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ABSTRACT

A geostationary satellite–derived cloud product that is based on a tropical-overshooting-top (TOT) de-

tection algorithm is described for applications over tropical oceans. TOTs are identified using a modified

version of a midlatitude overshooting-top detection algorithm developed for severe-weather applications.

The algorithm is applied to identify TOT activity associated withAtlantic Ocean tropical cyclones (TCs). The

detected TOTs can serve as a proxy for ‘‘hot towers,’’ which represent intense convection with possible links

to TC rapid intensification (RI). The purpose of this study is to describe the adaptation of the midlatitude

overshooting-top detection algorithm to the tropics and to provide an initial exploration of possible corre-

lations between TOT trends in developing TCs and subsequent RI. This is followed by a cursory examination

of theTOTparameter’s potential as a predictor ofRIbothon its own and inmultiparameterRI forecast schemes.

RI forecast skill potential is investigated by examining empirical thresholds of TOT activity and trends within

prescribed radii of a large sample of developingNorthAtlantic TC centers. An independent test onAtlantic TCs

in 2006–07 reveals that an empirically based TOT scheme has potential as a predictor for RI occurring in the

subsequent 24 h, especially for RI maximum wind thresholds of 25 and 30 kt (24 h)21 (1 kt’ 0.5 m s21). As

expected, the stand-alone TOT-based RI scheme is comparatively less accurate than existing objective

multiparameter RI prediction methods. A preliminary experiment that adds TOT-based predictors to an

objective logistic regression-based scheme is shown to improve slightly the forecast skill of RI, however.

1. Introduction

One of the essential ingredients to the intensification

of tropical cyclones (TCs) is vigorous convection with

associated latent-heat release through condensation

processes (Adler and Rodgers 1977; Kuo 1965). Identi-

fying and quantifying active convection in the tropics

has been attempted in a variety of ways, mainly through

the use of satellites (Steranka et al. 1986; Alcala and

Dessler 2002; Liu and Zipser 2005; Romps and Kuang

2009; Olander and Velden 2009).

This paper examines a new geostationary satellite–

based method that employs infrared window (IRW)

imagery and an objective tropical-overshooting-top

(TOT) detection algorithm in an effort to quantify vig-

orous tropical convection associated with TCs—in par-

ticular, prior to their rapid-intensification (RI) stages.

The TOT detection algorithm is a modification of

an existing overshooting-top (OT) algorithm that was

originally developed for midlatitude severe-weather

applications (Bedka et al. 2010, hereinafter B10). The

OT detection criteria are retuned for use in the tropics in

an attempt to identify the frequency and trends in TOTs

during Atlantic Ocean TCs. Correlations between TOT

* Current affiliation: Department of Atmospheric and Oceanic

Sciences, University ofWisconsin—Madison, Madison,Wisconsin.

Corresponding author address: Sarah A. Monette, Cooperative

Institute for Meteorological Satellite Studies, 1225 W. Dayton St.,

Madison, WI 53706.

E-mail: sarah.monette@ssec.wisc.edu

VOLUME 51 JOURNAL OF AP PL I ED METEOROLOGY AND CL IMATOLOGY NOVEMBER 2012

DOI: 10.1175/JAMC-D-11-0230.1

� 2012 American Meteorological Society 1917



trends and subsequent RI are then investigated to assess

the utility of a TOT-based scheme as a possible tool for

discrete and probabilistic forecasting of RI.

2. Algorithm description and datasets

a. TOT detection algorithm

The American Meteorological Society Glossary of

Meteorology (Glickman 2000) defines an OT as ‘‘[a]

domelike protrusion above a cumulonimbus anvil,

representing the intrusion of an updraft through its

equilibrium level.’’ The definition of overshooting con-

vection in the tropics varies, however. Previous research

defined overshoots as convection that exceeds the height

of the tropical tropopause (Montgomery and Farrell

1993; Simpson et al. 1998). Liu and Zipser (2005), how-

ever, suggest that the equilibrium level in the tropics

which a TOT must exceed according to the Glossary

definition is below the tropical tropopause. Therefore,

although this algorithm is described as a TOT detection

algorithm, it is important to note that no measure for

evaluating the ambient height of the tropical tropopause

has been included in the finalmodifications on the basis of

the analysis from Liu and Zipser (2005).

The basic method of the objective OT detection al-

gorithm (B10) is formulated around the premise that

OTs appear as significantly colder IRW single pixels

(or small clusters #15-km diameter) relative to their

surrounding anvil-cloud mean temperature. Within the

target scene of the IR image, the first step is to identify

brightness temperature (BT) minima that are colder

than 215 K. No BTminimum can be located within 15 km

of another [Brunner et al. (2007) revealed that the largest

detected OT diameters are;12 km] so as to ensure that

portions of the same OT are not classified as two in-

dependent overshoots.

