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ABSTRACT

This paper describes the daytime cloud optical and microphysical properties (DCOMP) retrieval for the

Pathfinder Atmosphere’s Extended (PATMOS-x) climate dataset. Within PATMOS-x, DCOMP is applied

to observations from the Advanced Very High Resolution Radiometer and employs the standard bispectral

approach to estimate cloud optical depth and particle size. The retrievals are performed within the optimal

estimation framework. Atmospheric-correction and forward-model parameters, such as surface albedo and

gaseous absorber amounts, are obtained from numerical weather prediction reanalysis data and other climate

datasets. DCOMP is set up to run on sensors with similar channel settings and has been successfully exercised

on most current meteorological imagers. This quality makes DCOMP particularly valuable for climate re-

search. Comparisons with the Moderate Resolution Imaging Spectroradiometer (MODIS) collection-5

dataset are used to estimate the performance of DCOMP.

1. Introduction

The Pathfinder Atmosphere’s Extended (PATMOS-x)

dataset is an atmospheric climate dataset generated by

the National Atmospheric and Ocean Administration

(NOAA). It derives atmospheric and surface parameters

from nearly 30 years of observations taken by NOAA’s

Advanced Very High Resolution Radiometer (AVHRR),

located on the various Polar Operational Environmental

Satellite spacecraft. AVHRR sensors are also included

on the European Organisation for the Exploitation of

Meteorological Satellites (EUMETSAT) MetOp series

slated to continue until 2020. Therefore, the AVHRR

record should span over 40 years when completed,

making it one of the most valuable satellite-based data

records for cloud climatological descriptions. One of the

more critical components of PATMOS-x is the daytime

cloud optical and microphysical properties (DCOMP)

algorithm, which generates estimates of cloud optical

thickness, cloud effective radius, and ice/water path

during daylight conditions.

Cloud optical thickness and the particle size distribu-

tion can be used to describe almost completely the radi-

ative properties of a cloud in the solar spectral region. It is

therefore difficult to overestimate the importance of their

spatial and temporal variations to the studies of climate

change and to the evaluation of climate models. Particle

size distribution can adequately be expressed as the cloud

effective radius, which is defined by the ratio of the in-

tegral over all droplet volumes to the integral over all

droplet surface areas.

The use of visible and near-infrared observations to

estimate cloud optical thickness and effective radius

goes back several decades (Hansen and Pollack 1970).

These techniques were demonstrated using aircraft mea-

surements (Foot 1988; Twomey and Cocks 1982). Sat-

ellite retrievals of these properties for limited cases

began not long after these measurements were available

from satellites (Arking and Childs 1985; Nakajima and

King 1990; Platnick and Valero 1995). The first global

survey of these properties over a limited time range was

provided by Han et al. (1994). Heidinger (2003) de-

scribes the initial application of these techniques to a
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long-term global AVHRR radiance dataset. Roebeling

et al. (2006) derived these properties from a geostationary

imager for climate applications. Descriptions about the

application of these techniques to Moderate Resolution

Imaging Spectroradiometer (MODIS) observations are

given by Platnick et al. (2003) and Minnis et al. (2011a).

DCOMP builds upon the long heritage of this retrieval

technique by attempting to apply it to multiple sensors in

a physically consistent manner to generate cloud climate

data records that are useful to the community.

DCOMP was developed with support from the NOAA

Geostationary Operational Environmental Satellite—R

Series (GOES-R) Algorithm Working Group (AWG) to

be the official algorithm for the Advanced Baseline Im-

ager (ABI). Descriptive technical details for the DCOMP

algorithm for GOES-ABI are provided in the corre-

sponding algorithm technical basis document (ATBD;

Walther et al. 2011). During this project, the algorithm

was designed to run on the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) on Meteosat Second

Generation satellites, MODIS, and the current GOES

imagers to be tested with proxy data. The algorithms differ

only in spectral channels; the underlying assumptions,

forward models, and retrieval techniques are invariant.

This quality can be particularly valuable for intercom-

parison studies or for the generation of climatological time

series and will be shown in section 4. The spectral in-

formation provided by the AVHRR is limited relative to

that of other sensors, such as the GOES-R ABI, but the

AVHRR instruments do provide the needed spectral

observations to run the DCOMP algorithm.

DCOMP is written as a generic algorithm tool that is

applicable to all sensors that measure any one of the

three channel pairs (0.6–1.6, 0.6–2.2, and 0.6–3.75 mm).

The sensors that have been used to date with DCOMP

are AVHRR, SEVIRI, GOES, MODIS, and the Ad-

vanced Along-Track Scanning Radiometer. Being based

on optimal estimation, DCOMP makes use of the un-

certainty estimates of the input parameters and the

forward model and then propagates these uncertainties

to estimates for the retrieved parameters. It is written

modularly to allow for easy exchange of algorithm parts

as warranted for improved performance or for sensitivity

studies. In addition, the overall philosophy of DCOMP is

to make full use of the best available auxiliary data as

opposed to the use of static climatological estimates. For

example, DCOMP uses profiles of ozone (O3) and water

vapor (H2O) taken from numerical weather prediction

(NWP) datasets and employs high-spatial-resolution es-

timates of surface reflectance and surface emissivity. The

sources of auxiliary data are listed in Table 1. DCOMP

also incorporates state-of-the-art scattering models dur-

ing the generation of the lookup tables described below.

The goal of this paper is to demonstrate the specific

application of DCOMP to the AVHRR and to validate

its performance relative to an accepted standard. This

paper will also point out the strengths and weaknesses of

these properties derived from the AVHRR in the con-

text of PATMOS-x and thereby facilitate their proper

usage as climate data records.

2. Forward model

The retrieval is based on simultaneous measurements

of a visible channel with conservative scattering and

a shortwave infrared (IR) weakly absorbing channel.

The method is based on previous work (Nakajima and

King 1990; King 1987) and has been demonstrated in

a number of remote sensing studies (e.g., Nakajima and

Nakajima 1995; Roebeling et al. 2006). In this section,

we will briefly outline the techniques and approxima-

tions used in simulating the reflectance. This process is

referred to as the forward model. Following sections will

show how this forward model is used in retrieval and will

demonstrate the performance of DCOMP in compari-

son with other datasets. Full technical details are pro-

vided in the DCOMP ATBD (Walther et al. 2011).

a. Basic considerations

The reflectance R(u0, u, Dq) is a function of incoming

and outgoing zenith angles u0, u, and the relative azimuth

angle Dq. It is defined as the ratio of reflected light ra-

diance L(u0, u, Dq) to the incoming radiance represented

in the atmosphere by spectral solar irradiance at the top

TABLE 1. Sources of auxiliary data.

