini-
tial values the parameters for model Hi are expected to take,
P(D|w, Hi) is defined above, and

PðDjHiÞ ¼
Z

PðDjw;HiÞPðwjHiÞdw ð2Þ

is the integral over all possible combinations of likelihood
estimates multiplied by the prior estimates for the dataw. The
probable range and distribution for each parameter in w can
be estimated from other measurements, or may be unknown.
[8] Consider any given transport model Hi with a set of

input parameters w that is used to calculate an ash cloud
density and location. We describe the probability that the
model result, when vertically integrated, will produce a
model ash cloud load distribution Hw that overlaps a satel-
lite-observed ash cloud load distribution y. A forward prob-
lem would hold the model parameters fixed and calculate the
probability of ash distribution within a three dimensional
model domain that is then integrated to get cloud load. The
likelihood is determined by holding an observed data set D
within that domain fixed and varying model input parameters
w to determine which combination produces the best esti-
mate for the observed cloud load, the maximum likelihood
estimation. To obtain this maximum likelihood estimate, we
maximize the L1 norm (http://mathworld.wolfram.com/L1-
Norm.html) defined by

PðDjw;HiÞ ¼ �
X
m

X
n
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where sy
2 + sw

2 is the sum of the variance in the observa-
tions and the model parameters, respectively, and ym,n is the
observed cloud load at the top of a column of cells at hori-
zontal position m, n in the model domain, averaged over the
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top cell surface area. Since satellite data are measured as
cloud load over an incremental, plan view surface in Earth’s
atmosphere, the inner sum (over k) adds model results verti-
cally over a column of cells in the three-dimensional model
domain to produce a value at m, n. The spatial complexity of
the wind fields associated with ash transport and the thin
ribbons of ash that characterize ash clouds usually result
in a single, dominant maximum in the residual between
model output and satellite-determined ash concentrations.
This characteristic toward a centralized distribution may be
exploited to rapidly determine the normalized posterior dis-
tribution given in equation (1), which is then used to estimate
the uncertainty in the distribution of future ash clouds.
[9] Ribbons of ash typically disperse from a volcanic

eruption column into a narrow range of elevations, and usu-
ally within a single elevation (rather than multiple eleva-
tions), as shown in Figure 1 for the May 5–8, 2010 eruption
of Eyjafjallajökull in Iceland (http://en.vedur.is/earthquakes-
and-volcanism/articles/nr/1884). Often the ash cloud trail
and the eruption column that feeds it are visible for miles if
the sky is clear around the column. A plan view of the May 7,
2010 plume from Eyjafjallajökull volcano is shown in a
NASA satellite photo in Figure 2. The altitude of this cloud is
constrained by satellite data, as well by visual observation
and radar measurements near the volcano as shown in
Figure 3 [Arason et al., 2011]. Here the maximum height of
dispersal of ash from the eruption column remained between
5 and 6 km above sea level (asl) for the entire eruptive epi-
sode, providing a good test of a forecast model since the
uncertainty in cloud height near the volcano is sharply
reduced.
[10] To forecast ash dispersal, we estimate the posterior

probability of model input data, using equations (1)–(3) and
the program Ash3d [Schwaiger et al., 2012]. If the posterior
probability for peak height at the maximum likelihood mass
concentration is characterized by a prominent peak enclosing

most of the probability, as illustrated in Kristiansen et al.
[2012], then a saddle point approximation is appropriate
[Butler and Wood, 2004]. Applying this approximation, the
maximum is approximated as a Gaussian. Expanding the
logarithm of the Gaussian distribution that approximates
the peak in P(w|D, Hi) in a Taylor series around the peak
value (at w = wMP),

ln PðwjD;HiÞ≅ ln PðwMPjD;HiÞ

� ∂2

∂w2
ln PðwjD;HiÞjw¼wMP

w� wMPð Þ2 þ…

ð4Þ

[11] The probability P(w|D, Hi) in equation (4) is the
un-normalized Gaussian centered on w = wMP, or

PðwjD;HiÞ ¼ PðwMPjD;HiÞ exp �A

2
ðw� wMPÞ2

� �
ð5Þ

where

A ¼ � ∂2

∂w2
ln PðwjD;HiÞjw¼wMP

ð6Þ

[12] The normalizing constant in this distribution, nor-
mally obtained from equation (2), is instead obtained from
the integral over the Gaussian approximation to P(w|D, H)
at w = wMP, and is

