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ABSTRACT

The naive Bayesian methodology has been applied to the challenging problem of cloud detection with

NOAA’s Advanced Very High Resolution Radiometer (AVHRR). An analysis of collocated NOAA-18/

AVHRR and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) observations was used to automatically and globally

derive the Bayesian classifiers. The resulting algorithm used six Bayesian classifiers computed separately for

seven surface types. Relative to CALIPSO, the final results show a probability of correct detection of roughly

90% over water, deserts, and snow-free land; 82% over the Arctic; and below 80% over the Antarctic. This

technique is applied within the NOAA Pathfinder Atmosphere’s Extended (PATMOS-x) climate dataset and

the Clouds from AVHRR Extended (CLAVR-x) real-time product generation system. Comparisons of the

PATMOS-x results with those from International Satellite Cloud Climatology Project (ISCCP) and Moderate

Resolution Imaging Spectroradiometer (MODIS) indicate close agreement with zonal mean differences in

cloud amount being less than 5% over most zones. Most areas of difference coincided with regions where the

Bayesian cloud mask reported elevated uncertainties. The ability to report uncertainties is a critical com-

ponent of this approach.

1. Introduction

While cloud remote sensing is a field that is decades

old, achieving the levels of accuracy needed for climate

applications remains a challenge. Particularly, confident

statements about decadal trends and variability of global

cloudiness are still missing (Foster et al. 2010). In addition,

as identified in the fourth Intergovernmental Panel on

Climate Change (IPCC) report, much of the variability

among climate predictions is driven by uncertainties in the

response of cloudiness to climate change. This highlights

the need to produce accurate, long-term cloud records

to assist in determining cloud feedback sensitivities. The

longest global remotely sensed cloud imagery record is

from the Advanced Very High Resolution Radiometer

(AVHRR), located on the National Oceanic and Atmo-

spheric Administration (NOAA) polar-orbiting satellites.

The 5-channel AVHRR record begins in 1981, while

the 4-channel record goes back to 1978. Though the ap-

proaches developed here have been applied to the en-

tire record, only the data generated since 1981 with the

5-channel observations have been thoroughly analyzed.

The length of the AVHRR record makes it uniquely

suited to address questions of multidecadal cloud vari-

ability. However, the relative age of the sensor makes for

a source of uncertainty. For instance, compared to newer

satellite sensors like the Moderate Resolution Imaging

Spectroradiometer (MODIS) the AVHRR has fewer

channels and relatively coarse spatial resolution. It also

lacks an onboard calibration device for its visible to
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near-infrared channels. Integrating the longer AVHRR

record with its shorter but more accurate and data-dense

counterparts has been used to reduce this uncertainty

(Heidinger et al. 2010).

This paper describes the application of probabilistic

techniques for cloud detection using AVHRR data.

Specifically, the naive Bayesian approach is used. The

information used to compute the Bayesian information

comes from periods of coincidence between the NOAA-

18/AVHRR and the Cloud–Aerosol Lidar and Infrared

Pathfinder Satellite Observations (CALIPSO)/Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP)

lidar data. NOAA-18 flies in an orbit that is similar to the

Earth Observing System (EOS)/Aqua A-train orbits. As

will be shown later, the frequency and global occurrence

of these collocations is sufficient to derive the Bayesian

cloud-detection classifiers.

2. Data used in this study

CALIOP is a two-wavelength lidar with polarization

sensitivity (Winker et al. 2009, 2010). CALIOP measures

two orthogonally polarized components of the 532-nm

backscatter and the total intensity of the 1064-nm back-

scatter. CALIPSO flies in the EOS A-train at an altitude of

550 km and a nominal equator crossing time of 1330 local

solar time (LST). The diameter of the lidar footprint is

approximately 100 m. The physical separation between

each CALIOP footprint (center to center) is 335 m.

Three lidar footprints are averaged to obtain the 1-km

cloud product. The level-2 products from CALIOP pro-

vide data with resolutions of 333 m, 1 km, and 5 km. The

coarser the horizontal resolution of the dataset, the more

averaging of individual lidar profiles is performed to in-

crease the sensitivity to optically thin cirrus and aerosol

layers. For this application, we chose the 1-km cloud-

layer product. This product provides the geometric

boundary and the midlayer temperature of up to 10 layers

of cloud in every 1-km profile. The CALIPSO data used

were version 3.01 and were provided by the National

Aeronautics and Space Administration (NASA) Langley

Research Center Atmospheric Science Data Center.

The afternoon Polar Environmental Satellite (POES)

NOAA-18 flies in an orbit with a similar equator cross-

ing time but in a higher orbit—720 km. Therefore,

NOAA-18 flies slower relative to the surface of the earth

than does CALIPSO. Because of these differences in

orbit, the ground tracks of NOAA-18 and CALIPSO

periodically fall in and out of alignment. Therefore,

multiple days of data are required to obtain global

coverage. The AVHRR data used here are the Global

Area Coverage (GAC) data in the level-1b 10-bit format

provided by NOAA/National Environmental Satellite,

Data, and Information Service (NESDIS). The AVHRR

data were processed using the NOAA Pathfinder At-

mosphere’s Extended (PATMOS-x) processing system

using the reflectance calibration described in Heidinger

et al. (2010) and the thermal calibration described in Rao

et al. (1993).

3. Collocation of AVHRR and CALIPSO

A key component of this analysis is the ability to col-

locate the AVHRR with CALIPSO. To accomplish this,

a routine was developed to find the AVHRR pixel that

was closest in distance to each 1-km CALIPSO cloud-

layer pixel. This routine employed a nearest-neighbor

approach coupled with a polynomial fit to provide initial

estimates of collocated pixels. The resulting computations

require only seconds to generate the collocations for an

entire GAC orbit. Figure 1 illustrates the data from one

case where the orbits of NOAA-18 and CALIPSO align.

The image in the upper left shows the cross section of the

532-nm CALIOP backscatter. The image in the lower left

shows the 1-km cloud-layer (CLay) product for this data.

