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ABSTRACT

Comparisons between satellite-derived winds and collocated rawinsonde observations often show a pro-

nounced slow speed bias at mid- and upper levels of the atmosphere. A leading cause of the slow speed bias is

the improper assignment of the tracer to a height that is too high in the atmosphere. Height errors alone

cannot fully explain the slow bias, however. Another factor influencing the speed bias is the size of the target

window used in the tracking step. Tracking with a large target window can cause excessive averaging to occur

and a smoothing of the instantaneous wind field. Conversely, if too small a window is specified, there is an

increased risk of finding a false match. The authors have developed a new ‘‘nested tracking’’ approach that

isolates the dominant local motion within a cloud scene and minimizes the smoothing of the motion estimate.

A major advantage of the new approach is the ability to identify which pixels within the cloud scene are

contributing to the tracking solution. Knowing which pixels contribute to the dominant motion allows for

a more representative height to be derived, thereby directly linking the height assignment to the tracking

process, which is an important goal for producers of global atmospheric motion vector (AMV) data. When

compared with equivalent rawinsondes, the AMVs derived with the new approach show a considerable

improvement in the speed bias and root-mean-square error over a control set of AMVs derived with more-

conventional methods.

1. Introduction

Cloud-tracked winds produced from satellite-image

sequences have long exhibited a pronounced slow speed

bias at mid- (400–700 hPa) and upper (100–400 hPa)

levels of the atmosphere when comparedwith rawinsonde

profiles and other windmeasurements (e.g., Schmetz et al.

1993, their Fig. 4; Bormann et al. 2002; von Bremen et al.

2008;Rohn et al. 2001).Monitoring statistics from theMet

Office that compare atmospheric motion vectors (AMV)

from several global AMV data producers with the Met

Office model background field reveal that the slow

speed bias is particularly pronounced during the extra-

tropical winter season (Forsythe and Saunders 2008). At

the National Oceanic and Atmospheric Administration

National Environmental Satellite, Data, and Informa-

tion Service (NOAA/NESDIS), routine verification of

operational cloud-track winds against rawinsonde ob-

servations also reveals a slow speed bias under similar

conditions. This is illustrated in Fig. 1, which shows

a time series plot of mean vector difference (MVD) and

speed bias statistics between Geostationary Operational
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Environmental Satellite-12 (GOES-12) upper-level cloud-

track winds and rawinsondes during the Northern Hemi-

sphere winter season. Note the consistent 1–2 m s21 slow

speed bias throughout the time period. This figure is even

more remarkable when one considers that the height as-

signments of these winds have been adjusted to better fit

a combined forecast and satellite wind data analysis, as

well as having had a speed bias correction applied in

certain situations (Hayden and Nieman 1996; Velden

et al. 1998). Without this postprocessing, the slow speed

bias would be even more pronounced than what is shown

by this figure. The impact of the postprocessing per-

formed at NOAA/NESDIS on the speed bias has been

discussed by several authors (Nieman et al. 1997; von

Bremen et al. 2008; Forsythe and Saunders 2008).

A leading contributor to the observed slow speed bias

is a poorly assigned height (Bormann et al. 2002). In

general, a tracer that is assigned to be too high in the

atmosphere will exhibit a slow speed bias and one as-

signed to be too low in the atmosphere will exhibit a fast

speed bias. Height-assignment errors can produce a slow

speed bias, but recent work has shown that they do not

fully explain the bias (von Bremen et al. 2008). A second

explanation is that some cloud scenes may not behave as

passive tracers or may be dominated by evolving, rather

than translating, features (e.g., stationary wave clouds

and developing thunderstorms). Other factors that must

be considered are that the cloud scene being tracked

often contains motions from different levels of the at-

mosphere (Velden and Bedka 2009) or may contain

motions of varying length and time scales. For example,

the motion of a frontal system is usually very different

from the local motion within the frontal zone itself. In

this scenario, the retrieved motion from conventional

tracking approaches is often a spatial average of these

two motions.

To facilitate the discussion that follows, we have in-

cluded a schematic (Fig. 2) that shows the basic concepts

associated with the feature-tracking algorithm used

operationally at NOAA/NESDIS. The first step in the

algorithm is to build an image loop from three consec-

utive image times. Next, themiddle image is divided into

small subregions called ‘‘target scenes’’ and each target

scene is processed to determine whether it contains a

suitable tracer. If the target passes quality checks [see

Nieman et al. (1997) for details], an initial height is as-

signed to the feature using a cold sample (coldest 25%)

of pixels contained within the scene. After the target is

assigned a height, a forecast wind, valid at the center of

the target box and at the assigned height, is utilized to

position a search region—typically much larger in size

than the target scene—in the subsequent image. Last,

the search region is examined to find the cloud scene

that most closely resembles the initial target (a linear

correlation measure is computed in the NESDIS algo-

rithm) and a displacement is computed.