The IRW BT of the anvil cloud surrounding a candi-

date OT is sampled at an 8-km radius (;2 pixels) from

the coldest OT pixel in 16 directions (Fig. 1a). At this

point, the B10 algorithm thresholds are modified for

tropical convection applications. In the original B10 al-

gorithm, at least five valid anvil pixels must have an IRW

temperature at least as cold as 225 K for the candidate

OT to be further considered. The pixels satisfying the

225-K criterion are used to calculate the mean anvil

temperature, with the candidate OT classified as an OT

if the minimum pixel BT and anvil-mean BT difference

(BTD) is at least 6.5 K. In the modifications for tropical-

cloud applications (mostly owing to a higher and colder

tropopause), at least nine valid anvil pixels must satisfy

the 225-K criterion and a candidate TOT is classified as a

TOT if the BTD is at least 9 K. All of these threshold

adjustments were determined empirically by testing

combinations in forecast trials as described in section 4.

A flow diagram that outlines the TOT detection algo-

rithm scheme is shown in Fig. 1b.

As a baseline, the TOT algorithm uses B10’s 215-K

threshold as the highest allowableBT to define a candidate

TOT, even though the mean height of the tropical

FIG. 1. (a) The process of identifying an overshooting top from

11-mm IR BTs. Local minima colder than 215 K are identified (dark-

blue points), and the surrounding anvil is sampled in 16 radial di-

rections at an 8-km radius (light-blue points). Candidate anvil pixels

must have a BT colder than 225 K to be considered in the anvil

temperature calculation. The black-circled pixels, which do not satisfy

the criterion of BT # 225-K, are not included in the mean anvil

temperature calculation. At least 9 of the 16 anvil pixels must be valid

and included in themean anvil BT for theminimum to be classified as

a candidate TOT. (b) A flow diagram describing the process of

identifying an overshooting top using the TOT detection algorithm.
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tropopause is generally higher than that of midlatitudes.

According to Jordan (1958), the temperature of the mean

reference height for the equilibrium level [14.55 km,

from Liu and Zipser (2005)] is approximately 205 K

during the ‘‘hurricane season’’ of July–October. Although

this is colder than the 215-K threshold used to define

a candidate TOT, the geostationary satellite–analyzed

cloud-top height when using the 4-km spatial resolution

of the IRW is generally;1 km lower than the estimated

cloud-top heights using higher-spatial-resolution (1 km)

visible imagery in deep tropical convection (Sherwood

et al. 2004). This implies that the geostationary-satellite

IRW-observed BT underestimates the actual TOT tem-

perature by around 7–9 K, assuming a typical 7–9 K km21

tropical lapse rate (Folkins 2002). Thus, the 215-K IRW

cloud tops are actually representing;208–206-K TOTs.

In addition, the B10 215-K threshold is based on 1-km

polar-orbiter IRW imagery, providing further motiva-

tion to keep the 215-K threshold as a baseline. Other

(colder) thresholds are also explored in our search for

optimum settings (section 4).

It will be shown in this study that the algorithm

adapted to tropical applications is generally effective at

detecting TOT trends, but there can be limitations in

detecting individual convective events. In the original

B10 OT detection algorithm, with a BTD of 6.5 K and

removal of the numerical weather prediction estimated

tropopause-temperature check, the OT probability of de-

tection (POD) is around 90% when using the 1-km Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

imagery correlated to CloudSat-observed OT events

(Bedka et al. 2012). By comparison, our study, which

employs geostationary satellite imagery with a spatial

resolution of 3–4 km with a BTD setting of 9 K, finds

only about one-half of that POD rate for TOTs as ob-

served by CloudSat.

Reasons for undetected TOTs go beyond spatial-

resolution issues (i.e., a TOT can be subpixel) and may

include temporal sampling issues as well. Midlatitude

OTs can have a life span as short as 10 min (Gettelman

et al. 2002), allowing for the possibility of an OT (and

therefore a TOT) to develop and decay from its peak

between the normal 15-min image sampling by the

geostationary satellite. A more problematic issue is that

the TOT POD can be reduced in TCs with already es-

tablished deep inner-core convection, which can di-

minish or completely mask the detection of TOT

signatures, particularly from IR-based sensors. For ex-

ample, Guimond et al. (2010) investigated the effects of

convective hot towers (HTs) on the RI of Hurricane

Dennis (2005). At 1453 UTC 9 July, an HT was iden-

tified near the eye of Dennis by an ER-2 aircraft

Doppler radar (EDOP; see Fig. 2a). The IRW-detected

TOTs at 1445 UTC (yellow points) and the path of the

EDOP (white) are shown in Fig. 2b. In the region of

the EDOP-detected HT, there was no TOT detected.