Forward model parameter Data source Reference

Surface albedo MODIS white-sky albedo Moody et al. (2008), Schaaf et al. (2002)

Phase function of water Doubling—adding RTM/Mie calculations Wiscombe (1980)

Phase function of ice clouds Baum and Yang database Baum et al. (2005)

Atmospheric profiles NCEP CFSR Saha et al. (2010)

Cloud phase PATMOS-x cloud-type algorithm Pavolonis et al. (2005)

Cloud-top pressure PATMOS-x cloud-height retrieval Heidinger and Pavolonis (2009)

Cloud mask PATMOS-x cloud-mask retrieval Heidinger et al. (2012)
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of atmosphere F0(u0) multiplied by m0 (the cosine of solar

zenith angle: cosu0):

R(u0, u, Dq) 5
pL(u0, u, Dq)

m0F0(u0)
. (1)

With the addition of a lower reflecting surface, the channel

reflectance for the case of a scattering cloud at the top of

atmosphere is

RTOA 5 Rc(u0, u, Dq, t, re) 1
Atc(u0, t, re)tc(u, t, re)

1 2 AS(t, re)
,

(2)

where Rc is the cloud-reflectance function, RTOA is the

apparent reflectance at the satellite level, A is the albedo

of an underlying Lambertian surface, tc is the cloud-

transmittance function in the downward and upward

directions, t is the cloud optical thickness, re is the ef-

fective radius, and S is the spherical albedo of a cloud.

This equation is valid only for fully cloud covered pixels.

We neglect to write the angular dependencies for the re-

mainder of this article for better readability. Cloud trans-

mission for the incoming and outgoing path will be written

as tc,0 and tc, respectively.

Radiative transfer models are capable of computing

the functions Rc(t, re), tc(t, re), and S(t, re) under the

assumption of a plane-parallel homogeneous cloud. The

surface albedo A is assumed to be known. Thus, Eq. (2)

has two unknowns and should be solvable when applied

to a system of two sufficiently orthogonal observation

channels.

Equation (2) neglects thermal source terms from the

atmosphere and the surface and other atmospheric pro-

cesses above and below the cloud, however. The latter

include scattering processes by air molecules and aerosol,

as well as gaseous absorption, and have to be corrected.

The atmospheric correction is applied to the measured

radiance and can be decoupled from the inversion scheme

and performed for layers above and below the cloud

separately if the cloud altitude is known. In essence, it

adjusts the measured reflectance at the sensor above the

top of the atmosphere to that which would be measured at

the top of the cloud and adjusts the surface albedo to ac-

count for extinction below the cloud. After transforming

RTOA to the apparent reflectance at the top of cloud RTOC

and introducing effective surface albedo Ay, we have

RTOC 5 Rc(u0, u, Dq, t, re) 1
A

y
tc,0(t, re)tc(t, re)

1 2 A
y
S(t, re)

. (3)

The left-hand side of this equation is the measured top-of-

the-atmosphere reflectance corrected for above-cloud

transmission and scattering. The atmospheric-correction

scheme will be described in more detail in section 2b. The

forward-model calculations do not have to consider at-

mospheric correction, and they simulate top-of-cloud

reflectance with an extinction-free atmosphere between

cloud and surface.

If DCOMP is applied to sensor channels around 3.8 mm

(such as AVHRR channel 3b, SEVIRI channel 4, GOES

channel 2, or MODIS channel 20), terrestrial emission

must be taken into account. The term RTOC in Eq. (3)

depicts the solar reflectance. For these channels, however,

the measured radiance is a sum of backscattered solar

radiation and a terrestrial-emission part.

The latter is the top-of-cloud radiance ITOC that is

emitted from the surface and atmosphere. This can be

expressed as

ITOC 5 «c(t, re)B(Tc) 1 tc(t, re) [Iclr 2 Ia(H)], (4)

where Ia is the radiance contribution from layers above

the cloud height H, Iclr is the clear-sky radiance emitted

by the surface, «c is the cloud emissivity, tc is the cloud

transmission, and B(Tc) is the Planck function at the

cloud-top temperature Tc. Cloud emissivity «c(t, re) and

cloud transmission tc(t, re) are computed by the radia-

tive transfer model and stored in lookup tables. They

depend on the state vector so that they are optimized

during the retrieval loop. The other unknown variables

in Eq. (4) are obtained from auxiliary data as follows.

The new National Centers for Environmental Pre-

diction (NCEP) Climate Forecast System Reanalysis

(CFSR; Kalnay et al. 1990; Saha et al. 2010; Sela 1980)

provides realistic atmospheric profiles of temperature

and water vapor on global regular 0.58 and 2.58 grids from

1979 onward. We employ a fast IR radiative transfer

code, the pressure-layer fast algorithm for atmospheric

transmittances (PFAAST; Hannon et al. 1996), with the

input from these reanalyses, combined with surface

emissivity values obtained from a MODIS-based data-

base (Seemann et al. 2008), to compute assumed clear-

sky radiance and transmission profiles.

Cloud-top temperature and cloud-top height are ob-

tained from the AWG cloud-height retrieval algorithm

(ACHA), which is also part of the PATMOS-x retrieval

scheme, in which it runs in advance of DCOMP.

The terrestrial radiance I can subsequently be trans-

formed into an equivalent reflectance value Re as fol-

lows:

Re,TOC 5
pd2

m0F0

ITOC, (5)

where d is the Earth–sun distance in astronomic units

and F0 is the channel-specific solar constant normalized
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to the average Earth–sun distance using the Kurucz

solar irradiance database (Kurucz 1995). The solar part

of the measured reflectance is extracted by

RTOC 5 Rmea 2 Re. (6)

Through including the terrestrial emissivity observed

at top of cloud, Eq. (3) becomes an equation for each

measurement channel:

RTOC 5 Rc(t, re) 1
A

y
tc,0(t, re)tc(t, re)

1 2 A
y
S(t, re)

1 Re,TOC(t, re).

(7)

This is in fact a general equation for any channel. For the

range from visible to near infrared, the amount of ra-

diance that comes from surface or atmospheric emission

is negligible, and Re,TOC becomes zero.