PðDjHiÞ≅ PðwMPjD;HiÞ
ffiffiffiffiffiffi
2p
A

r
ð7Þ

[13] Generalizing this approach for a vector of variable
input parameters w, each with its own probability distribu-
tion, the single curvature in equation (6) becomes the Hessian

Figure 1. The eruption column from Eyjafjallajökull volcano in Iceland on May 8th, 2010, as it feeds ash
into a cloud trailing off to the southeast. Clear skies surrounding the volcano allowed nearly continuous
ground and satellite measurements of these ash emissions from the onset of activity on May 5th through
May 8th. This particular photograph shows the ash feeding from the column into a narrow elevation range
in the atmosphere, a common attribute of ash clouds. Photo courtesy of Gunnar B. Guðmundsson.
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matrix (equivalent to error bars in w, a measure of the quality
of fit)

A ¼ �rr ln PðwjD;HiÞjwMP
ð8Þ

where the divergence operators are derivatives with respect
to parameters w. Thus if the un-normalized posterior proba-
bility has a dominant peak, then the vector of most probable
input parameters wMP for that model is approximated by

PðwjD;HiÞ≅ PðwMPjD;HiÞ expð�1=2DwTADwÞ ð9Þ

[14] If for a single model Hi the posterior probability con-
sists of two independent sets of data that may be described by
two Gaussian distributions, one for the prior distribution of
parameters wP and one for the misfit between individual
observations y contained in D and the maximum likelihood
predictions HwMP, then the un-normalized posterior proba-
bility is the product

PðwjD;HiÞ≅ PðDjwMP;HiÞ expð�1=2DyTCYDyÞ
� PðwMPjHiÞ expð�1=2DwTCPDwÞ ð10Þ

where

Dy ¼ y� HwMP ð11Þ

Dw ¼ Hw� HwP ð12Þ

CY ¼ rr ln PðDjwMP;HiÞ ð13Þ

CP ¼ rr ln PðwPjHiÞ ð14Þ

[15] Normalizing this posterior probability distribution, using
the properties of a Gaussian distribution (equation (7)), gives

PðwjD;HiÞjMP

≅
expð�1=2DyTCYDyÞ expð�1=2DwTCPDwÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijCY jjCPj

p
ffiffiffiffiffiffiffiffi
2pK

p

ð15Þ

Figure 2. The ash cloud emanating from Eyjafjallajökull volcano. The Advanced Land Imager (ALI) on
NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image onMay 7th, 2010. The top of
the plume, at an elevation between 4 and 6 km asl is shown as a lighter color than the darker, much lower
ash that may be re-suspended from ground deposits or settled from an earlier cloud. The sharp, well-defined
boundaries of this ash cloud constrain a well-defined fit of an ash transport model to satellite measurements
of cloud load.

Figure 3. Radar data and surface observations [Arason
et al., 2011] constraining the variation of the maximum ele-
vation of the ash plume at the volcano with time for the
period studied in this paper. An altitude of 6.0 km was used
as a prior condition for the maximum eruption column height
dispersing ash downwind into the cloud.
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where K is the dimension of parameter space and the square
root sign encloses the product of the determinants of the
covariance matrices [Mackay, 2003]. This approximation
avoids the costly integral in equation (2), replacing it with the
simpler equation (7).
[16] Taking the log of this normalized posterior probability

distribution

ln PðwjD;HiÞjMP ¼ 1

2
ln

jCY jjCPj
2pK

� �
� 1

2
ðDyÞTCY ðDyÞ

� 1

2
ðDwÞTCPðDwÞ ð16Þ

[17] The solution is determined from the maximum in the
function ln P(w|D, Hi)|MP. The first term on the right is the
log of the product of the determinants of the covariance
matrices for prior distributions and model misfits. The last
two terms on the right have the same form as the cost func-
tions used by Eckhardt et al. [2008], Stohl et al. [2011], and
Kristiansen et al. [2012] to fit atmospheric transport models
to observational data to determine a maximum likelihood
solution. In their papers, the covariance matrices which cor-
respond to the Cmatrices in this paper are assumed diagonal.
In this paper these Hessians are obtained from equations (13)
and (14) and may or may not be diagonal, depending upon
the shape of the likelihood and prior distributions with
respect to the Dy and Dw variables. If the shape is sym-
metrical or asymmetrical and elongated in one coordinate
direction (as it often is), the Hessian is diagonal, and indicates
that the assumption of a diagonal covariance is appropriate.
Uncertainty in defining Gaussians to fit the peaks in prior