As indicated in Fig. 2b, the area along the EDOP flight

is approximately 2708C (203 K) in the IRW. This

implies that the HT would need a BT of2798C (194 K)

or colder to be identified by theTOTdetection algorithm.

TheHThas aBTof only2778C (197 K), however. This is

an example of a TCwith an established cold central dense

overcast from previous vigorous convection that hinders

the satellite algorithm’s ability to detect fresh TOTs that

occur within it by reducing the BTD.

Despite these limitations, it will be shown that the

detection algorithm can capture essential trends in TOT

activity associated with most TCs. These trends will be

examined for their correlation with TC RI in sections 3

and 4.

b. Satellite data

To cover the Atlantic hurricane development re-

gion, multiple geostationary satellite scans are em-

ployed in this study. The Geostationary Operational

Environmental Satellite-East (GOES-E) scan of the

contiguous United States (CONUS), with 15-min tem-

poral resolution and 4-km spatial resolution, is utilized

in a scan range from 1108 to 628W down to 158N. Al-

though greater temporal resolution is sometimes avail-

able with the CONUS rapid-scan schedule, these data

are not utilized in our study because their use results

in inconsistent TOT sampling during a portion of TC

events. Beginning in 2004, Meteosat imagery, with a

3-km spatial resolution, also became available at

15-min temporal resolution and is used east of 558W
(the Meteosat images extend farther west, but the

large viewing angle begins to affect TOT sampling

beyond this range). TCs located between 558 and 628W
are analyzed with the GOES-E Northern Hemisphere

(NH) scan, which also has 4-km spatial resolution but

is limited to 30-min temporal resolution. For cases

prior to 2004, TCs east of 628W are analyzed by the

GOES-E NH scan up to an easternmost extent of

408W. TCs located west of 628W but south of 158N are

also analyzed by the GOES-E NH scan. The various

satellite scans are shown graphically in Fig. 3a for 1995–

2003 cases and Fig. 3b for cases beginning in 2004.

c. Analysis periods, tracking, and validation

The data used in our investigation include 100 At-

lantic TCs within theGOES-ECONUS viewing domain

from 1995 to 2005 and 2008 that reach at least tropical-

storm strength. In addition, nine TCs from 2004 to 2005

and 2008 whose entire track falls within the Meteosat

scan are also analyzed, bringing the dependent sample
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TC dataset to 109. A smaller subset consisting of all

23 Atlantic TCs from 2006 and 2007 is used in an in-

dependent test of performance. This independent test

period was chosen to benchmark against the results of

the operational rapid intensity index (RII) model

presented by Kaplan et al. (2010, hereinafter KDK10).

For validation, interpolated National Hurricane Cen-

ter (NHC) best-track intensities (maximum 1-min

sustained 10-m winds: MSW) are used, and RI is de-

fined on the basis of three MSW thresholds: 125 kt

(1 kt ’ 0.5 m s21) in 24 h, which represent the 90th

percentile of overwater 24-h TC intensity changes;

FIG. 2. (a) EDOP attenuation-corrected nadir-beam reflectivity at 1453 UTC 5 Jul 2005.

An HT is located east of Dennis’s eye. [The image is provided through the courtesy of

Guimond et al. (2010).] (b) An IR image at 1445 UTC 5 Jul 2005, with the EDOP track

(white) and detected TOTs (yellow dots to the southeast of the TC center) shown. No TOT

is detected along the EDOP track because of effects arising from the very cold central dense

overcast.
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130 kt in 24 h (94th percentile); and 135 kt in 24 h

(97th percentile) (KDK10).

Similar to procedures used in KDK10 and Rozoff

and Kossin (2011, hereinafter RK11), cases in which the

TC center is within 12 h of landfall or has reemerged

over water in the previous 24 h are not analyzed. Cases

are also not analyzed when the TC is of category-4 or

category-5 intensity, because it is very uncommon for

a TC of this strength to undergo RI (KDK10). Also,

subtropical and extratropical cyclones and times when

a system is categorized as an open wave are not analyzed

(as determined from NHC best-track data).

3. Approach and method

We first take a cursory look at the use of TOT in-

formation as a predictor of RI to quickly assess the po-

tential. To do this, we examine selected TCs and analyze

time-averaged TOTs in increments of 1, 3, and 6 h prior

to each synoptic time during the TC lifetime. These

average TOTs per scan are then tabulated against the

occurrence of RI or non-RI within the subsequent 24-h

period. The difference between averages for RI and

non-RI TOTs per scan must be significantly different at

the 95% confidence level according to a two-sided Stu-

dent’s t test for the TOTs to be considered a viable

predictor of RI (RK11). The results of this initial in-

vestigation are presented in section 4a.