Now all formulations are prepared to proceed to the

inversion problem, which aims to find the pair of cloud

properties (t, re) that satisfies Eq. (7). At the end of this

process the retrieval will find a pair of the cloud prop-

erties (t, re) that satisfy the equations. The problem is not

analytically solvable because of the complicated nature of

radiative transfer. The solution is retrieved by an iterative

optimization process that will be explained in more detail

in section 3.

b. Atmospheric correction

Atmospheric correction in DCOMP is done in a two-

level scheme, separated into above-cloud and below-

cloud corrections. The first part handles all processes

above the cloud to compute the reflectance that would

be observable at the top of the cloud.

The reflectance measured at the sensor RTOA is

transformed to a cloud-top reflectance RTOC as

RTOC 5
RTOA 2 RSC

ta(u0, u)
, (8)

where ta is the two-way atmospheric transmission above

the cloud and RSC represents all single-scattered com-

ponents from the atmosphere above the cloud, that is,

including the photons that are scattered before or after

reflection at the cloud top. It is only assumed to be non-

zero for Rayleigh scattering in the visible channel around

0.6 mm where we use the scheme introduced for MODIS

by Wang and King (1997). We use a full-column atmo-

sphere Rayleigh optical depth of 0.044. The actual Ray-

leigh optical depth of the air column above the cloud is

then computed with cloud pressure, assuming that the

Rayleigh optical depth scales linearly with pressure.

Aerosol scattering is neglected in DCOMP, since the

knowledge about quantity is very uncertain and the as-

sumed impact for most cases is low. The transmission ta is

calculated by considering scattering and absorbing pro-

cesses in the visible channel and from absorption for both

channels.

Atmospheric effects below cloud are taken into ac-

count by virtually decreasing the surface albedo. We

assume that the impact from scattering extinction below

the cloud is low. The virtual surface albedo parameter

Ay is defined from the surface albedo A as

A
y

5 Atb(u0, u), (9)

where tb is the two-way atmospheric transmission be-

tween the cloud and surface. Since we assume a diffuse

radiation field below the cloud, we compute the trans-

mission for the zenith path between cloud and surface

(air mass is equal to 2). The surface albedo is taken from

the MODIS white-sky albedo dataset (Moody et al.

2008). DCOMP uses the 16-day climatological values

averaged from a 5-yr period (2000–04).

Significant contributors to the extinction include ab-

sorption by water vapor, stratospheric ozone, and other

atmospheric gases and scattering in the visible channel

by air molecules and aerosol. Water vapor and ozone

exhibit considerable temporal and spatial variability in

the atmosphere. Using a default value for the entire

globe would lead to considerable error. Ozone amount

can vary by 650% (from about 200 to 350 Dobson units),

and water vapor can vary by more than an order of

magnitude. We use NCEP reanalysis data as a best esti-

mate for ozone and water vapor profiles instead of cli-

matological averages. This dataset provides profiles of

amount of ozone and water vapor on a 2.58 grid.

Atmospheric transmission values for ozone and water

vapor are computed by simplified algorithms that are

based on forward simulations. Version 4 of the Moderate

Resolution Atmospheric Radiance and Transmission

Model and Code (MODTRAN v4; Berk et al. 1998) was

used to compute regression coefficients of ozone and

water vapor transmission as a function of the absorber

amount M. The regression scheme for gas transmission

T is expressed as

T 5 �
2

i50

aiM
i. (10)

Table 2 provides the coefficients a for water vapor and

ozone for four current sensors. The unit of M for ozone

is the Dobson unit and the unit for water vapor is mil-

limeters in a column. We included standard values of the

amount of other gases in the simulations of water vapor

transmission so that carbon dioxide, methane, and so on
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are also taken into account. The basis for the simulations

was 1000 realistic atmospheric observations extracted

from the Thermodynamic Initial Guess Retrieval data-

base (Chevallier et al. 2000). Those data cover a wide

range of atmospheric conditions. For instance, given the

geometrical variations of DCOMP measurements, a high

number of viewing and solar zenith angles were used in

the MODTRAN simulations. As a result, we used 5000

different situations to obtain three coefficients from lin-

ear regression analysis.

The majority of the ozone is in the stratosphere and

thus above the cloud. Vertical variability can therefore

be neglected. Absorption by ozone occurs primarily in

the visible channel. The uncertainty in the transmission

is low. The source of the ozone absorber amount is the

NWP results from the Global Forecast System model

reanalysis (Sela 1980). This dataset is updated every 6 h

and is interpolated to the time of observation. An un-

certainty of less than 5% leads to an expected absolute

error in transmission values for a thin ozone layer (at 280

Dobson units, corresponding to a transmission value of

0.98 for an airmass factor of 2) of ;0.01 and for a thick

ozone layer of ;0.008.

Water vapor correction is more uncertain for two rea-

sons. First, water vapor is much more variable in space

and time. Second, because water vapor exists in the tro-

posphere, we have to use cloud-height information to-

gether with an assumed vertical profile to extract the total

water vapor above the cloud. Cloud height is obtained

from ACHA, which runs before DCOMP in the common

processing scheme (Heidinger et al. 2010). Water vapor

transmission error may have an additional error that

comes from the uncertainty in the cloud height.

The bottom row of Fig. 1 shows the transmission co-

efficients for water vapor and ozone for the example

case. The true-color image and the cloud-top pressure

and cloud-type results as retrieved by the PATMOS-x

ACHA retrieval that are shown in the top row of Fig. 1

support the discussions. Eight of the 12 cloud types

distinguished in the PATMOS-x dataset are present in

the top-right panel. The four reddish and yellow color

classes (overshooting: maroon, overlaying cirrus: red,

cirrus: orange, and ice: yellow) depict cloud pixels for

which DCOMP applies ice-phase tables. All others re-

quire the liquid-water-phase table. Water vapor trans-

mission is mainly a function of cloud-top pressure (blues

and greens are lower pressure) if the water vapor is ho-

mogenously distributed. In contrast to ozone transmission,

uncertainty in cloud-top pressure leads to a higher uncer-

tainty in water vapor transmission. Water vapor trans-

mission is in a range from approximately 0.97 (blues) to 1

(reds) for the visible channel at 0.6 mm and is between

0.8 (blues) and 1 (reds) in the shortwave IR channel at

3.75 mm. Ozone transmission ranges from approximately

0.9 (blues) at the edge of the swath to 0.95 (greens) for

minimal air mass in the center.

c. Generation of lookup tables

The previous section describes how the cloud-

reflectance and cloud-transmittance values are used in

conjunction with atmospheric and surface terms to

simulate the total atmospheric signals used in DCOMP.