Recent work by Sohn and Borde (2008, hereinafter

referred to as SB) and Cho et al. (2008, hereinafter re-

ferred to as CHO) has shown a direct link between the

size of the target window and the magnitude of the slow

speed bias. To be specific, they noted that as the target-

window size is reduced the average speed of the derived

FIG. 1. MVD (green) and speed bias (blue; satellite 2 rawinsonde) for GOES-12 upper-level

(100–400 hPa) IR cloud-drift winds for the period from 30 Oct 2010 to 10 Jan 2011.
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wind increases. Furthermore, SB and CHO also ob-

served that the smaller window size decreases the av-

erage height of the winds. It is clear that both of these

factors will produce a smaller slow speed bias. Using

a small target window also increases the risk of finding

false matches, however. As a consequence, the overall

impact on the quality of the derived winds is a reduction

in the speed bias that comes at the expense of higher

RMS errors. One tempting approach to this challenge

is simply to reduce the time interval between tracking

images. As shown in the next section, however, this

should not be done without first considering the spatial

resolution of the imagery being used. Although a

shorter time interval might be effective at reducing

correlation errors, it also implies smaller displacements,

which, in turn, imply that errors arising from subpixel

displacements take on greater relative importance.Most

operational wind producers employ some type of in-

terpolation to avoid the speed ‘‘binning’’ that would

otherwise occur from processing satellite data with

discrete pixel resolutions of a few kilometers. The op-

erational NOAA/NESDIS algorithm uses the sum of

squared differences (SSD) values surrounding the min-

imum in the linear interpolation to refine the integer

displacement.

Complicating matters further is the observation of

Borde and Oyama (2008) that the pixels having the

greatest influence on the tracking solution are not nec-

essarily the same pixels used to assign a height to the

tracer. Most producers of satellite-derived winds use the

coldest pixels from the target scene (Genkova et al.

2008) to assign height without regard to their level of

importance in the tracking process. The implied dis-

connect between the two processing steps can lead to

poor-quality winds and large verification errors.

In this paper, we extend the results of earlier testing by

SB and CHO by studying the impact of varying image-

loop intervals, as well as varying target-window sizes, on

the quality of the derived AMVs. Note that the smallest

target-window size studied in this paper, 5 3 5 pixels, is

smaller than the smallest window tested by SB and CHO.

The reason for testing such a small window will become

obvious in later sections.

The rest of the paper is organized as follows: Section 2

summarizes the testing performed with varying image

time intervals and target-box sizes and includes a dis-

cussion of the new findings as they relate to the earlier

results of SB and CHO. In section 3, we introduce a new

tracking method that we refer to as ‘‘nested tracking.’’

The new method minimizes the spatial smoothing as-

sociated with using a large target window and at the

same time avoids the risk of finding a false match. An-

other new method is introduced that exploits the output

from nested tracking to assign a more representative

height to the tracer. In section 4, we discuss the impacts

on quality of the new nested-tracking and target-height-

assignment approaches. In section 5 we summarize our

findings and discuss areas of future research.

FIG. 2. Schematic that shows the basic concepts associated with the feature-tracking algo-

rithm used at NOAA/NESDIS. Targets are selected from the middle image of a three-image

loop and are tracked forward and backward in time. The two displacements are averaged to

produce a final motion estimate. Only the forward vector is shown in the figure.
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2. Time-interval and tracking-window-size testing

Studies by SB and CHO show a direct link between

the size of the target window and the magnitude of the

AMV slow speed bias. These studies demonstrated that

the size of the target window affects not only the speed

of the derived estimate but also the height of the tracer.

To be specific, the authors found that processing with

a small target window yields lower height assignments

and slightly faster derived-motion estimates. Because

wind speeds generally increase with height in the tro-

posphere, both factors combine to reduce the slow speed

bias when compared with winds derived using a larger

target window. Here we extend the results of SB and

CHO by testing the effect of smaller target-window

sizes, as well as varying time intervals, on the quality of

the derived AMVs.

The image triplets used in our study were constructed

from rapid-scan Meteorological Satellite-8 (Meteosat-8)

10.8-mm imagery. A total of 16 different processing con-

figurations were tested, including four target-window

sizes (53 5, 93 9, 153 15, and 213 21 pixels) and four

image-loop time intervals (5, 10, 15, and 30 min). Figure 3

shows the experimental setup used during testing. Note

that the smallest target-window size tested, 53 5 pixels,

is smaller than the one considered by SB (8 3 8 pixels).