Once the promising aspects of the TOTs as an RI

predictor are established, we then examine TOT activity

records for possible influences of non-RI-related signals.

In particular, tropical convection has been found to have

a diurnal signal (Hendon and Woodberry 1993). Using

11-mm BT data, Yang and Slingo (2001) found an early

morning maximum in oceanic deep convection, with

Kossin (2002) indicating an additional semidiurnal sig-

nal present in developed TCs. In an attempt to amelio-

rate these signals with respect to actual RI trends, we

look at the TOTs averaged over 3-h periods. This time

frame is chosen for analysis because the diurnal signal is

less prevalent over a 3-h average than a 1-h average

(Tory et al. 2006), and averaging over a 3-h window al-

lows the diurnal and semidiurnal signals to present

themselves without dominating the TOT signal. While

FIG. 3. (a) Satellite scan coverage for 1995–2003. Areas in dark gray have a 15-min temporal

resolutionwithGOES-ECONUS, and areas in light gray have 30-min temporal resolutionwith

GOES-E NH. GOES has a 4-km spatial resolution. (b) Satellite scan coverage beginning in

2004. Areas in dark (top-left part of panel) and medium (right part) gray have a 15-min tem-

poral resolution with GOES-E CONUS and Meteosat, respectively. Areas in light gray have

30-min temporal resolution with GOES-E NH. GOES has a 4-km spatial resolution, and

Meteosat has a 3-km spatial resolution.
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averages longer than 3 h would continue to dampen the

diurnal and semidiurnal signals, they could also signifi-

cantly dampen shorter-term trends that are potentially

indicative of RI.

A power spectral analysis is then conducted to help to

reveal whether averaging the TOTs can negate the

majority of the diurnal and semidiurnal signals. A first-

order autoregression [AR(1)] process is used, which

employs a single autoregressive parameter (in this case

the correlation coefficient between two successive 3-h

averages of TOTs per scan) to smooth over short-term

variations while emphasizing the slower variations

(Wilks 2006). A Hamming window, which adds one

period of a cosine function to a rectangular window

(Smith 2011a) at one-quarter of the average TOT time

series length, rounded to the lowest integer, is also

utilized. The power spectrum density, in cycles per day,

is estimated using the Welch method (Smith 2011b).

An example of a semidiurnal signal from Hurricane

Ike (2008) is shown in Fig. 4. The signal is indicated by

the 3-h-averaged TOT density function that is greater

than the 95% AR(1) confidence interval around 2 cy-

cles per day. Only 19.8% of the TCs in our sample

presented a semidiurnal signal, however, and only

3.1% exhibit a TOT density function that is greater

than the AR(1) 95% confidence interval at 1 cycle per

day (indicative of a diurnal signal). Thus, 3-h TOT

averaging appears to dampen successfully the signifi-

cant portion of the diurnal and semidiurnal signals

found in our TC sample.

In the development of the TOT RI index, we also

attempt to account for other sources of potential vari-

ance. One of the well-known inhibiting factors to in-

tensity increases in a TC is vertical wind shear, which

often presents itself through convective asymmetries.

Furthermore, asymmetric temperature perturbations,

which can be associated with the diluted TOT updrafts

(Zipser 2003), have been found to have a negative effect

on intensity (Nolan and Grasso 2003). Therefore, the

index also considers the distribution of TOTs within the

target area (defined as a prescribed radius from the TC

center, as discussed in the next paragraph). To calculate

the TOT distribution, the angle of each TOT (in de-

grees) from due north of the TC is calculated. The

spread of the TOTs can then be observed by calculating

the standard deviation of these angle degrees. If the

standard deviation of the TOT angle degrees is less than

or equal to 368, and therefore 64.2% of the TOTs are

within just one 20% sector of the TC near environment

(assuming a normal distribution), the average TOTs per

scan value for that analysis time is set to zero.

The next step in developing a TOT-based RI algo-

rithm is to optimize TOT parameters/settings used in the

index (spatial, temporal, BT intensity, and level of ac-

tivity). To accomplish this optimization, we employ a

large developmental dataset of Atlantic TCs from 1995

to 2005 and 2008. The analysis includes an examination

of the following BT and BTD combinations: TOTs

with a BT colder than 215, 205, or 200 K and a BTD of

9 K, as well as TOTs with a BT colder than 215 K and

a BTD of 12 or 15 K. For each BT combination ex-

periment, we examine five different radii from the

TC center—all TOTs within 100, 150, 200, 300, and

500 km, and for each radius we analyze TOT averag-

ing time frames of 3, 6, 12, and 24 h prior to each

analysis time. Each BT–radii–time frame combination

is then analyzed using preselected thresholds repre-

senting time averages of TOTs (i.e., number of TOTs

per scan for the averaging time noted above, or ‘‘av-

erage TOTs per scan’’). These thresholds range from

0.5 to 6.5 TOTs per scan in increments of 0.5 TOTs per

scan. A selection tree diagram illustrating this process

is shown in Fig. 5.