The actual forward model used during the DCOMP

processing is based on lookup tables (LUTs) in which the

cloud reflectance, cloud transmittance, cloud spherical

albedo, and cloud emissivity are precomputed. These

LUTs serve as the basis for the forward model during the

inversion process. They were designed to cover the entire

range of possible conditions as functions of microphysical

properties and the geometrical constellation. Because the

scattering characterizations of water and solid particles

TABLE 2. Atmospheric-correction coefficients.

a0 a1 a2

MODIS 0.6 H2O 20.000 393 77 0.004 104 35 20.000 126 045

1.6 H2O 20.000 190 805 0.001 038 88 21.7948 3 1025

3.8 H2O 0.010 512 8 0.050 244 5 20.002 541 75

0.6 O3 0.010 512 8 8.919 293 2 3 1025 21.904 334 3 1028

NOAA-18 0.6 H2O 0.000 096 04 0.003 515 63 20.000 102 50

1.6 H2O 20.000 166 318 0.001 104 78 21.957 17 3 1025

3.9 H2O 0.012 701 0 0.049 214 1 20.002 383 03

0.6 O3 20.001 48 20.000 106 56 22.303 879 3 1028

GOES-13 0.6 H2O 0.000 320 90 0.004 550 23 20.000 165 50

3.9 H2O 0.005 247 30 0.023 630 9 20.001 137 38

0.6 O3 20.000 518 4 9.341 763 6 3 1025 27.631 08 3 1029

SEVIRI 0.6 H2O 0.000 102 2 0.002 454 72 25.544 08 3 1025

1.6 H2O 0.007 239 54 0.002 979 67 25.659 69 3 1025

3.9 H2O 0.006 794 56 0.029 710 0 20.001 569 44

0.6 O3 0.000 176 8 9.140 529 3 1025 5.450 645 3 3 1029
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differ greatly, the LUTs are generated for ice- and water-

phase clouds separately. DCOMP decides between the

phases using the PATMOS-x cloud-type algorithm

(Pavolonis et al. 2005).

A doubling–adding forward radiative transfer model

(RTM) simulates the cloud-reflectance function Rc, the

cloud transmission tc, and the cloud spherical albedo

S for a single-layered plane-parallel homogeneous cloud

as a function of optical depth and effective radius, as

well as geometrical constellation as expressed by solar

and observation zenith and azimuth angles. It requires

single-scattering phase functions for water and ice parti-

cles. Water particles were assumed to be spherical drop-

lets at all wavelengths, and Mie scattering (see, e.g.,

Wiscombe 1980) was assumed for the inference of scat-

tering and absorption properties.

For a given droplet size distribution and optical con-

stants of water, a Mie code returns extinction and scat-

tering coefficients and the scattering phase function,

which describes the angular distribution of scattered light

in a single-scattering event. The droplet size distribution

is approximated by the modified gamma–Hansen func-

tion, which is determined by the effective radius and the

dispersion ra about the effective radius and normalization

constant. The dispersion is set to 0.1. The size range of the

distribution is limited in the computations here to 0–80 mm.

The situation for ice clouds is more complex because

the particles are generally not spherical. In fact, the as-

sumption of spherical particle shapes for the ice phase

leads to substantial errors (Mishchenko et al. 1996). Ice

clouds are assumed to be composed of a mixture of habits

consisting of droxtals (primarily for the smallest particles

in a size distribution), hollow and solid columns, plates,

3D bullet rosettes, and aggregates. The hollow bullet

rosettes also have significantly different scattering/

absorption properties than those of solid bullet rosettes.

The current distribution of habits as a function of par-

ticle size is prescribed by Baum et al. (2005).

Using LUTs for forward-model calculations causes an

error due to interpolation assumptions, which would not

be necessary with direct use of the radiative transfer

model. The latter is not feasible, though, because it would

considerably increase computation time. It is also clear

that the more computations are stored in the LUTs the

lower the interpolation error is but also the higher the

computer memory usage is. We conducted an analysis in

which LUTs of different sizes were compared with results

directly from a radiative transfer model without any in-

terpolation. In the end, we found an LUT design for

which the maximal error due to linear interpolation is

less than 1% in the outputs of the RTM for all four

parameters (reflectance, spherical albedo, transmission,

and emissivity). A consequence of this optimization is

that the retrieval becomes less sensitive to the inter-

polation scheme. The resulting LUTs have 45 equally

binned entries for sensor and solar zenith from 08 to 888,

45 angles with finer spacing in the backward direction for

relative azimuth difference (with 58 steps between 08 and

1708 and 18 steps between 1708 and 1808), 29 cloud-optical-

depth entries from 20.6 to 2.2 evenly distributed in log10

space, and nine effective radii from 0.4 to 2.0 in log10 space

as well. Log10 space was used for the LUT optical-depth

and effective-radius dimensions because reflectance and

transmittance are more linear in log10 space than in linear

space. The increased linearity in log10 space reduced the

number of optical depths and effective radii required.

3. Retrieval method

Optimal estimation (OE) has been proven to be an

accurate inversion technique for deriving properties

from satellite measurements. It employs prior knowl-

edge of likely solutions and measurement error and

forward-model error. A mathematical description of the

OE technique can be found in Rodgers (2000). The OE

techniques were widely used in connection with cloud

algorithms (e.g., Sayer et al. 2011; Watts et al. 2011).

The basis of OE rests on the assumption of Gaussian

error statistics for background and observation error

estimates. This leads to the requirement of a preferable

Gaussian distribution of the state vector x. Distributions

of optical depth and effective radii are often skewed,

however, with a high number of low values and a wide

range of possible high values. To account for this, we

transform the state-vector elements in logarithmic space

with a decimal base for the inversion. The other benefit of

using logarithmic transformation rather than linear spac-

ing is that the variation with reflectance is more linear,

which will lead to a more-Gaussian error distribution of

the input vector.