The image on the right shows the 11-mm brightness tem-

perature of the AVHRR. The solid white line represents

the CALIPSO path overlaid onto the AVHRR image.

As stated above the CALIPSO/CALIOP cloud-layer

product provides up to 10 layers of cloudiness. For the

purposes of this study, a pixel was considered cloudy if

one or more layers of cloud were detected. The cloud

fraction for each 1-km CALIOP pixel is assumed to be

0 and 1.0. Since the AVHRR GAC pixel size is roughly

5 km, a 5-km cloud fraction was computed from the

5 CALIOP pixels that were closest to the center of the

AVHRR GAC pixel. Therefore, the cloud fractions

from CALIOP were constrained to have the values of

0, 0.2, 0.4, 0.6, 0.8, or 1.0.

The collocation described above was applied to all

NOAA-18/AVHRR GAC and 1-km CALIPSO 1-km

cloud-layer data in 2007. Figure 2 shows the global

and viewing geometry distributions of the collocated

AVHRR–CALIPSO data during 2007. As Fig. 2 shows,

the data cover all latitudes and longitudes though the

distributions of latitude show distinct peaks near the

North and South Poles. Most of the data occur with ze-

nith angles less than 208. Data are available at all solar

zenith angles though solar angles away from the termi-

nator are more prevalent. Ideally, the distributions of the

training data would cover all viewing conditions. How-

ever, given the orbits of CALIPSO, terminator condi-

tions cannot be viewed outside of the polar regions. To

account for this the cloud-detection metrics, described

later, are chosen to be insensitive to the viewing angles

wherever possible.
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4. Naive Bayesian formulation

In the full or classical Bayesian approach (Uddstrom

et al. 1999; Merchant et al. 2005), the probability of

a given passive satellite pixel being cloudy for a set of

features F is given by P(Cyes j F) defined as

P(Cyes jF) 5
P(Cyes)P(F jCyes)

P(F)
, (1)

where P(Cyes) is the prior probability of any pixel being

cloudy without any knowledge of F and P(F) is the

probability of existence of the pixel’s set of features F.

The term P(F j Cyes) is the probability of the existence

of the pixel’s set of features for the cloudy pixels. The

components in the feature set F are referred to as the cloud

mask classifiers and the particular features employed in this

approach are described in section 6. The Bayesian context,

P(F j Cyes) is referred to as the posterior probability.

One issue with the classical Bayesian approach is that

the use of N classifiers requires the computation of

N 3 N dimensioned arrays holding the class conditional

probabilities. In most cloud-detection approaches, several

tests are required to fully detect all types of cloudiness in

visible–infrared imagery. To put this in perspective, while

the CALIPSO–AVHRR collocation process described

above resulted in over 5 million pixels for the 12-month

period studied, that number is not sufficient to fully

populate the N 3 N space required for the cloud mask

classifiers used in this algorithm especially given the need

to compute these classifier distributions for several sur-

face types. To overcome this we have employed a naive

Bayesian approach. In the naive Bayesian assump-

tion, each of the feature probabilities can be treated as

independent, and the value of P(Cyes j F ) can be re-

written as follows:

P(Cyes jF) 5

P(Cyes)P
N

i51
P(Fi jCyes)

P(F)
. (2)

The denominator in the above equation P(F) is com-

puted as

P(F) 5 P(Cyes)
aN
i51

P(Fi jCyes) 1 P(Cno)P
N

i51
P(Fi jCno),

(3)

where P(Cno) is the prior probability of any pixel being

clear [P(Cno) 5 1 2 P(Cyes)].

The obvious advantage of this method is the use of N

classifiers (or cloud mask tests) requires generation of N,

not N 3 N, dimensioned arrays. While this approxima-

tion may seem severe, naive Bayesian approaches have

been applied successfully to many complex detection

problems (Kossin and Sitkowski 2009).

To generate the clear and cloudy classifier distri-

butions, three filters were applied to the data. First,

memory limitations required a thinning of the data by

a factor of 2. Second, only collocations that occurred

with a time difference of less than 10 min were used and

this reduced the total number to 6 678 802. To avoid the

increased uncertainty in the collocation process for

subpixel cloudiness, only pixels where the 5-km CALI-

PSO cloud fraction was either 0 or 1.0 were included

and this filter reduced the number of collocations down

to 5 708 524. Next, the classifiers were computed separately

FIG. 1. Illustration of the information provided during a simultaneous overpass between CALIPSO and

NOAA-18/AVHRR. The white line in the AVHRR image shows the CALIPSO ground track. The CALIPSO

cross sections correspond to those observed along the white line in the AVHRR image.
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for different regions or surface types. The selection of

these surface types is discussed below. Figure 3 shows an

example set of clear and cloudy classifier distributions

computed for one classifier (Tmax 2 T) over the deep-

ocean surface type. The Tmax 2 T classifier is described

in the next section. The clear and cloudy distributions

are normalized to unity for clarity of presentation. Also

shown in Fig. 3 is the posterior probability as a function

of the classifier. For illustrative purposes Fig. 3 assumes

only the use of one classifier while in the full approach all

six classifiers are used in Eq. (2). Figure 3 does illustrate

one of the key strengths of the Bayesian approach in that

the probability of cloud varies smoothly over the range

of the classifier. In threshold-based techniques, the prob-

ability distributions are assumed to jump from 0 to 1 when

passing over the chosen threshold.

Table 1 provides sample values for the estimation

of the posterior probability given in Eq. (3). The results

are given for a particular surface type (shallow ocean)

and for each of the six classifiers. The determination of

the surface types and classifiers is discussed in the next

sections. The class conditional no [P(Cno)] and class

conditional no [P(Cyes)] values coupled with the

knowledge of the Prior No and Prior Yes values are all

that are required to generate the final posterior prob-

ability value (0.87) for this pixel. The posterior prob-

abilities computed for each class individually are

shown for reference only. The chosen pixel was a ob-

served during daytime conditions. Therefore, the night

4-mm classifier was turned off using the procedure

described in section 6.