The selection of an optimal combination of parame-

ters and TOT threshold is then based on comparing their

Peirce skill scores (PSS), with a PSS of 1 (0) representing

a perfect (random) RI forecast (Wilks 2006). A forecast

is deemed skillful if the PSS is greater than 0. The PSS is

equal to the POD, the ratio of the correctly forecast RI

occurrences to the actual number of RI occurrences,

minus the probability of false detection (POFD), which

is the number of false alarms divided by the total num-

ber of nonoccurrences. The false-alarm ratio (FAR) is

FIG. 4. Power spectrum from Hurricane Ike (2008). The thick

solid line indicates the TOT density function for Ike. The thin

solid line is the mean TOT density function for this TC, and the

dashed line shows the 95% confidence about this mean. The

TOT density function above the 95% confidence interval at 2

cycles per day signifies that a significant semidiurnal cycle signal

may exist in this case.
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calculated by dividing the number of incorrect forecasts

of RI by the total number of RI forecasts. Both the

POFD and FAR have negative orientations; thus, lower

values are preferred. A 2 3 2 contingency table and

equations for eachmetric can be found in Tables 1 and 2,

respectively.

The TOT RI index approach to forecasting RI is

similar to the operational RII, which forecasts the

probability of RI at the synoptic hours of 0000, 0600,

1200, and 1800–UTC. The forecasts are validated us-

ing the 6-hourly NHC best-track 1-min maximum

sustained 10-m wind values. Because the satellite im-

agery is available approximately every 15 min, how-

ever, the NHC best track is linearly interpolated to

15-min locations and intensities to coincide with the

satellite scans.

It is prudently recognized that predicting RI relies on

many environmental factors that cannot be accounted

for simply by TOTs as a proxy for vigorous convection.

Therefore, although the bulk of our study hopes to

show the viability of TOTs as a potential predictor of RI,

we recognize that the optimal way to include the in-

formation content in the TOT trends is through a mul-

tiparameter RImodel. For example, a logistic regression

scheme presented in RK11 attempts to objectively iso-

late predictors of RI, including those determined from

geostationary satellites. This discriminative model fits

coefficients for predictors obtained through an iterative

least squares approach. Because the optimal logistic

regression model predictors in RK11 are selected for

35-kt RI, this threshold is also used for the selection of

optimal TOTpredictors, which are added into themodel

as a preliminary assessment of the potential for RI

forecast improvement.

4. Results

a. Proof of concept

As stated in the first paragraph of the previous section,

the intent here is first to show whether the TOT RI in-

dex, as a stand-alone observable, has an identifiable

relationship with RI. For a large sample of Atlantic TCs,

we compare average TOTs per scan within specified

radial disks from the storm center for cases of RI within

the subsequent 24 h. Table 3 shows that TCs about to

undergoRI have a greater number of TOT per scan than

do those TCs that do not exhibit RI. From a two-sided

Student’s t test, the average number of TOTs per scan

between cases in which RI occurs in the subsequent 24 h

and non-RI cases is significantly different at the 99%

confidence level (95% confidence interval for a 50-km

radius).

TABLE 1. Relationship between TOT RI forecasts and

observations in a 2 3 2 contingency table.

Obs

Yes No

Forecast Yes h f

No m z

TABLE 2. Forecast metrics for the TOTRI forecasts using the 23 2

contingency table in Table 1.

Forecast metric Equation

PSS
h

h1m
2

f

f 1 z
POD h/(h1m)

POFD f /(f 1 z)

FAR f /(h1 f )

FIG. 5. A selection tree diagram illustrating the process used to

identify the optimal temperature parameters, radii, time frame,

and thresholds of average TOTs per scan for each RI threshold.

This process results in 1300 different combination forecasts, which

are analyzed for each RI threshold to identify the optimal pa-

rameters on the basis of the PSS.
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This result provides the motivation to examine TOTs

more carefully as a potential RI predictor. It also pro-

vides a place to start a more thorough investigation, in

terms of TOT time averaging, spatial analysis (radial

distances from the storm center), and TOT discrimina-

tion settings described in section 3. It is important to

stress again that the TOTs by themselves do not repre-

sent the array of potential TC RI predictors, some of

which are currently used by operational RI forecast

guidance. The potential of TOTs as part of a multipa-

rameter model RI predictor suite will be addressed in

section 4d.

b. Dependent dataset analysis

1) RI: 25 KT IN 24 H

Analysis of the 1995–2005 and 2008 dependent dataset

reveals the highest PSS for the TOT RI index is 0.356,

with a POD of 60.9%, an FAR of 69.5%, and a POFD of

25.2%. The optimal parameters associated with this

forecast are a 3-h average of 2.0 TOTs per scan at a TOT

BT equal to or colder than 215 K with a BTD of 9 K

within 300 km of the TC center. Thus, this forecast ig-

nores the first 3 h of TOTs in the 6 h between synoptic

times. The highest PSS for a forecast averaging 6 h of

TOTs is 0.336, a 5.62% decrease.