Optimal estimation basically seeks to find a solution for

the state vector x with the minimum average error over

some classes of estimators. In DCOMP these estimators

are the comparison of the measurement vector y, a two-

element vector with visible and shortwave IR channel

reflectance, with the output forward model F(x, b) and

the comparison of x with prior knowledge xa under con-

sideration of their uncertainties. The OE for a nonlinear

problem, such as we have in DCOMP, requires an iter-

ative search for the solution. The OE aims to minimize

the cost function J, accounting for measurement errors

and prior knowledge, and is of the following form:

J 5 [y 2 F(x, b)]TS21
y [y 2 F(x, b)]

1 (xa 2x)TS21
a (xa 2 x), (11)
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where xa is the a priori state vector, b is the forward-

model parameter vector, and S
y

and S
a

are the error

covariance matrixes of the observation and the a priori,

respectively. The forward-model parameter vector b is

not retrieved, but its uncertainties have to be considered

in the retrieval. The forward operator F(x, b) aims to

calculate the observation vector y from an atmospheric

state vector x and forward-model parameter vector

b according to Eq. (7):

F(x) 5 Rc(x) 1
A

y
t0(x)t(x)

1 2 A
y
S(x)

1 Re(x). (12)

Although not retrieved, the forward-model parameters

defined in b have an impact on the retrievals, and their

uncertainties have to be taken into account. The forward-

model vector elements in DCOMP are identified as the

surface albedo, scattering properties, surface emissivity,

and the water vapor profiles used to compute the ter-

restrial radiance.

Both the measurement and the prior knowledge are

quantities with assumed uncertainties that are described

by covariance matrices. If we consider the a priori as-

sumption as a virtual measurement, then the relative

weight of the uncertainty, on the one hand, of the a priori

assumption and, on the other hand, of the measurement

error together with forward-model error determines the

solution. In the extreme case there is no trust in the mea-

surements at all (S21
y becomes very small), and the re-

trieval has its minimal cost value at the a priori values. In

this case the retrieval has no information content at all and

our confidence in the solution is as large as our a priori

knowledge. In contrast, if we do not have any trustworthy

a priori knowledge, the solution is reached when forward

calculations and observation are in the range of the ob-

servation covariance.

A proper implementation of DCOMP requires mean-

ingful estimates of a priori values of the possible state of

the atmosphere xa and their uncertainties described by

Sa. The latter is a matrix for which each diagonal element

is the assumed error variance of each element xa. These

uncertainties are assumed to be independent from each

other in DCOMP so that the off-diagonal elements can be

set to zero.

The prior independent knowledge of cloud optical

depth (COD) and cloud effective radius (REF) is lim-

ited. Because almost all estimates of COD and REF

from other algorithms are based on similar approaches,

there is no robust a priori value except an approximate

range for all clouds over the globe. In general, it is

assumed that water clouds have a maximum effective

radius size of up to 40 mm, with an average of about

10 mm. Bigger liquid cloud particles would start to

precipitate and are unrealistic in the atmosphere. Ice

particles may have effective radii of up to 100 mm,

with a higher average than water. According to the

findings of several publications (e.g., Han et al. 1994;

Parol et al. 1991), we set the a priori values for the

water effective radius to 10 mm (1.0 in log10 space)

and for ice to 18 mm (1.3 in log10 space). The un-

certainty of these assumptions is high. Therefore, we

set the standard deviations for the a priori of COD

and REF to 100%, which corresponds approximate-

ly to 1.0 in log10 space. The a priori for optical depth

is set to 10 for both phases with an uncertainty of

1.0 in log10 space (approximately 100%). These set-

tings account for the weak prior knowledge of these

values.

We did not explicitly account for errors that occur

when our assumption of a single-layer plane-parallel

cloud that fully spans the pixel is violated. These errors

include the presence of 3D effects and multilayer and/or

mixed-phase clouds. It is also important to note that

these error sources also affect many of the existing cli-

matological databases on which we based our a priori

values. We accounted for these effects empirically by

increasing our uncertainty of the a priori constraints be-

yond what the climatological datasets tell us. We did not

attempt to account for these errors in our forward-model

uncertainty estimates, nor can we be certain of their

Gaussian behavior. Therefore, our error estimates are

only valid in the context of our assumed cloud.

As described above, the observation vector is repre-

sented by the reflectance values at the top of cloud.

Thus, the uncertainty in y is determined by the uncer-

tainty of the measurement at the satellite level itself,

with consideration of channel noise and calibration er-

ror, and the uncertainty of the atmospheric correction

above the cloud. The uncertainties of each atmospheric-

correction component are set in an error covariance

matrix for atmospheric-correction components SAC.

This matrix is added to the error covariance matrix of

the observation vector as

Ŝy 5 Sm 1 KACSACKT
AC, (13)

where S
m

denotes the error covariance of the measure-

ment including channel noise and calibration. The di-

mensions of the error covariance matrix S
AC

are n 3 n,

where n is equal to the number of components of atmo-

spheric correction considered. It has nonzero values only

on the main diagonal and consists of the variance of the

assumed uncertainty of water vapor amount, ozone

amount, and cloud-top height. The kernel operator KAC

describes the sensitivity of y to changes in the components

of atmospheric correction and has to be determined for
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every pixel. The kernel K
AC

has the dimensions m 3 n,

with m equal to the number of observation channels. The

resulting errors in both channels are correlated because

uncertainty in water vapor amount has an impact on

transmission in both channels. Values of SAC are set as

relative error (in percent).

According to (Rodgers 2000), the forward-model er-

rors can be added to the observation error covariance as

Sy 5 Ŝy 1 KBSBKT
B, (14)

where Ŝy is the error covariance of the measurement, Sy

is the observation covariance employed during the it-

eration process, and S
B

is the error covariance matrix of

the forward model. The kernel K
B

describes the sensi-

tivity of y to changes in the forward-model parameters.

The sensitivity of the forward-model parameters may

differ for each atmospheric state so that Sy varies at each

iteration during the optimization.

The error covariance matrix of the forward-model

parameters S
B

is set by the uncertainty of the elements

of b. It is clear that the uncertainty of the surface char-

acterizations is highly variable globally and seasonally.

As an example, the surface albedo of a homogenous

surface without considerable vegetation is supposed to

be better known than the surface albedo of a fresh-snow

ground layer. We estimated the quality of our surface

knowledge by spatial and temporal homogeneity tests of

the surface data. In addition, we set a high value of un-

certainty for snow and sea ice.

The matrix K
B

determines the sensitivity of the forward

model. The elements include the partial derivatives of the

forward model with respect to the forward-model pa-

rameters.