and likelihood distributions is dependent upon measurement
uncertainty, which is included in the diagonal elements of the
Hessians.
[18] As in the studies of Kristiansen et al. [2012] and Stohl

et al. [2011], inclusion of multiple observational data sets
broadens the posterior distribution and strengthens the solu-
tion. If, for example, three different types of satellite data sets
are used to compare with model results, then each observa-
tion – model data comparison has its own peak and Hessian
CYj and

ln PðwjD;HiÞjw¼wMP
¼ 1

2
ln

∏
3
jCYjj

� �
jCPj

2pK

2
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3
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�
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ðDyÞTCYjðDyÞ

� �
� 1

2
ðDwÞTCPðDwÞ ð17Þ

[19] Predictions of future ash concentrations are based
upon this model performance. The distribution function for a
future observation of ash concentration c derived from
applying model Hi to observed data D, or the conditional
probability P(c|D, H), is given by the posterior probability
densities (9), (15), or (17). The distribution function for an
ash concentration c in excess of some threshold concentra-
tion c0 is

PðcðwÞ > c0jDÞ ¼
Z
W

PðwjD;HiÞdw ð18Þ

where the integration is over

W ¼ wjcðwÞ > c0½ � ð19Þ

[20] The probability (or uncertainty) that any future ash
concentration c(w) will exceed any specified bound c0 is
provided by equations (18) and (19).

3. Application to Ash Clouds From
Eyjafjallajökull Volcano, Iceland

[21] During the April eruptive events meteorological
clouds frequently obscured the ash plume near the volcano
and increased uncertainty in the source of errors in modeled
ash clouds over Europe. However, this was not the case for
another eruptive sequence beginning on May 5th at 1800 h
UTC and lasting for 3 days (http://www.earthice.hi.is/page/
ies_Eyjafjallajokull_eruption). Unlike the April 14–17 plume,
the tracking of the maximum height of this plume near the
volcano was uninterrupted throughout the May 5–8 eruptive
episode. This latter sequence produced a cloud extending into
clear skies south of the volcano (Figure 1), so that most of the
cloud development was visible and mapped by SEVIRI as
well as observers on the ground. For this event the maximum
height of the ash cloud near the volcano (Figure 3) was
tracked visually and measured by radar [Arason et al., 2011].
Since in a heterogeneous wind field, plume height above the
volcano is one of the eruption source parameters having the
most effect on transport, this continuous maximum height
constraint combined with the clear view of the ash cloud by
the SEVIRI satellite provide strong constraints on ash

Figure 4. Satellite data were reduced using methods that
detect ash [Pavolonis, 2010; Pavolonis and Sieglaff, 2010],
and integrated over a surface in polar coordinates to give total
mass. The total mass in the cloud observed 42 h after the
eruption started was used to fix the emission rate as a prior
condition, one of the starting conditions for determining the
maximum likelihood estimate (MLE).
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Figure 5. Comparison of satellite data (flooded contours) and model results (fine black line contours).
In the transport model, ash is injected into the atmosphere at specific heights and the results compared
to satellite data downwind. Shown here are six different ash clouds resulting from injecting ash into six
different heights at the volcano, referred to here as plume heights.
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transport during this eruptive episode and make the May 5–8
eruptive event an excellent candidate to test a forecast method.
However, our method is not limited to two parameters, and
may be used to measure the constraints placed by data on any
number of model parameters. We have chosen plume altitude
and ash emission rate versus altitude above the volcano as the
two primary source parameters.
[22] To test our method, satellite data were first projected