2) RI: 30 KT IN 24 H

With a PSS of 0.408, the optimal thresholds for the

TOT RI index are the same for 30-kt RI as for 25-kt RI:

a 3-h average of 2.0 TOTs per scan at a TOTBT equal to

or colder than 215 K, a BTD of 9 K, and within 300 km

of the TC center. This forecast has a POD of 67.7%,

which is higher than the POD for 25-kt RI. The FAR

and POFD are also higher than those for 25-kt RI at

78.4% and 26.9%, respectively.

3) RI: 35 KT IN 24 H

For this RI category, the most accurate TOTRI index

thresholds are the same as the most accurate 25- and

30-kt RIs: a 3-h average of 2.0 TOTs per scan at a TOT

BT equal to or colder than 215 K, a BTD of 9 K, and

within 300 km of the TC center and featuring a PSS

equal to 0.383 with a POD of 67.0%, FAR of 86.9%, and

POFD of 28.7%. It is notable that the optimal 25-, 30-,

and 35-kt RI forecast settings are the same. While this

consistency may be a good thing for forecasters, it also

suggests that the TOT RI index has difficulty in dis-

tinguishing between forecast rates of RI.

c. Independent dataset analysis

Using the results from the dependent sample analysis

described above, the TOT algorithm is tested as a pre-

dictor of 24-h RI on an independent sample of TCs from

2006 and 2007. The existing operational RII model

performance can act as a benchmark in this analysis. The

results from the TOT RI index and the RII for 25-kt RI

are shown in Fig. 6. The TOT-based RI forecasts have

a POD of 48.3%, with an FAR of 81.6% and a POFD of

24.5%. The resulting PSS of 0.238 is positive, indicating

skill at predicting 25-kt RI. This skill is still below the

RII benchmark, however, as seen by the lower PSS for

the TOT RI index than for the RII. This is an expected

result because of other important environmental factors

being accounted for by the RII scheme. Another po-

tential reason for the lower PSS, as previously described,

is the variance infused by the effects from the TC central

dense overcast becoming opaque (cold), especially prior

TABLE 3. Average TOTs per scan at selected radii r from the TC center in the 1, 3, and 6 h before synoptic time. Values are significantly

different at the 99% confidence level except at a radius of 50 km, where the difference is significant at the 95% confidence level. TOTs are

defined as at least 215 K with a BTD of at least 9 K. Results are shown for the 977 non-RI 24-h time frames and the 143 twenty-four-hour

timeframes of verified 25-kt RI, the 1017 non-RI 24-h time frames and the 103 twenty-four-hour timeframes of verified 30-kt RI, and the

1032 non-RI 24-h timeframes and the 88 twenty-four-hour timeframes of verified 35-kt RI.

r 5 50 km r 5 100 km r 5 150 km r 5 200 km r 5 300 km r 5 500 km

25-kt RI; N 5 977/143

TOTs (1 h) 0.10/0.19 0.34/0.57 0.65/1.03 1.08/1.66 2.17/3.10 3.94/5.45

TOTs (3 h) 0.10/0.16 0.33/0.48 0.64/0.91 1.04/1.47 2.04/3.00 3.69/5.34

TOTs (6 h) 0.12/0.15 0.33/0.47 0.64/0.91 1.04/1.50 2.07/2.99 3.77/5.30

30-kt RI; N 5 1017/103

TOTs (1 h) 0.11/0.15 0.34/0.58 0.65/1.16 1.08/1.84 2.15/3.58 3.89/6.60

TOTs (3 h) 0.11/0.15 0.33/0.51 0.63/1.02 1.04/1.66 2.03/3.37 3.66/6.31

TOTs (6 h) 0.11/0.15 0.33/0.50 0.64/1.00 1.04/1.67 2.06/3.47 3.73/6.30

35-kt RI; N 5 1032/88

TOTs (1 h) 0.11/0.19 0.34/0.70 0.63/1.40 1.06/2.25 2.11/4.34 3.81/7.90

TOTs (3 h) 0.11/0.17 0.32/0.59 0.63/1.18 1.02/1.97 2.01/4.01 3.59/7.51

TOTs (6 h) 0.12/0.18 0.33/0.56 0.63/1.15 1.02/1.97 2.03/4.04 3.67/7.42
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to and during RI, and thereby reducing the likelihood

that potential new TOTs would survive the BTD thresh-

olds with the surrounding anvil.