5. Selection of surface types

As stated above, the selection of different surface

types to generate the classifiers is critical. We have cho-

sen to classify the globe into seven surface types. The

goal of classifying different surface types is to capture

the systematic biases in our knowledge of the clear-sky

conditions that vary greatly from one surface type to

another. In the current algorithm, we classify the globe

into the following surface types: 1—deep ocean, 2—

shallow water, 3—land, 4—snow, 5—Arctic, 6—Antarctic,

and 7—desert. These surface types were chosen after

FIG. 2. Distribution of pixel geolocation and viewing geometry characteristics for the AVHRR

training data.
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a series of trial and error experiments. Each surface

type represents a region where the distribution in the

contrast between clear and cloudy skies and the accuracy

of the performance of the clear-sky model is similar. The

inputs to the surface type are the land cover data from

the land cover database used in the MODIS geolocation

file (‘‘MOD/MYD03’’), the snow field within the Na-

tional Centers for Environmental Prediction (NCEP)

reanalysis (Kalnay et al. 1996), the NOAA Optimum

Interpolation Sea Surface Temperature Version-2

(OISST) daily 25-km SST analysis (Reynolds et al. 2002),

and 3.75-mm surface emissivity from the Seeman–Borbas

(SEEBOR) surface emissivity database (Seemann et al.

2008). Figure 4 shows the global distribution of these

surface types for 1 January and 1 July 2009. A brief de-

scription of these types follows. The surface types will

vary with the frequency of the ancillary data. While the

land cover data are temporally invariant, the surface

emissivity values vary every 16 days. The largest driver of

the surface type variation is the snow and ice cover in-

formation.

The sea ice information is taken from the OISST data

and varies daily. The snow information is taken from the

NCEP reanalysis, which is updated every 6 h.

The deep-ocean surface type consists of pixels where

the MOD03 land mask was set to ‘‘deep ocean’’ and the

sea ice information from the OISST data indicated ice-

free conditions. Highly accurate clear-sky radiative

transfer modeling and spatially uniform surfaces char-

acterize the deep-ocean surface type.

The shallow-water surface type is defined by ice-free

pixels that the MOD03 land mask classified as moder-

ate ocean, deep inland water, and shallow inland water.

In addition, any pixels where the 3 3 3 standard de-

viation of the background SST from the OISST exceed

1.0 K were also included in the shallow-water surface

type. In general, this surface type includes water bodies

where our knowledge of the surface temperature is

much less accurate than that of the deep-ocean surface

type.

The land surface type includes all land surfaces that are

not covered by snow and not classified as desert. The

TABLE 1. Naive Bayesian computations for one pixel. The columns show the values for each of the classifiers used in this study. The pixel

fell into the shallow-ocean surface type and for this surface type, the Prior No value is 0.22 and the Prior Yes value is 0.78. The pixel was

a daytime pixel and the night-4 mm classifier was ignored. The final posterior probability generated using Eq. (3) using all classifiers is 0.87.

The posterior probability values for each class are shown for reference and are not directly used in the computation of the final posterior

value.

ETROP Tmax 2 T FMFT Night-4 mm Day-4 mm 0.63 mm

Classifier value 0.025 0.278 0.329 2999.0 0.824 4.263

Class conditional yes 0.016 0.063 0.022 1.0000 0.007 0.018

Class conditional no 0.036 0.216 0.042 1.0000 0.0 0.021

Posterior probability (for each class alone) 0.616 0.513 0.651 0.783 0.991 0.756

FIG. 3. Conditional classifier distributions for the Tmax 2 T metric for the deep-ocean clas-

sifier. The term Tmax 2 T is the difference between the warmest 11-mm brightness temperature

over a 5 3 5 array centered on a pixel and the pixel’s 11-mm brightness temperature. The red

line shows the conditional classifier for clear results and the blue line shows the conditional

classifier for cloudy results. The black line shows the posterior probability computed using this

classifier alone. The cloudy and clear classifiers are normalized to unity for clarity.
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snow surface type includes all land surfaces covered by

snow excluding Antarctica and Greenland.

The Arctic surface type includes all pixels labeled as

sea ice in the Northern Hemisphere. The Antarctica

surface type includes all sea ice in the Southern Hemi-

sphere and all snow-covered surfaces south of 608S. On

the basis of guidance from the MODIS cloud mask team

located at the University of Wisconsin, Greenland was

also included in the Antarctica surface type.

The desert surface type includes all pixels with a 3.75-

mm surface emissivity less than 0.90 that occurred

within 60 latitudinal degrees of the equator. The use of

the 3.75-mm emissivity was used to ensure optimal

performance for the 3.75-mm classifiers.

a. Global distribution of surface types

Figure 4 shows the global distribution of the surface types

for 1 February 2009 (top) and 1 July 2009 (bottom). As Fig.

4 shows, the spatial coverage of these surface types varies

with season with snow-covered land showing the most

dramatic variation. The appearance of shallow ocean away

from the coasts is due to the inclusion of heterogeneous

SST regions (i.e., oceanic fronts) into this surface type.

b. Impact of surface types of cloud-detection
performance

Figure 5 shows the incremental improvement in glob-

ally averaged probability of cloud detection (POD) that

FIG. 4. Surface types used to define the Bayesian classifiers: (top) 1 Feb and (bottom) 1 Jul 2009.
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comes with the addition of new surface types. Beyond

the seven surface types used here we felt the benefit of

adding additional types was so small as to not be worth

the additional complexity and use of resources. For ex-

ample, when a mountain surface type was added, it in-

creased the POD by only 0.0014. Each of the classifiers

described next are generated separately for the above

surface types. The resulting distribution of pixel counts

for each surface type in the training data was the fol-

lowing: deep ocean: 59%; shallow water: 4%; land: 16%;

snow: 5%; Arctic: 3%; Antarctic: 8%, desert: 5%. Note

the numbers in Fig. 5 are different than the numbers in

Table 2. If a global mean were computed in Table 2, it

would match the asymptotic value of the curve in Fig. 5.