The corresponding elements of KB regarding the sur-

face albedo uncertainty are, according Eq. (12),

›F(x)

›A
5

t0t

(1 2 SA
y
)2

. (15)

This equation shows that the impact of surface-albedo

uncertainty on the retrieval is higher the thinner the

cloud is. The partial derivative of the emissivity element

›F(x)/›« is not calculated analytically but is found by

applying the PFAAST model with varying emissivity.

The uncertainty and S
y

values have to be computed at

each iteration step since state vector x varies. We esti-

mated these uncertainties in y caused by the radiative

transfer simulations to be 5% of the computed reflectance

and added it directly to Sy.

We already mentioned forward-model errors, which

cannot be described in the same manner. The estimate

of Sy is only correct if the forward-model error is

relatively small. Figure 2 illustrates the observation

uncertainties for the same example case as in Fig. 1. The

top-row images show the elements of the observation

error covariance matrix Sy determined in the last iter-

ation before the solution was found. The left image in

Fig. 2 shows expected error in reflectance values in the

visible channel (VIS). As stated before, the error co-

variance matrix Sy includes forward-model errors as

well. In general we assume that the forward-model error

for ice clouds is higher because of higher uncertainty in

ice-habit distribution and hence in phase function. This

is even clearer in the shortwave (near-) IR (NIR) chan-

nel, for which the atmospheric-correction error is small.

The correlation is particularly high for low clouds, for

which it is more likely that water vapor has an impact

above cloud transmission in both channels, and the other

factors are low.

Once the retrieval is completed, we use the error co-

variance of the state to determine the uncertainty of the

solution x. The uncertainty in both products may be

correlated, but this is not necessarily the case. As an

example, the visible channel has low information over

very bright snow or sea ice surfaces. This leads to a high

uncertainty of cloud optical depth but not necessarily to

higher uncertainty in the REF product. The correlations

are stored in the off-diagonal elements of S
x
.

The bottom row of Fig. 2 shows the solution error

covariance matrix Sx results, similar to those of Sy. The

corresponding maps of COD and REF are shown in

Figs. 5 and 6, which are described in section 5 below.

We transformed the diagonal elements, which are in log10

space during retrieval, into measures of relative error

for better interpretability. The expected error in COD

reaches values of more than 50% for thick ice clouds.

Liquid clouds have an error from about 10% over large

areas. The error in REF shows large differences between

thick ice clouds with greater droplet size (top-left image

in Fig. 6, described below). The solution uncertainties

are weakly correlated.

4. Uncertainty considerations

This section seeks to make use of the uncertainty

propagation of DCOMP to understand the importance

of individual components of the retrieval. We use in the

following also the term ‘‘error’’ as a synonym of uncer-

tainty. In this sense the error should not be seen as a

measure of the deviation from the truth but as an ex-

pectation of the value range.

The solution error covariance values provide mea-

sures of the total error budget for both products of the

retrieval. Whereas this represents the estimated error in

physical units of the parameters, we seek in this section
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to identify the contributions of individual retrieval

components to the total error variance.

Figure 3 illustrates the transformation of the obser-

vation vector into the retrieved state vector, with cor-

responding error estimates. The solid black lines show

the channel reflectance as a function of COD (upright

isolines) and REF (horizontal isolines). The errors are

illustrated as ellipsoids, which increase in size at each

step. First, the reflectance at the top of the atmosphere is

transferred to reflectance at the top of the cloud, with

corresponding uncertainty ellipses used in measurement

error covariance matrices for two examples.

Figure 4 shows the relative error of COD and REF

as functions of the properties themselves separated for

ice (solid lines) and water (dashed lines) phases. Liquid-

phase cloud properties have in general lower uncer-

tainty, mainly as a result of less uncertainty in phase

function in the forward-model calculations. The uncer-

tainty in optical depth is lowest (under 5%) for midthick

clouds between 5 and 20. Thick clouds show high errors

in COD [more than 8% (20%) for water (ice) clouds with

optical thickness greater than 80] because of saturation

effects. Thin clouds are affected by surface-albedo un-

certainty. The uncertainty in COD is also sensitive to the

particle size, although it is not clear from these plots

whether the occurrence of small cloud droplets is corre-

lated with thin clouds.

The bottom-left image of Fig. 4 illustrates a thin-cloud

problem of the effective radii retrieval. The expected

performance of REF is low for thin clouds, with an uncer-

tainty of 20% for water clouds and 40% for ice clouds.

A different simplified way to evaluate an error budget

is to view the total variance of the retrieval as the sum

of a set of variances created independently by different

uncertainty components. This includes some difficulties

for DCOMP, because the components may be corre-

lated. For a rough estimate we will apply this method

here, however.

For DCOMP the following components can be iden-

tified and their magnitudes can be studied. The magni-

tude of the relative contributions of the different error

components for an example scene from DCOMP-MODIS

is summarized in Table 3.

The individual components are described in detail

below:

1) Sensor noise and calibration error in the visible

channel at 0.6 mm are considered—these are random

errors purely introduced by sensor characteristics and

calibration method. We assume that channel noise

(signal-to-noise ratio is 128 for MODIS) and calibra-

tion error sum up to about 4%. The uncertainties are

assumed to be uncorrelated between both channels.

For this particular scene, the main amount of the

overall uncertainty (three quarters) in the cloud optical

thickness comes from the uncertainty in the channel

reflectance.

2) Sensor noise and calibration error in the shortwave

IR channel at 3.75 mm are also considered.

3) Surface albedo in the visible channel is considered.

The uncertainty of surface albedo is estimated by

analyzing local spatial and temporal standard de-

viations of the MODIS white-sky albedo (Roman

et al. 2009). The uncertainty is higher in regions and

seasons with highly variable vegetation or over fresh

snow surfaces. The uncertainty of surface albedo has

a large impact on the error budget of the effective

radius. It can be explained by a high number of thin

clouds in this particular scene, for which small

changes in the visible reflectance have a large impact

on effective radius.

4) Surface albedo in the shortwave IR channel has a

smaller impact than does the surface albedo in the

visible channel. The reason for this is the lower trans-

mittance of the cloud because of water absorption.

5) Water vapor and cloud-top pressure uncertainty esti-

mates have only a small impact on the retrieval errors.

6) Ozone absorption is only considered in the visible

channel, so that the relative importance for COD is

expected.