The independent dataset test has 62 false alarms,

associated with 15 different TCs. Only two TCs are

responsible for over half (35) of them: Florence and

Helene from 2006. Ten false alarms from Florence

occur during significant southwesterly wind shear (Beven

2007). During this time, an additional three RI forecasts

were not made because of strong asymmetries in the

detected TOTs. This is clearly a situation that would be

better handled by a multiple-parameter RI scheme.

Figure 7 shows the results of forecasting 30-kt RI.

Again, the TOT forecasts are skillful at predicting the

occurrence of RI at this level, as defined by the posi-

tive PSS score of 0.206. The POD of 45.8% for the TOT

RI index is comparable to the RII; the higher POFD

(25.2%) for the TOT RI index results in a lower PSS

when compared with the RII, however. The greater

number of false alarms associated with the TOTs also

results in a higher FAR (85.5%) than that for the RII

(;70%).

Results for the 35-kt RI forecasts are shown in

Fig. 8. With negative PSS scores, the TOTRI index does

not show skill in predicting 35-kt RI on this limited

sample.

Overall, the independent sample test shows that the

TOT RI index has skill at predicting 25- and 30-kt RI as

evidenced by the positive PSS, even though these fore-

casts are associated with relatively high FARs. This skill

is less than that of the current RII from KDK10, how-

ever, which is an expected result given that other im-

portant environmental factors are being accounted for

by the RII scheme.

d. TOTs as a predictor in a logistic regression model

While the previous results for stand-alone TOT-based

indices confirm they are not as skillful at forecasting RI as

the multiparameter RII, it has been shown that TOTs

do have some correlation with RI and therefore potential

as a predictor. The next logical step is to test whether

the TOTs might have value in multiple-parameter RI

schemes. As a preliminary assessment of this question, and

before such a premise can be examined in the operational

RII, we turn to the logistic regression scheme employed

by RK11 to test potential forecast skill, which accounts for

multiple synoptic predictors. The logistic regression ap-

proach objectively selects optimal TOT settings and,

thus, can alter the thresholds from those found above.

By using the same 1995–2005 and 2008 dataset and

case sample described above, TOT data are provided

to the logistic regression algorithm at synoptic times.

FIG. 6. POD, FAR, POFD, and PSS, for 25-kt RI using the TOT RI index forecast in com-

parison with the RII. The TOTRI index forecast is a 3-h average of 2.0 TOTs per scan with a BT

of 215 K or colder and a BTD of greater than or equal to 9 K within 300 km of the TC center.
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Results indicate that the choices of TOT predictors

are 3-h average TOTs within 50-km radius and 6-h

average TOTs within 200 km of the TC center. These

two TOT predictors are added to the seven predictors

defined by Table 1 in RK11 for forecast skill verification.

Although the original seven predictors include two

from satellite-derived IRW, little correlation is found

between these two predictors and the two TOT

FIG. 7. As in Fig. 6, but for 30-kt RI.

FIG. 8. As in Fig. 6, but for 35-kt RI.
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predictors. Figure 9 shows the response of the calculated

RI probability when including the TOTs. Overall,

the results show that the addition of the TOT predictors

is marginally effective at improving the prediction

of RI in the next 24 h. The calculated probability for

25-kt RI that ‘‘verifies’’ is increased in only 45% of the

cases, but that probability is increased in over 50% of

the 30- and 35-kt RI cases. The addition of the TOT

predictors also reduces the probability for RI forecasts

in non-RI events, in all RI categories.

Figure 10 shows the results of the TOTs on the overall

model forecast skill. The Brier skill scores (BSS) for the

25- and 35-kt RI forecasts increase by 3.2% and 1.6%,

respectively, and the BSS for 30-kt RI does not signifi-

cantly change (0.3% increase). Using this assessment

metric, the addition of the TOT information has an

overall small positive (but not statistically significant)

impact on the forecast skill of the logistical regression

scheme at predicting RI.

Reliability diagrams can often indicate where pre-

dictors have a positive contribution to the logistic re-

gression scheme. In the reliability diagrams shown in

Figs. 11a, 11c, and 11e, the 458 line represents perfect

reliability for all forecast probabilities, with the horizon-

tal and vertical dashed lines showing the climatological

probability of RI. Points within the shaded region

indicate forecast probabilities that contribute posi-

tively to the BSS, with points above the 458 line

indicating forecast probabilities that are too low and

points below the 458 line indicating forecast proba-

bilities that are too high. For 25- and 30-kt RI forecasts

(Figs. 11a and 11c, respectively), the addition of the

TOTs produces a more reliable forecast at higher

probabilities ($0.5), with the exception of probabili-

ties between 0.7 and 0.8. The results for 35-kt RI (Fig.