6. Cloud mask classifiers

The naive Bayesian formulation allows for multiple

cloud classifiers to be used without the need for large

arrays. This section briefly describes each of the six

classifiers used in the naive Bayesian cloud mask. A

more detailed description can be found in Heidinger

(2011), as the same classifiers are used in Geostationary

Operational Environmental Satellite-R (GOES-R) Al-

gorithm Working Group (AWG) cloud mask algorithm.

It is important to note that even with limited spectral

information offered by the AVHRR, the number of

cloud mask classifiers or tests can be large (’10) and the

specific number used here is 6. In the AWG cloud masks,

we have decided to prioritize the infrared information to

help ensure day–night consistency. In addition, we rely on

radiative transfer calculations to reduce artificial sensi-

tivities to variability in viewing geometry and the atmo-

spheric and/or surface state.

a. Emissivity referenced to the tropopause (ETROP)

The first classifier is the 11-mm emissivity computed

assuming the cloud resided at the tropopause. This

classifier has also found use in cloud-typing routines

(Pavolonis 2010). The ETROP test assumes that clouds

are colder at 11-mm brightness temperatures than clear

sky. Traditionally, window brightness temperatures are

used in tests looking for cold pixels. The ETROP,

however, operates on the 11-mm emissivity computed

assuming the cloud resides at the tropopause. The emis-

sivity is computed as etropo 5 (I 2 Iclear)/(Ibb,tropo 2 Iclear)

where I is observed radiance, Iclear is the computed

clear-sky radiance and Ibb,tropo is the radiance from a

blackbody cloud emitting at the temperature of the

tropopause.

The variation of etropo with the true cloud emissivity

is shown in Fig. 6. In Fig. 6, the cloud is simulated using

an ice cloud located between 300 and 400 hPa in a stan-

dard midlatitude summer atmospheric profile. The slope

is constant and the ratio between the true and the tro-

popause emissivity is simply the ratio of (Ibb,tropo 2 Iclear)/

(Ibb 2 Iclear), where Ibb is the radiance from a blackbody

cloud emitting at the actual cloud temperature. For

clouds within the troposphere, Ibb,tropo is always less than

Ibb, and values of etropo are less than the actual emissivity.

For the simulation in Fig. 6 where the cloud was placed

roughly 200 hPa below the tropopause, the values of

etropo are roughly 20% less than the true emissivity.

Even though the values of etropo are much lower for low-

level clouds, the accuracy of the clear-sky radiative

FIG. 5. Globally averaged POD based on the number of indivi-

dual surface types defined for the Bayesian classifiers. The POD is

calculated using CALIPSO cloud detection as a benchmark.

TABLE 2. Performance metrics of the six-term naive Bayesian cloud mask relative to CALIPSO/CALIOP. Priori cloud probability

reports the CALIPSO-derived probability of pixels being cloudy within the specific surface type. Posterior cloud probability provides the

probability of all pixels being cloudy after application of the cloud mask. Mean cloud probability can be considered as the cloud fraction.

‘‘Skill’’ is the Kuiper–Hansen skill score, ‘‘false’’ is the false-alarm rate, and ‘‘missed’’ is the missed-cloud rate. Data used are the entire

2007 training period.

Deep ocean Shallow water Land Snow Arctic Antarctica Desert

Priori cloud probability 0.791 0.741 0.659 0.706 0.697 0.709 0.265

Posterior cloud probability 0.765 0.712 0.597 0.640 0.648 0.679 0.218

POD 0.940 0.926 0.898 0.833 0.830 0.779 0.928

Skill 0.865 0.843 0.817 0.663 0.643 0.495 0.758

False 0.017 0.023 0.020 0.050 0.061 0.095 0.012

Missed 0.043 0.052 0.082 0.117 0.109 0.126 0.060
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transfer (especially over oceans) makes the ETROP

classifier robust and effective. In clear conditions, the

tropopause emissivity should approach zero. Negative

values are possible when the computed clear-sky radi-

ances are greater than the observed clear-sky radiances.

b. Relative thermal contrast (Tmax 2 T)

While the ETROP metric involves the absolute

deviations of the 11-mm observations from the clear-

sky estimates, the relative thermal contrast classifier

(Tmax 2 T ) works on the relative variation of the

11-mm observations. The underlying assumption is

that a pixel significantly colder than its warmest

neighbor is likely cloudy. The Tmax 2 T operates on

the difference in 11-mm brightness temperature of

a pixel and its warmest neighbor within a 5 3 5 pixel

array. This test is designed to detect cloud edges and

other small-scale cloud features. A benefit of this

metric is that it does not rely on knowledge of the sur-

face temperature. In some areas such as polar regions

in the winter, clouds are warmer than the surface. The

CALIPSO-derived classifier distributions in those re-

gions should account for these conditions and automati-

cally downplay the impact of the Tmax 2 T.

c. Four-minus-five (FMFT)

The FMFT is based on the split-window (11 and

12 mm) observations that are provided by channels 4

and 5 on the AVHRR. The 11–12-mm brightness tem-

perature difference (BTD) increases in the presence of

semitransparent cloud. For opaque cloud, this BTD

often falls below the clear-sky value. The particular

FMFT metric used here incorporates the clear esti-

mate of the 11–12 BTD as shown below:

x 5 BTD11,12 2 BTDclear
11,12

BT11 2 260:0

BTclear
11 2 260:0

 !
. (4)

This classifier represents the difference between the

observed 11–12 BTD and an estimate of the clear-sky

value that is consistent with the observed 11-mm bright-

ness temperature. When the 11-mm brightness tempera-

ture falls below 260 K, the classifier is set to BTD11,12.