FIG. 3. Uncertainty propagation of three example cases. The X

and Y axes are reflectance values for AVHRR channels 1 and 3b,

respectively. The vertical lines are isolines of cloud optical thick-

ness, and the horizontal isolines are for effective radius. The ellipses

depict the error margins in observation space from measurements

at the top of the atmosphere (red), after atmospheric correction

(yellow), after deduction of emissivity radiation in channel 3b

(blue), and with the addition of surface-albedo uncertainty

(green). Solid lines depict state space with consideration of sur-

face albedo.
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7) Uncertainty of clear-sky transmittance includes the

uncertainty of the NWP temperature and humidity

profiles, as well as the surface emissivity.

8) RTM uncertainty includes the uncertainty in the com-

putation of cloud-reflectance, cloud-transmittance, and

spherical-albedo functions, as well as the error in the

interpolation scheme in the lookup tables. The un-

certainty of 5% is a rough estimate.

Because the uncertainty estimates of the input data and

the corresponding uncertainty values depend on an in-

dividual scene, they have to be interpreted carefully and

should not be seen as a general estimate of DCOMP

error. We intend to publish a further article that will

contain a deeper analysis of uncertainty values. With

regard to the relative weights of the different errors,

however, a few general conclusions can be made:

d The error budget of COD is dominated by the error of

channel noise and sensor calibration of the visible

channel. It accounts for three-quarters of the total

error budget of COD.
d The only other significant error sources in the COD

budget are the uncertainty in surface albedo in the

visible channel and ozone absorption. At 10% and

4.5%, these values are low in comparison with the

channel noise and calibration error, however.
d The error budget of REF is spread among the indi-

vidual contributions to a greater degree. Uncertainties

of both reflectance measurements are around 15%. The

FIG. 4. Average DCOMP retrieval unertainty for (top) COD and (bottom) REF as functions of (left) COD and

(right) REF. Solid lines depict ice-phase clouds, and dashed lines depict water clouds. These analyses are based on all

MODIS Aqua granules during the period 1100–1555 UTC 1 Aug 2008.
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impact of VIS surface albedo uncertainty (at 32%) is

surprisingly high, especially when compared with the

contribution of the shortwave IR albedo (with only

7%). This result is caused by a high number of thin

clouds in this scene. Transmission in the VIS channel is

higher relative to longer-wavelength channels so that

the impact is also bigger according to Eq. (15).

COD retrieval seems to be robust against uncertainties

of atmospheric and surface characterizations. More-

exact auxiliary data or improved atmospheric-correction

methods will not significantly decrease the uncertainty of

the COD product. It is much more important to decrease

the calibration uncertainty. In contrast, it is worth im-

proving the accuracy of several components for a better

retrieval result for REF.

These are only preliminary considerations. A more-

thorough analysis should include the separation of dif-

ferent cloud scenarios, such as thick and thin clouds; low,

middle, and high clouds; surface (land, sea, and snow);

and individual regions. These error estimates can only

be a reliable measure if the forward-model assumptions

are true within the assumed error range. As an example,

if the atmosphere is not a one-layer cloud atmosphere

or the cloud phase is falsely determined, the error is

much bigger and cannot be estimated with this tech-

nique. Errors that are caused by wrong assumptions of

the forward model cannot be analyzed in the same way by

using solution error covariance. Examples of this kind of

error can be wrong assumptions of cloud phase or the

number of cloud layers in the column.

5. Performance estimate

We already stated that one advantage of the DCOMP

scheme is that it is able to run on several sensors. This

section seeks to show that the results are consistent for

some current sensors. For this purpose, we picked two

example scenes with a good spatiotemporal match for

MODIS on Aqua, NOAA-18, and GOES-11 (for a scene

over the North Pacific Ocean) and for MODIS on Terra,

MetOp-A, and SEVIRI (for the second scene, which is

off the Namibian coast). We compare these results with

the output of the retrievals of the MODIS Atmospheres

Science Team, which also generates estimates of cloud

optical and microphysical properties using the algo-

rithms referred to as MYD06 for the Aqua satellite and

MOD06 for the Terra satellite (Platnick et al. 2003). The

MODIS products have been used extensively in the

published literature and are regarded as climate-quality

products. Although they cannot be regarded as an en-

tirely independent data source for DCOMP validation

because DCOMP is based upon the same sensor as well

as on a similar bispectral retrieval approach, it is very

valuable to use these products for evaluation of DCOMP,

especially because a pixel-based comparison is possible.

The first scene is located off the Californian coast

around 2200 UTC on yearday 218 in 2006. We resam-

pled all data to a regular 0.058 grid, which corresponds to

approximately 5 km, to include AVHRR and GOES-11

in the comparison. The time shift between the sensors

does not exceed 10 min for all pixels. Channels used for

this example are channels 1 and 2 for GOES-11, chan-

nels 1 and 3b for AVHRR on NOAA-18, and channels

1 and 20 for MODIS on Aqua. This corresponds to the

0.6/3.8-mm channel combination, which has a terrestrial

radiance component to be taken into account. Obser-

vation zenith angles are different for the three sensors.

Figures 5 and 6 show the mapped results for optical

thickness and effective radius, respectively. The general

patterns are very similar, especially for COD. The

MYD06 product shows fewer cloudy pixels, presumably

because of rejection of cloud-edge pixels for micro-

physical retrieval in the MODIS collection-5 dataset.

Figure 7 shows the pixel-by-pixel comparisons of

DCOMP on MODIS retrieval with the MYD06 prod-

ucts, with DCOMP on GOES-11, and with DCOMP on

AVHRR NOAA-18 as scatterplots. Note the logarithmic

scaling of the number of occurrences for each histogram

TABLE 3. Error budget of DCOMP for an example scene.