This was done deliberately to see whether the trends

they observed extended to smaller box sizes. The con-

figuration testing was performed with a version of the

derived-motion-winds (DMW) algorithm (Daniels et al.

2010) developed for the future GOES-R Advanced

Baseline Imager (ABI) that is closely based on the op-

erational NOAA/NESDIS winds algorithm (Nieman

et al. 1997; Velden et al. 2005), which finds amatch of the

initial target scene in a subsequent image by minimizing

the SSD measure over a search region. The squared dif-

ferences in the summation are computed using the bright-

ness temperature values from the initial and search images.

Image loops were created with the time intervals noted

above by using three 10.8-mm images from Meteosat-8

rapid scan data for the period 1–8 June 2008. The image

triplets were centered at 0000 and 1200 UTC so that

comparisons could be made with rawinsonde winds.

Starting from the middle image, cloud features were

tracked backward in time, to the first image in the loop,

and then forward in time, to the third image in the loop.

The resulting subvectors were averaged together to pro-

duce the final motion estimate. Tracking from the middle

FIG. 3. The experimental setup, showing the various target box sizes tested and how each box

was centered on the same initial location. The spacing between center points was equal to the

largest box size tested (21 pixels).
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image allowed us to use the same starting image and

target locations in each of the tests, thus facilitating

a direct one-to-one intercomparison of results. Quality

statistics were compiled for each of the processing con-

figurations by comparing the satellite-derived estimates

with wind observations from the rawinsonde network

following recommendations of the Coordination Group

for Meteorological Satellites (CGMS) (e.g., Velden and

Holmlund 1998). We note that the current testing was

designed to mimic the procedure used by SB, who kept

the target locations fixed while they expanded the win-

dow incrementally about the same central point. In ef-

fect, this produces a fixed ‘‘grid’’ of points, with the grid

spacing equal to the size of the largest box size tested

(21 pixels). This procedure of producing winds on a grid

is a departure from the practice followed in NESDIS

operations of centering the box on the maximum bright-

ness gradient within the cloud scene but was necessary to

keep the target locations the same in all tests. A short-

range forecast from the National Centers for Environ-

mental Prediction (NCEP)Global Forecast System (GFS)

model was used to position the search box in the sub-

sequent imagewhile the following constraint was used to

determine the size of the search box (for brevity, only

the u-component equation is shown):

(u2 ug) #
(L2 2)x

2t
, (1)

whereL is referred to as the lag size and is themaximum

displacement (in pixels) of a candidate match away from

the center of the search box, t is the time interval in

minutes, u is the AMV u-component (east–west) wind,

ug is the forecast (i.e., first guess) u-component wind,

and x is the resolution in kilometers. Equation (1) is

a constraint on the maximum departure permitted from

the forecast by the bounds of the search region. If the

constraint is held constant, then the size of the search

box can be computed. Here we used a very loose con-

straint of 30 m s21 to minimize the influence of the

forecast on the results. If one substitutes 30 m s21 into

the left-hand side of Eq. (1), the equation for the lag size

becomes

60

x
t1 25L . (2)

If the constraint in Eq. (1) is constant, then Eq. (2) im-

plies that the lag size should be increased if the loop time

interval is increased. Once the lag size is known, the

search box size is computed from

S5T1L2 1, (3)

where S is the search box size in pixels andT is the target

box size in pixels. Given that the size of the search box is

linked to the lag size by Eq. (3), it too should be ex-

panded if the loop time interval is increased.

Throughout this paper the feature tracking was per-

formed byminimizing the SSD between the target-scene

brightness temperature field and the match-scene bright-

ness temperature field. The SSD method is defined by

�
x,y

[I1(x, y)2 I2(x, y)]
2 , (4)

where I1 is the brightness temperature at pixel (x, y) of

the target scene and I2 is the brightness temperature at

pixel (x, y) of the search scene. The SSD method was

chosen over a cross-correlation approach because it is

computationally more efficient and produces superior

results in regions of low contrast (Dew 2005).

Figure 4 shows the impact of the various processing

configurations on the speed bias relative to a control run

using an image time interval of 15 min and a target-

window size of 15 pixels (the same settings used in

NESDIS operations). It is clear from this figure that one

way to minimize the slow speed bias is to shrink the size

of the target window. Consistent with the findings of SB

and CHO, the speed bias is reduced through a combi-

nation of faster motion and lower height assignments

(not shown).

The lower height assignments associated with a small

target window can be understood if one considers the

manner in which most AMV data producers assign a

height to an opaque cloud. It is common practice for

producers to use a cold sample of points from the cloud

scene instead of estimating the height from the entire

sample of cloudy pixels (Merrill 1989; Nieman et al. 1997;

Genkova et al. 2008). The operational NOAA/NESDIS

winds algorithm, for example, uses the coldest 25% of

pixels in the cloud scene to compute an average 11-mm

brightness temperature. The location of this average

temperature in a forecast temperature profile is assumed

FIG. 4. Change in speed bias relative to control (box size of 15

pixels and time interval of 15 min) of various test configurations.