The goal of this formulation is to bring in information

from the clear-sky model to make the classifiers account

for variations in surface temperature and atmospheric

moisture.

d. Daytime 4-mm pseudoemissivity (day 4-mm)

This test uses the 4-mm observations converted to

a pseudoemissivity relative to the emissivity computed

for the 11-mm observation. The actual wavelength on

the AVHRR is 3.75 mm. Given the highly nonlinear re-

lationship between radiance and brightness tempera-

ture at 4 mm, the pseudoemissivity can grow very large

in the presence of cloud during the day. This formula-

tion incorporates estimates of the surface emissivity at

4 mm from Seemann et al. (2008).

The 4-mm pseudoemissivity e4 is computed using the

following relationship:

e4 5 I4/I4,bb. (5)

The actual classifier used in the naive Bayesian ap-

proach (x) is defined as

x 5 (e4 2 e4,clear)/e4,clear, (6)

where e4,clear is an estimate of e4 under cloud-free con-

ditions and is computed as follows:

e4,clear 5 Isolar
4,clear/I4,bb, (7)

where Isolar
4,clear is the clear-sky estimate of the 4-mm radi-

ance that includes the effects of solar reflectance; Isolar
4,clear

is computed using the following relationship:

I solar
4,clear 5 I4,clear 1 (1 2 e4,sfc) t4,sfc(m0F0/p). (8)

FIG. 6. Simulated variation of the emissivity metrics as a function

of the true cloud 11-mm emissivity. The computations were done

for an ice cloud positioned between 300 and 400 hPa in the stan-

dard midlatitude summer profile. The daytime results assumed

a solar zenith angle of 308. The lower surface was ocean. The val-

ues plotted are the metrics used in the naive Bayesian mask. For

clarity, the value of 1 is subtracted from the nighttime 4-mm

pseudoemissivity values.
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Here e4,sfc is the 4-mm surface emissivity, t4,sfc is the

transmission for the solar to surface satellite path, m0 is

the cosine of the solar zenith angle, and F0 is the in-

tegrated amount of energy in the 4-mm channel. The

daytime metric is scaled to better account for variations

in solar zenith angle which impact both e4 and e4,clear.

Figure 6 shows the variation of the daytime 4-mm

emissivity metric, given in Eq. (8), as a function of the

actual 11-mm cloud emissivity for an ice cloud placed

between 300 and 400 hPa in a midlatitude summer at-

mosphere with a solar zenith angle of 308. The metric

peaks at values much greater than unity for moderately

opaque clouds.

e. Nighttime 4-mm pseudoemissivity
(night 4-mm)

This classifier also uses 4-mm pseudoemissivity. Without

solar illumination, the 4-mm emissivity for low opaque

clouds can fall well below unity. For semitransparent

and cold cloud, the 4-mm emissivity becomes very

large. There is no need for solar zenith angle scaling as

in the daytime classifier. The ranges of the day and night

e4 values were different enough to warrant separate

classifiers to improve performance. The nighttime 4-mm

pseudoemissivity classifier is defined as the value of e4

without any scaling. Figure 6 shows the variation of

the nighttime 4-mm pseudoemissivity metric given in

Eq. (7). For visual convenience, the nighttime values of

e4 plotted in Fig. 6 are offset by 1. The variation of

nighttime and daytime 4-mm pseudoemissivity metrics

are qualitatively similar for ice clouds as illustrated in

Fig. 6. For water clouds, the nighttime metric can fall

below the clear-sky values, and for this reason the

nighttime and daytime classifiers are separated.

f. Reflectance at 0.63 mm (ref 0.63 mm)

The 0.63-mm reflectance is very important in cloud

detection owing to the high reflectivity of clouds and

relatively low reflectivity of most surface types. This

classifier is the difference between observed 0.63-mm

reflectance and the estimated value under cloud-free

conditions. The clear-sky estimate is generated using

the surface reflectance maps described by Moody

et al. (2007) coupled with a Rayleigh and aerosol

scattering model. While inclusion of this test is con-

trary to prioritization of the IR channels, it is necessary

to maintain consistent performance during daytime

periods when the 4-mm channel is not available. The

4-mm channel is not available during daytime opera-

tion of the AVHRRs on NOAA-17, Meteorological

Operation satellite A (MetOp-A), and NOAA-16

(2000–03).

g. Turning off classifiers for specific situations

For some situations, not all classifiers can be run on

all data. For example, the nighttime 4-mm emissivity

classifier is used only at night and the daytime 4-mm

emissivity and 0.63-mm reflectance classifiers are used

only during the day. In addition, the daytime 4-mm

emissivity and 0.63-mm reflectance classifiers are turned

off over oceanic glint. In the naive Bayesian context, a

classifier can be turned off if the class conditional prob-

abilities for this specific feature are set to unity:

P(Fi jCyes) 5 P(Fi jCno) 5 1.

In the case of a single classifier, turning the classifier off

will result in the posterior probability being equal to the

prior probability.

7. Performance metrics generated from training
dataset

Table 2 provides the metrics for the performance of

the six-term naive Bayesian cloud mask generated from

the 2007 training data. The data are displayed for each

of the seven surface types described above. The first

row shows the value of P(Cyes) in Eq. (1) which is the

probability of a pixel being cloudy as determined in the

training dataset. The second row shows the posterior

probability of a pixel being cloudy as determined by

the naive Bayesian cloud mask. All pixels with a poste-

rior probability of cloud exceeding 0.5 were considered

cloudy. In this context, the posterior and prior proba-

bilities can be interpreted as the cloud fractions from

CALIPSO/CALIOP and the naive Bayesian mask. Note

the posterior cloud probabilities are always less than the

prior cloud probabilities. This is an expected outcome

because of the higher sensitivity of CALIPSO/CALIOP

lidar to the presence of cloud relative to passive AVHRR

observations. The fact that these prior and posterior cli-

matological probabilities differ by roughly 5% does not

impede the use of CALIPSO for training the AVHRR

cloud detection. As shown in the metrics described be-

low, our analysis does not indicate a prevalence of false

detection (false) of the AVHRR cloud-detection results

relative to CALIPSO.