Error type Uncertainty Contribution COD Contribution REF (mm)

Channel noise VIS 4% 2.19 (75%) 0.36 (13%)

Channel noise NIR 4% 0.06 (2%) 0.45 (16%)

Surface albedo VIS 60.02* 0.31 (10%) 0.93 (32%)

Surface albedo NIR 60.02* 0.02 (0.7%) 0.19 (7%)

Water vapor 15%* 0.03 (1%) 0.10 (3.5%)

Ozone 5 Db 0.13 (4.5%) 0.06 (2%)

Cloud-top pressure 25 hPa* 0.02 (0.7%) 0.09 (3%)

Clear-sky transmission 15%* 0.02 (0.7%) 0.43 (15%)

RTM error 5%* 0.12 (4.2%) 0.26 (9%)

* Typical values; may vary according to situation.
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bin. The COD comparison of DCOMP on MODIS with

MYD06 exhibits an almost perfect match, with a corre-

lation factor of 0.97 and a bias of less than 1. The corre-

sponding comparison of REF has less correlation but still

shows good agreement, with a bias of 0.63 mm and a

correlation of 0.89. One possible source of this bias is the

simulation of the 3.75-mm reflectance. MYD06 uses a

thermal subtraction method (Nakajima and Nakajima

1995) to estimate the 3.75-mm reflectance. This method

ignores thermal emission above the cloud and makes

other assumptions that differ from the approach used by

DCOMP. Also, systematic differences in the assumed

cloud-top temperature could cause these discrepancies.

Both DCOMP and MYDO6 rely on upstream algorithms

to provide this information. We conclude from this

analysis that DCOMP and MYD06 algorithms, when

using the 3.75-mm channel, agree to within the expected

levels of uncertainty present in these complex physical

retrievals.

The images for the comparison with the other sensors

show much more scatter but still have low bias values.

Imperfect temporal and spatial matching between the

data of different sensors may cause this. The REF com-

parisons show some more differences such as some small-

particle detections of DCOMP MODIS for which, in

contrast, AVHRR and MYD06 have values up to 30 mm.

Figure 8 illustrates the results for comparisons of

PATMOS-x on MODIS/Terra with MOD06 and SEVIRI

over the South Atlantic Ocean (the coordinate range for

longitude is from 08 to 208W, and for latitude it is from

FIG. 5. Cloud optical thickness for PATMOS-x run on MODIS Aqua, on GOES-11, and on AVHRR on NOAA-18, and the MYD06 data

collection for an example scene around 2200 UTC on yearday 218 of 2006.
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308S to 08) for the 0.6/1.6-mm channel combination

(SEVIRI channels 1/3; MODIS channels 1/6). Again, there

is good agreement for COD comparisons, although one

issue appears here clearly—in particular, for the MOD06

image. There are two scatter areas with correlated pixels

outside the one-to-one line; those are assumed to be

wrongly detected because of incorrectly classified cloud

phase. Although the comparison of COD with SEVIRI is

good, the effective radius retrieved from SEVIRI is too

low in comparison with MODIS (bias of 2.23 mm).

Although these issues require more effort for im-

provement, it has also been shown that DCOMP is in

general able to provide consistent instantaneous results

for different sensors with varying observation geome-

tries. Figure 9 seeks to analyze whether these results are

also robust in time. Both time series use 2 yr of DCOMP

data from MODIS Aqua and AVHRR NOAA-18 for

a subregion of the North Pacific (longitude from 21408

to 21208 and latitude from 158 to 358) and compare them

with MYD06 products. All three datasets were retrieved

around 1330 local time. We computed the daily average

over all valid observations and plotted them with dot

symbols in Fig. 9. The solid line depicts the 16-day

smoothing average over these daily averages. The opti-

cal thickness shows a surprisingly good fit between the

datasets. In contrast, the REF time series exhibits a per-

manent bias between PATMOS-x MODIS and MYD06

(;2–3 mm) and PATMOS-x AVHRR (;21 mm).

The discrepancy between the two MODIS-based re-

trievals is surprising since the pixel-based comparisons

seem to be in a good agreement. Although the results

have not been thoroughly checked, we assume that the

FIG. 6. As in Fig. 5, but for effective radius.
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FIG. 7. Scatterplots between PATMOS-x on MODIS and (top) MYD06, (middle) GOES-11, and (bottom) AVHRR

for (left) COD and (right) REF.

1386 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 51



differences of the sampling of optically thin clouds in

MYD06 and DCOMP and the dominance of the far tail

of the REF distribution in MYD06 cause the differences

in the averaged products. This is also in agreement with

the findings of Minnis et al. (2011b), who also compared

their cloud products with MYD06.

These intercomparisons do not, of course, provide

quantitative assessments of the true accuracy.

6. Conclusions

This article was primarily written to provide a refer-

ence for a substantial part of the long-term climate time

series of PATMOS-x. We have revealed all significant

components of the algorithm. Although the general

approach is not unique, DCOMP introduces some new

methods for atmospheric correction and in the inversion

scheme. The validation and comparison studies proved

that the results are in good agreement with data from

other observations. DCOMP is capable of processing

a number of current and future sensors. The results seem

to be consistent for all sensors.

The software and processing technique might also be

of interest. All DCOMP retrievals have one common

FORTRAN90 software code, which is embedded in the

Clouds from AVHRR Extended (CLAVR-x) software

framework. This is a fast retrieval package able to run

large datasets for climate purposes in a relatively short

time. As an example, DCOMP on one full-disk GOES-11

image with approximately 16 million pixels takes about

16 s on a Dell, Inc., R515 workstation. This enables us to

generate and provide climate data on short notice.

CLAVR-x also provides DCOMP with all needed sensor

and auxiliary data. It recognizes from which sensor the

FIG. 8. Scatterplots between PATMOS-x on MODIS Terra and MOD06 and SEVIRI.
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level-1b data come and assigns the appropriate lookup

tables to the retrieval scheme. The LUT design is

identical for each sensor. Thus, the only difference for

individual sensors lies in the population of the tables and

the gaseous transmission coefficients with respect to the

different filter functions. All other methods described in

this article are identical.

In this way, DCOMP is able to combine the advan-

tages of the different observation geometry and cover-

age. Whereas polar-orbiting sensors provide good global

coverage, the diurnal cycle can be sufficiently observed

by the SEVIRI or GOES geostationary satellites. Also,

DCOMP provides a full error propagation, which leads

to physically based uncertainty estimates of the final

products.

Future activities should extend the error-budget

discussions to individual situations. This will help to

identify the really significant uncertainty sources, which

may help to improve DCOMP by choosing the best

data and uncertainty measures. Examples are the in-

clusion of more highly resolved (0.58) NWP from the

CFSR, which has recently become available from 1979

to the present. Other potential improvements are the

consideration of higher uncertainty in singularities in

the phase function, such as rainbow peaks in the radi-

ative transfer.

FIG. 9. Two-year time series of daily averages for (top) COD and (bottom) REF in a North Pacific subregion.
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