onto a computational grid, which in this case is in a polar
coordinate system with three component directions, longi-
tude, latitude, and elevation. The satellite data were pro-
cessed using the methods described in Pavolonis et al. [2006,
2010], Heidinger and Pavolonis [2009], and Pavolonis and
Sieglaff [2010], and the data were converted into the same
reference frame and global coordinate system as the model
grid. Since the satellite data are cloud loads (in tonne/km2),
the ash concentrations output from Ash3d are converted to
cloud load by integrating vertically the three-dimensional
distribution of ash concentration within each column on the
computational grid. This produces a separate cloud load
value for each longitude-latitude column of cells on the grid
that can then be directly differenced with average satellite
cloud loads at the top of those columns using equation (3).
The total cloud load measured by SEVIRI for May 6th and
7th was found by integrating the satellite measurements over
the surface of the Earth, and is shown in Figure 4. Also
shown in the figure is the hour (hour 42 since eruption onset,
noon on May 7th) when the maximum likelihood estimate

was made relative to the start of the eruption (May 5th at
1800 h UTC). The dispersal of the ash cloud at about noon on
May 7th is shown in Figure 2.
[23] The prior conditions for input to the transport model

were made from these preliminary observations. The top of
the plume above the volcano is assumed to be the same as the
eruption column height shown in Figure 3. The ‘total’mass is
for the ash cloud emanating from the volcano, and is typically
about 5% of the mass flux in the eruption column [Devenish
et al., 2012]. The dispersal of ash from the column downwind
into the cloud is typically in the size range of 2 to 25 microns
and therefore is measurable by satellites [Devenish et al.,
2012; Schumann et al., 2011]. Here a constant emission
rate is assumed, so that after 42 h of continuous eruption the
rate is estimated as the total mass divided by the elapsed time.
For these conditions and winds obtained from the Global
Forecast System (GFS) [Hamill et al., 2006], the prior dis-
tribution P(w|H) obtained is plotted as black line contours in
Figure 6. The ranges investigated for model input are the
distinct altitudes at which the eruption column disperses ash
downwind into the cloud. To make a rapid assessment, this
altitude is approximated coarsely, and ranges from 2 to 12 km
in 1 km increments. For each altitude, the total mass emitted
ranges from 1 to 2300 tonnes, emitted at a constant rate over a
period of 42 h.

Figure 6. The variation of ash cloud development in
Figure 5, for different ash emission rates, results in different
degrees to which the transport model fits the data. The black
contours show the prior distribution P(w|H) determined from
the initial conditions, and the flooded contours are the dis-
tribution of likelihoods determined from equation (3). The
maximum likelihood estimate is obvious but can be deter-
mined automatically using quasi-Newton methods [Press
et al., 1992], starting from the peak in the prior distribution.
This process also produces the Hessian at the peak as a
byproduct.

Figure 7. The centralized maximum likelihood distribution
in Figure 6 justifies the use of a saddlepoint approximation
[Butler and Wood, 2004] to estimate a normalized posterior
distribution for optimal model input parameters. To display
both the posterior and the prior distributions together, both
surfaces are plotted on the same scale. However, the colored
contours on the top surface indicate a range over zero to 1,
whereas the colored contours for the prior indicate a range of
0.99 to 1. This comparison shows that the posterior distri-
bution is more localized than the broader and flatter prior
distribution as a consequence of incorporating the satellite
data. The peak is a result of the stringent constraints well-
observed satellite data place on the model parameters.
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[24] Downwind, the position of the ash plume is most
strongly dependent on the altitude and the time at which each
part of the eruption column feeds ash into an unsteady wind
field. We sum these contributions individually, breaking
down the altitudes and mass flux as discussed above. Shown
in Figure 5 are the results of 6 model runs with the same mass
emission rate but with different altitudes of ash delivery to
the atmosphere, labeled as plume height in the figure. The
model ash cloud loads overlap the satellite-determined cloud
loads, given in tonnes/km2, by varying amounts. The maxi-
mum likelihood estimation is based on this overlap and
specifically the value of cloud load predicted by the model
versus that observed by the satellite. The distribution of
likelihood estimates is shown in Figure 6, along with the
much broader and flatter distribution obtained from the initial
model parameters, the prior distribution. The maximum
likelihood estimate is at the peak value, and may be deter-
mined by starting at the prior values and using a quasi-
Newton method such as Broyden-Fletcher-Goldfarb-Shanno
[Press et al., 1992] to determine the maximum. Any quasi-
Newton or steepest-descent procedure can be used to find the
maximum and provide an estimate of the Hessian at this
location. The maximum likelihood estimate obtained in this
way indicates that a total mass about 1600 tonnes was emit-
ted over a period of 42 h at an altitude of about 4 km asl to
produce the ash plume observed at noon onMay 7, 2010. The
likelihood distribution exhibits a strong localized maximum
incorporating most of the probability, justifying the use of
the saddle point approximation to normalize it [Butler and
Wood, 2004]. Similar singular, localized maxima in