The third through sixth rows of Table 2 provide the

metrics of performance of the Bayesian cloud mask

within the training dataset. In these calculations, a pos-

terior probability of 0.5 was used to separate clear from

cloudy. The third row shows the POD values, the fourth

row shows the Kuiper–Hansen skill score, the fifth row

shows the false-alarm rate (false), and the final row

shows the rate of missed clouds (missed). In general,

the best performance for all metrics is observed for the
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deep-ocean and shallow-water surface types with POD

values exceeding 0.9 and skill values exceeding 0.8. For

these surface types, the false rates are less than 5% and

the missed rates are around 5%. The next best perfor-

mance is seen for the land class, followed by the desert

class. For these two types, the POD values hover near

90%. Both generate false rates less than 3% and missed

rates less than 10%. Of the three frozen surface classes,

the best performance is seen in snow-covered land fol-

lowed by the Arctic. By far the worst performance is

seen in the Antarctica surface type. For both Antarctica

and Arctic, the false and missed rates exceed 10%.

This variation of performance with surface type is

expected and is one of the main reasons for their ex-

istence in this algorithm. As described by section 10,

one of the strengths of the Bayesian approach is the

ability to estimate uncertainties of the cloud-detection

results and to allow users of these data to account for the

variations in performance over different surface types.

Table 3 provides the variation of the POD metric for

day and night conditions. During the night, the night-

time 4-mm pseudoemissivity is active and the 0.63-mm

reflectance and daytime 4-mm pseudoemissivity classi-

fiers are turned off. Table 3 shows that except for the

desert surface type, the night performance is worse

than the daytime. The maximum day–night difference

in the POD metric is scene in the Arctic and Antarctic

surface types with values being of about 0.07. The land

surface type shows a difference of about 0.03 and the

remaining surface types exhibit day–night POD differ-

ence of 0.02 or less. In the Arctic and Antarctic, day and

night conditions correspond to different seasons and

therefore potentially different cloud regimes.

For comparison, Table 4 shows the same metrics as

Table 2 computed for a threshold-based cloud-detection

scheme developed by the GOES-R AWG (Heidinger

2011). The AWG mask applied to the AVHRR uses the

same classifiers as described here. The thresholds were

derived from the same training dataset used here. As

described in Heidinger (2011), the thresholds were set so

that each classifier (or test in this case) gave a maximum

false-alarm rate of 2%. The AWG mask pursued

a threshold-based approach to give AWG applications

the ability to ignore certain tests found inappropriate for

specific applications. As Table 3 shows, the threshold-

based application POD and skill values are always less

than the naive Bayesian results for all surface types with

the largest differences seen in the snow-covered land,

Arctic, and Antarctic surface types. In practice, the

threshold approach is more apt to generate false alarms

because only one threshold needs to be exceeded for

a cloudy result to be generated. This is consistent with

results in Table 3, which shows the threshold-based

scheme to generate higher false alarms and generally

miss less cloud than the naive Bayesian scheme. Overall,

the performance between the two is not drastically dif-

ferent. However, the systematic improvement in the

POD and skill metrics along with availability of the

uncertainty estimates (described in section 10) led to the

adoption of the naive Bayesian formulation for PAT-

MOS-x.

8. Generating a four-level cloud mask

Typically, most imager cloud masks provide four

classifications of pixel cloudiness. Both the opera-

tional AVHRR and MODIS masks generate a cloud

mask that can be clear, probably clear, probably

cloud, or cloudy. In the naive Bayesian formation, an

initial threshold on the posterior probability of 0.5 is

TABLE 3. POD metric computed for the six-term naive Bayesian mask for all conditions and separated by day and night conditions.

Deep ocean Shallow water Land Snow Arctic Antarctica Desert

All 0.94 0.91 0.90 0.84 0.82 0.78 0.93

Day 0.94 0.92 0.92 0.85 0.86 0.83 0.94

Night 0.93 0.90 0.89 0.84 0.79 0.76 0.93

TABLE 4. Performance metrics of GOES-R AWG threshold-based cloud-detection scheme applied to the AVHRR using the same

classifiers described here. The meaning of the metrics and data used are the same as in Table 2. As in Table 2, the performance metrics

were computed relative to the CALIPSO/CALIOP results.

Deep ocean Shallow water Land Snow Arctic Antarctica Desert

Cloud fraction 0.784 0.723 0.668 0.642 0.492 0.653 0.285

POD 0.927 0.894 0.863 0.767 0.740 0.708 0.905

Skill 0.790 0.744 0.691 0.500 0.552 0.349 0.777

False 0.033 0.045 0.070 0.090 0.039 0.117 0.056

Missed 0.040 0.061 0.067 0.143 0.221 0.174 0.039
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employed to separate clear and cloudy pixels. A thresh-

old of 0.9 is then applied to separate cloudy from prob-

ably cloudy pixels. A threshold of 0.1 is applied to

separate clear from probably clear pixels. Figure 7 dem-

onstrates this with the distribution of posterior proba-

bilities generated from a single daytime scene. Note the

large relative peaks of observations near zero and unity.

9. Example application to one AVHRR scene

To illustrate the performance of the naive Bayesian

cloud mask at the pixel level, Fig. 8 was created. The

upper-left panel in Fig. 8 is a false color image created

with the 0.63-mm reflectance on the red gun, the 0.86-mm

reflectance on the green gun, and the 11-mm brightness

temperature (reversed) on the blue gun. The upper-right

panel shows the cloud posterior probability for this

scene. The lower left shows the derived four-level

cloud mask and the lower right provides an estimate of

the uncertainty in the cloud detection. The computa-

tion of the uncertainty is described in the next section.