11e) are mixed, even though the logistic regression

FIG. 9. Percent of improved forecasts when TOTs are added to the logistic regression model.

TOTs reduce the probability of RI in 62% (25 kt), 64% (30 kt), and 66% (35 kt) of non-RI 24-h

periods. TOTs increase the probability of RI in the next 24 h in 45% (25 kt), 52% (30 kt), and

54% (35 kt) of verifying cases.

FIG. 10. BSSs for the logistic regression model presented by

RK11 for the 132 TCs analyzed with TOTs predictors. An increase

in the BSS represents improved forecast skill.
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scheme selected TOT predictors on the basis of this RI

threshold.

It is again emphasized that the TOT information in

this preliminary study was introduced into the model by

a relatively simple selection scheme and may not rep-

resent the optimal approach. These results suggest that

there is promise for the TOTs as a predictor in more

sophisticated RI prediction models, and further explo-

ration is warranted.

5. Summary and conclusions

This study applies an objective, satellite-based tropical-

overshooting-top detection algorithm for identification

FIG. 11. Reliability diagrams from the logistic regression model with TOTs (black) and without TOTs (dark gray)

for RI thresholds of (a) 25, (c) 30, and (e) 35 kt (24 h)21 and the corresponding number of forecasts for (b) 25, (d) 30,

and (f) 35 kt (24 h)21 for probabilities of 0%–10%, 10%–20%, . . . , and 90%–100%.
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of intense tropical convection associated with Atlantic

Ocean basin tropical cyclone rapid intensification.

Using IR imagery from geostationary satellites, TOTs

are identified using a modified algorithm that was

originally designed for midlatitude thunderstorm de-

velopment (Bedka et al. 2010). An empirical approach

is used to optimize the algorithm settings for TC ap-

plications, such as spatial and temporal sampling and

TOT brightness temperature thresholds. Once iden-

tified, different forecast approaches are tried to as-

sess the potential of the TOT information to provide

skill in predicting TC RI, either as a stand-alone al-

gorithm or as input to multiparameter RI models

(because RI is dependent on many environmental vari-

ables, some of which are not directly associated withTOT

processes).

The results of our initial analysis show that, in general,

trends in TOTs are correlated with RI, and the TOT

activity between RI and non-RI cases differs at the 95%

confidence level. Some specific findings are summarized

as follows:

d An RI index that was developed on the basis of TOT

activity is shown in independent sample testing to be

skillful, as based on positive Peirce skill scores, at

predicting the occurrence of 25- and 30-kt RI in the

subsequent 24 h after analysis time, with a POD

ranging from 23.1% to 48.3% and an FAR of 81.6%–

96.1%. As expected, the performance of the stand-

alone TOT-based RI algorithm is below that of the

operational, multipredictor RI index but is promising

enough to test the TOT information in a multiparame-

ter model.
d As an initial experiment, TOT information is added

to a multiparameter logistic regression model for RI

prediction. The Brier skill score either increased slightly

(25- and 35-kt RI) or remained constant (30-kt RI). The

addition of the TOTs generally produces a more reli-

able forecast at higher probabilities ($0.5) for 25- and

30-kt RI, indicating the potential for further investiga-

tion of the TOTs as a situational predictor to add

forecast improvement.

Overall, this study provides evidence that TOT ac-

tivity can be correlated with TC RI. Just below one-half

of the 25- and 30-kt RI cases and one-quarter of the

35-kt RI cases in our independent test sample were

correctly predicted by just the stand-alone TOT indices,

with positive Peirce skill scores indicating that the

forecasts are skillful. These results demonstrate that

increased TOT activity in TCs can be an indicator of

imminent RI and should be further considered and

tested as an input predictor to multiparameter RI fore-

cast models.

Given the potential of TOT activity to indicate TC

intensity behavior, the TOT products are being rou-

tinely derived in experimental mode over the Atlantic

TC development region by the University ofWisconsin–

Cooperative Institute for Meteorological Satellite

Studies as part of the GOES-R Proving Ground project.

As one of the new GOES products to be demonstrated

during the hurricane season, analysts at the National

Hurricane Center can access the products in near–real

time to assess their potential utility in tropical analysis.

In addition, the product is also being evaluated for

general marine and aviation applications. Because the

rapid-refresh 11-mm data from geostationary weather

satellites are available for the tropics globally, the TOT

products can be extended to and analyzed in other TC

basins.
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