posterior distributions are common in the a posteriori results
presented by Kristiansen et al. [2012] for the transport
models they tested as applied to the entire eruptive sequence
of Eyjafjallajökull volcano in April and May, 2010. A saddle
point approximation is appropriate for eruption column mass
distributions when ash mass emission rate is concentrated
over a narrow altitude range.
[25] Applying the saddlepoint approximation here, the

normalized posterior distribution takes the form of Figure 7,
where it is normalized to its peak value and compared to a
similarly normalized prior distribution. Unlike the prior
probability distribution, most of the posterior probability is
concentrated beneath a peak at around 4 km height and total
ash cloud mass of about 1600 tonnes, the lower mass
reflecting incomplete overlap between the model results and
the satellite measurements as shown in Figure 5. This nor-
malized posterior probability may be used to predict the
uncertainty of determining future ash distributions from this
eruptive plume using equation (18).
[26] For an assumed cloud depth (vertical dimension) of

1 km and a threshold concentration of 2 mg/m3, forecasts
made using equation (18) may be compared in plan view to
the ash cloud loads measured at forecast times with SEVIRI
(measurements by Schumann et al. [2011] show that typical
ash cloud thicknesses are less than 1 km). The results of
making this forecast test three hours in advance and six hours
in advance are shown in Figures 8a and 8b, respectively. In
both cases, the probability is integrated over the peak in the
posterior probability surface in Figure 7 using equation (18)
and the result of the individual model inputs with their

Figure 8. (a) A three hour forecast for the lateral extent of the ash cloud measured at 1200 h UTC on
May 7th, 2010, compared to the actual cloud load (black contours) observed at 1500 h UTC on that same
day. Flooded contours are for a threshold concentration of c0, and zero probability regions have no color.
Since ash clouds are typically have much larger areal extents than vertical thickness, this plot and Figure 8b
show the uncertainty of determining the location of future ash distributions from the satellite measurements,
for a forecast threshold value of c0 using equation (18). (b) A six hour forecast for the lateral extent of the
ash cloud measured at 1200 h UTC on May 7th, 2010, compared to the actual cloud load (black contours)
observed at 1800 h UTC on that same day. The forecast is determined from equation (18) for a threshold
value of c0, and is constrained by the satellite measurements D.
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associated probabilities are summed for each cell in the
computational grid. The satellite measurements of cloud load
are plotted on top of these results as black line contours. In
plan view, the uncertainty estimates for these ash forecasts
form an envelope around the contours of the clouds that
actually occurred, and mimic the shape of the actual cloud
loads.

4. Discussion

[27] Satellite measurements of the ash plume emanating
from the volcano during the May 5–8th, 2010 eruptive epi-
sode provide strong constraints on the altitude at which ash is
fed into the plume and the ash emission rate that can be
determined from the satellite data for that altitude. The three
dimensional nature of the wind field displaces the model ash
clouds away from the satellite-observed ash cloud for small
changes in altitude of ash dispersal (Figure 5), and this results
in a strong localized maximum in the maximum likelihood
estimate (Figure 6) and correspondingly in the posterior
estimate of optimal model parameters (Figure 7). If meteo-
rological clouds obscure the ash cloud, then there is a loss of
overlap and the strength of the source estimate is reduced.
The MLE is the best estimate of the source for any atmo-
spheric condition, some of which will be more favorable for
source estimation than others.
[28] Here we have shown that if the prior distribution of

model input data and the maximum likelihood estimation of
model parameters are assumed to be Gaussian, then using the
cost function developed by Eckhardt et al. [2008] to fit a
model to data and determine a posterior probability is func-
tionally equivalent to assuming Gaussian distributions for the
prior and likelihood distributions and using Bayes theorem to
determine a posterior probability. The degree to which the
posterior peak in Figure 7 is more focused than the prior peak
is a measure of the Occam factor, which is a measure of how
much the variation in the parameter space is reduced once a
data fit is made [Mackay, 2003]. The Occam factor penalizes
models that have many parameters unconstrained by data, a
wide, unconstrained parameter range, or have to be finely
tuned to fit the model to data y.
[29] The maximum likelihood fit determined here for May