Figure 8 illustrates some of strengths of this ap-

proach. A strong band of glint is easily discernible in

the upper-left false color image. As stated above, a glint

mask is used to detect the presence of glint. When glint

is detected, the tests that are sensitive to glint are

turned off using the procedure described above. In these

conditions, the approach relies on fewer classifiers and

the likelihood of a confident decision decreases. This

is seen as the region of nonzero cloud probabilities in

the clear-glint region and the associated higher levels of

uncertainty in the lower-right image. The other regions

that provide elevated uncertainties are regions of cloud

edges and other small-scale features. While these re-

gions are not represented in the training data because of

filtering, the Bayesian approach is still able to correctly

generate less certain results in these problematic con-

ditions. In addition, even if the glint mask failed and

glint-sensitive tests were applied to the glint-filled pixels,

the non-glint-sensitive classifiers would act to mitigate

the potential false detection of cloud. This robustness

due to the interworking of the different classifiers is an-

other key strength of the Bayesian approach over its

threshold-based counterparts.

10. Estimating uncertainty

One of the strengths of the Bayesian approach to

cloud detection is the ability to generate estimates of

the uncertainty. As stated above, pixels with cloud

probability exceeding 0.5 are assumed to be cloudy.

For these pixels, the uncertainty estimate is defined as

1 2 (posterior probability). For clear pixels where the

cloud probability falls below 0.5, the uncertainty is

simply defined as the posterior probability. Using this

definition, the uncertainty cannot exceed 0.5. As shown

in Fig. 8, the cloud-detection uncertainty is elevated in

the presence of sun glint and cloud edges. The cloud-

detection uncertainty is also elevated when the classifiers

offer little skill in cloud detection such as for condi-

tions that occur in the polar regions. This behavior

varies with solar viewing conditions. Figure 9 shows

the global variation in the cloud-detection uncertainty

computed for the entire year of 2007 for NOAA-18 and

NOAA-15. The upper-left panel shows the NOAA-18

descending node (0130 LST), the upper-right panel

shows the NOAA-15 descending node (0700 LST), the

lower-left panel shows the NOAA-18 ascending node

(1330 LST), and the lower-right panel shows the

NOAA-15 ascending node (1900 LST). All four images

indicate that the uncertainties are highest in Antarctica

with values approaching 0.3–0.4 over most of that region.

Values of 0.2 are seen in the Arctic and in the high-

latitude land regions. In addition, there is a distinct var-

iation with observation time. Uncertainties of 0.1–0.2

are observed over most arid land regions during the

terminator orbit conditions (0700/1900 LST). In gen-

eral, the 1300 LST uncertainty field is the smallest of all

four. In PATMOS-x, these uncertainty values are in-

cluded in the dataset and are available for use in placing

confidence estimates on all cloud fraction time series.

11. Comparison of the PATMOS-x Bayesian
cloud-detection performance with other
methods

The PATMOS-x approach for cloud detection de-

rived here has been applied to the entire record of

FIG. 7. Distribution of cloud probabilities for day 353 of 2007

from NOAA-18/AVHRR ascending and descending nodes. The

dashed vertical lines represent the probability thresholds for sep-

arating clear from probably clear (0.1), probably clear from prob-

ably cloudy (0.5), and probably cloudy from cloudy (0.9).

JUNE 2012 H E I D I N G E R E T A L . 1139



AVHRR GAC data (1978–2009). The cloud fractions

and other PATMOS-x cloud properties were submitted

recently to the Global Energy and Water Cycle Experi-

ment (GEWEX) cloud climatology assessment project

led by C. Stubenrauch. The GEWEX effort required

satellite cloud climate datasets to be submitted in a

network common data form (netCDF) format with a

spatial resolution of 18 3 18. The providers included over

10 groups. In this section, we compare the PATMOS-x

results with the results from other satellite imagers

flying in roughly the same time and that employ visible,

near-infrared, and infrared channels for cloud de-

tection. Therefore we compared with the results

from the MODIS Science Team (MODIS-ST) (Frey

et al. 2008; Ackerman et al. 2008), the MODIS Clouds

and the Earth’s Radiant Energy System (CERES) Team

(MODIS-CE) (Trepte et al. 2002; Minnis et al. 2008)

and the International Satellite Cloud Climatology Pro-

ject (ISCCP) D1 results (Rossow and Garder 1993). In

addition, we included the CALIPSO Science Team

(CALIPSO-ST) (Winker et al. 2009) results. All results

except ISCCP were averages of the 0130 and 1330 LST

datasets. The ISCCP data were the averages of the 0300

and 1500 LST data because there are no ISCCP products

at 0130/1330 LST. The data used here are the monthly

averages for 2007. These GEWEX datasets will be

FIG. 8. Example of pixel-level naive Bayesian cloud mask results from PATMOS-x applied to a NOAA-18/

AVHRR scene over the Pacific Ocean during the day. (top left) False color image based on the 0.63-, 0.86-, and 11-

mm observations. (top right) The computed naive Bayesian cloud probability using the six-term AVHRR classifiers.

(bottom left) The derived four-level cloud mask and (bottom right) the cloud-detection uncertainty. The probability

and uncertainty are expressed as fractions where 1.0 would represent 100%.
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available to the public after the GEWEX assessment

report is submitted in 2011.

The goal of this analysis is to demonstrate that the

naive Bayesian cloud detection applied in PATMOS-x

generates global cloud amount values consistent with

those from other existing satellite-based climatologies

that are generated using very different techniques ap-

plied to different sensors. The MODIS-ST and MODIS-

CE datasets use cloud-detection schemes that are based

on thresholds and utilize many more channels than that

provided by the AVHRR and/or used in the PATMOS-x

Bayesian mask. The native spatial resolution of the

MODIS datasets is 1 km and is therefore much finer

than the AVHRR GAC data. In contrast, the ISCCP

cloud detection is based largely on comparison of the

0.63- and 11-mm observations to internally generated

clear-sky estimates. The native spatial resolution of the

ISCCP observations varies but is generally closer to that

of the AVHRR GAC than the MODIS observations.

One overall difference between PATMOS-x and the

others is that PATMOS-x does rely more heavily on fast

radiative transfer calculations and high-spatial-resolution

ancillary datasets. As stated before, PATMOS-x does this

to obtain globally consistent results with the limited in-

formation from the AVHRR. The comparison to these

other datasets is a measure of the success of PATMOS-x

in achieving this goal.