7th at noon is consistent with the results of other studies.
Both Stohl et al. [2011] and Kristiansen et al. [2012] mod-
eled this eruptive sequence using the cost function men-
tioned earlier. Their results show that the model FLEXPART
(http://transport.nilu.no/flexpart/model-information) produces
posteriori plume heights around 6 km whereas NAME (http://
en.wikipedia.org/wiki/NAME_%28dispersion_model%29)
produces heights of about 4 km in accord with this paper.
In both cases the mass emission rates, when integrated over
time and plume height, give total mass estimates comparable
to those reported here. The reduced altitude (4 km versus
�6 km in Figure 3) indicates that though the measured top of
the plume was about 5.5 km, the calculated interaction of the
plume with the wind field indicates most mass was dispersed
downwind from within the column at an altitude of 4 km.
Settling of the particles is included in this model estimate,
though the size range usually dispersed as a cloud (2–
25 microns) settles very slowly.
[30] Data may be assimilated into a forecast model by

using Bayes theorem to objectively combine data and model

uncertainty. If quasi-Newton procedures are used to deter-
mine the maximum likelihood fit, then this also determines
the Hessians in equations (15) or (16). Once this information
is obtained (a few hours of satellite data may be sufficient),
predictions can be made from the posterior distributions
obtained from equations (14), (15), or (16).
[31] Predictions of ash concentrations 3 h and 6 h in

advance, made by integrating the posterior distribution in
Figure 7 as described in equation (18), are shown in Figures 8a
and 8b, respectively, where the flooded contours are for a
threshold concentration of 2 mg/m3 and zero probability
regions have no color. Plotted on top of these uncer-
tainty estimates is the cloud load measured by SEVIRI
corresponding to the same times. The coarseness of the alti-
tude sampling in the model resulted in some striping of the
final distribution of uncertainties, but in general the predicted
uncertainty in ash distribution encompasses the observed ash
distribution, showing that the method described above pro-
vides a reasonable estimate of future ash distribution and
provides a good basis for hazards estimation.
[32] The threshold for these uncertainties may be used in a

number of different ways. For example, any flight path
through this space would integrate these uncertainties along
the flight path (with uncertainties varying with time) to
determine the probability of ingesting a given mass of ash
into each engine, providing an estimate of flight hazards for
any given flight path.

5. Conclusions

[33] The three dimensional heterogeneity of the wind in the
earths troposphere and stratosphere may be exploited to
rapidly and stably estimate the altitude and rate of ash emis-
sion from a volcanic eruption column into the atmosphere.
The position of the ash cloud is particularly sensitive to the
altitudes at which it enters the wind field at the volcano, and
the rate of ash dilution as the cloud disperses downwind
depends upon the ash emission rate at each altitude above the
volcano. Infrared satellite techniques may underestimate the
total mass of ash near the vent where the cloud is optically
thick, but that is not a significant factor in these calculations.
What matters is the mass effusion rate that feeds into an ash
cloud and the altitude(s) where this rate is a maximum.
[34] Given these conditions, transport models may be fit to

ash clouds using Bayes theorem, in which existing satellite
and surface measurements of an ash plume are used to
determine the initial (or prior) conditions and uncertainties.
Comparisons of model output to data to determine the max-
imum likelihood estimate can efficiently be done using quasi-
Newton procedures, starting from the prior parameter values,
and this method provides a rapid determination of optimal
model parameters. The centralized nature of the maximum
likelihood and maximum posterior allows a saddle point
approximation to be used to normalize the posterior distri-
bution. The result of this procedure is a robust estimate of
posterior probability, from which equally robust estimates of
the uncertainty in future ash concentrations may be made.

[35] Acknowledgments. This paper uses the program Ash3d, which
the first author initially wrote with Larry Mastin in January 2010. Since then
the program was improved and made truly operational through the efforts of
Hans Schwaiger and Larry Mastin, and without the work they did the scripts
we wrote to perform the Bayesian testing in this paper, using Ash3d, would
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