Figure 10 shows the mean global cloud fraction

map derived for 2007 using the GEWEX submitted

data for PATMOS-x, CALIPSO-ST, MODIS-ST, and

MODIS-CE. For visual clarity, the CALIPSO-ST data

were smoothed using a five-point kernel. In addition,

the CALIPSO-ST results submitted to GEWEX use

the 5-km product, resulting in higher cloud sensitivity

and therefore slightly higher cloud coverage than that

used in the derivation of the Bayesian classifiers. As Ta-

ble 2 shows, the cloud amounts in the trainings set between

the 1-km CALIPSO and the naive Bayesian results are

more similar. The overriding feature of Fig. 10 is the high

degree of similarity in the results for each dataset. Other

features are apparent though. For example, the MODIS-

ST results show more cloud over northeast Asia and the

CALIPSO-ST results show an increase in tropical

cloudiness.

To further quantify these differences, Fig. 11 shows the

global maps of the mean of magnitude of the monthly

FIG. 9. Global pattern of cloud fraction uncertainty from the PATMOS-x naive Bayesian approach. (top left)

NOAA-18 descending (0130 LST). (top right) NOAA-15 descending (0700 LST). (bottom right) NOAA-18 as-

cending (1330 LST). (bottom left) NOAA-15 ascending (1900 LST).
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differences relative to the PATMOS-x values. By com-

puting the mean magnitude, we prevent positive and

negative differences from cancelling each other out in

the annual mean. Figure 11 shows the pervasive differ-

ence between CALIPSO-ST and PATMOS-x (and the

others) in the tropics. The results show the CALIPSO-

ST and PATMOS-x differ by up to 0.2 over some regions

of the tropics and by roughly 0.1 over most other regions.

Also, the MODIS-ST differences in northeast Asia are

more apparent in Fig. 11. Included in the upper-left

panel are the ISCCP results. ISCCP and PATMOS-x

differences are largest over land with differences ap-

proaching 0.2 over central Asia. The MODIS-CE re-

sults show small mean differences with PATMOS-x over

most regions. An analysis of the anomaly correlations

of the monthly time series for 2007 indicated that all

datasets were highly correlated in most regions, which

indicates that differences shown in Fig. 11 are sys-

tematic biases. The exceptions are the differences with

MODIS-ST in northeastern Asia and the differences

between all datasets in Antarctica and Greenland.

Figure 12 shows a zonal cloud fraction distribution

computed over 2007. The CALIPSO-ST is not available

within 58 of the Poles. The zonal comparisons illus-

trate the relatively larger cloud amounts provided by

CALIPSO-ST over the tropics. Excluding CALIPSO-ST,

the results from other datasets do not vary by more than

5% over any zones outside of the polar regions. The

PATMOS-x and MODIS-CE results appear to be within

2% for the nonpolar regions. Figure 13 shows the

monthly averaged global cloud fraction time series for

2007 for each dataset. The shape of the results indicates

that the general high correlation seen in the regional

analysis also appears globally. CALIPSO-ST returns the

highest global cloud fractions with values exceeding

70% for most months. If one ignores CALIPSO-ST, the

other datasets including PATMOS-x all agree within 2%

for each month and give global cloud fractions ranging

from 64%–68%. Again, the PATMOS-x and MODIS-

CE results agree to within 1% for each month of 2007.

In summary, the comparisons made possible by the

GEWEX datasets indicate the naive Bayesian cloud de-

tection applied in PATMOS-x generates global cloud

fractions that are similar to other accepted satellite cloud

datasets including those from advanced sensors such as

MODIS. Given the AVHRR radiometric performance

FIG. 10. Mean global cloud amount for 2007 based on monthly averages of 0130 and 1330 LST data. (top left) The

PATMOS-x results, (top right) the CALIPSO-ST results, (bottom left) the MODIS-ST results, and (bottom right)

the MODIS-CE results.
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is similar to the NOAA-18 sensor used in this com-

parison, we can have confidence that PATMOS-x per-

formance will remain stable throughout the 1980s and

1990s.

12. Conclusions

The naive Bayesian approach has been shown to of-

fer an effective method to translate the unprecedented

skill in cloud detection offered by CALIPSO into the

FIG. 11. Global distribution of the mean magnitude of the difference in cloud fraction computed for each month in

2007. Difference was computed relative to PATMOS-x. Data used were the same as those used in Fig. 9. ISCCP data

are the mean of the 0300 and 1500 LST fields averaged together for each month.

FIG. 12. Zonal distribution of cloud fraction for 2007.

FIG. 13. Variation with month of the global cloud fraction

during 2007.
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AVHRR—a sensor that provides a uniquely long data

record. The approach derived for the PATMOS-x al-

gorithm used six classifiers developed over seven surface

types. The resulting Bayesian cloud-detection scheme

was shown to provide probability of correct detection

(POD) metrics of roughly 90% over ocean, desert, and

snow-free land; 80% over snow-covered land and

Arctic sea ice; and roughly 70% over Antarctica and

Greenland. Comparisons with existing global cloud-

detection rates from other passive satellite sensor da-

tasets indicate that PATMOS-x is in much closer

agreement. Our analysis using data from 2007 indicates

that PATMOS-x agrees to within 5% for global and zonal

means with the monthly averaged data from ISCCP and

two MODIS-based datasets. This algorithm has been ap-

plied successfully to all AVHRR data through PATMOS-

x and a nearly continuous dataset from 1981 to 2009 is

now available from the NOAA National Climatic Data

Center.

In the future, we intend to enhance the ability to

model clear-sky observations using improved ancillary

data. We also plan to apply these techniques to the Vis-

ible and Infrared Imaging Radiometer Suite (VIIRS),

which is the successor to the AVHRR with the goal of

extending PATMOS-x beyond the POES era.
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