Winds were derived fromMeteosat-8 IR imagery valid at 0000 and

1200 UTC for the period 1–8 Jun 2008.
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to be the height of the tracer. As a consequence, the

height derived from a large target window tends to be

higher than the height derived from a small target window.

The higher wind speeds associated with a smaller

window are a little harder to explain, especially if one

accepts the explanation given above for the differences

in height assignment. One could argue that the colder

sample from the larger window, being associated with

higher cloud tops, should also be associated with faster

wind speeds; SB concluded that the winds derived using

a small target window more accurately reflect the motion

on a local scale, whereas the winds derived using a large

target window reflect themean synoptic-scalemotion over

some depth of the atmosphere. In other words, a large

target window ismore likely to containmotions on varying

spatial and temporal scales and possibly at different levels.

As we show in the next section, the increased averaging of

motions inherent with a large tracking window is an im-

portant contributor to the observed slow speed bias.

A less intuitive result of our testing is the observation

that using a larger time interval can also minimize the

speed bias. This behavior most likely reflects the ability

of the large time intervals to better resolve slow wind

speeds, meaning that slow-moving features are allowed

to move farther as the time interval increases, which in

turn minimizes the impact of subpixel displacement er-

rors on the motion estimate. It appeared from our test-

ing that the main impact of these subpixel errors was

a slowing down of the derived-motion estimate at slower

wind speeds. Histograms of wind speed (not shown) re-

veal that the peak frequency is shifted toward higherwind

speeds as the image time interval increases.

It is tempting to suggest that a small target window be

used to mitigate the slow speed bias problem. The use of

a small target window increases the risk of finding a false

match, however, which has the undesirable effect of

adding noise (random error) to the retrieved winds.

Figure 5 bears this fact out by showing a sharp increase

in the RMSE value at the smallest target window size.

The preceding results imply that the problem of slow

speed bias cannot be addressed simply by reducing the

size of the target window. Any new approach that utilizes

a small window to minimize averaging must avoid in-

troducing into the tracking solution random errors from

finding falsematches. In the next sectionwe discuss a new

approach that accomplishes this goal.

3. Nested tracking

We have developed a new nested-tracking approach

that directly addresses two factors that are suspected to

contribute to the slow speed bias associated with satellite-

derived winds. The first is the excessive averaging, or

smoothing, that can occur if multiple scales of motion are

represented in the target window or if motion at two or

more levels is detected. The second factor is an improper

height assignment—one that is too high (from cold sam-

pling) and may not be linked to the same pixels contrib-

uting to the motion estimate.

The nested-tracking approach utilizes a small tracking

window to minimize averaging and produce faster wind

estimates but does so without introducing the random

tracking errors associated with a small window. More-

over, the approach is able to identify the pixels that have

the greatest influence on the motion estimate. Using this

information, together with the a priori knowledge of

cloud height at each pixel, we are able to establish a di-

rect link between the observed motion and the height of

the tracer.

The new tracking approach involves deriving amotion

estimate for all possible 53 5 pixel subregions ‘‘nested’’

within the larger target window. Small 53 5 subregions

are better suited than larger target windows for tracking

the small-scale motion that is representative of the in-

stantaneous wind. The new approach produces a field of

local motion vectors associated with each target win-

dow. Hereinafter, we use the term target window when

referring to the outer box and subregion when referring

to the smaller 53 5 box used to derive the local motion.

A schematic of the nested tracking approach is shown

in Fig. 6, followed by one example of its use in Fig. 7.

Differences in orientation and magnitude can arise be-

tween the local motion vectors if more than one cloud

layer is contained in the target window or if multiple

scales of motion are detected. Outliers—those wind

vectors that differ substantially from the majority of the

sample—can result if the cloud is evolving or if the 53 5

subregion is too small to resolve the true motion. The

latter is a manifestation of the so-called aperture effect,

discussed at length in the field of computer vision

(Trucco and Verri 1998). Note the close agreement be-

tween the average of the local motion vectors (green

arrow) and the control vector (red arrow), derived by

tracking the entire scene. The close agreement between

the average local motion vector and the control vector is

FIG. 5. As in Fig. 4, but for RMSE.
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confirmation that the motion estimate derived using a

traditional approach can be interpreted as an average of

the instantaneous wind field. Furthermore, the bigger

the tracking box is made, the greater is the implied av-

eraging. Figure 7 also suggests an improved motion es-

timate might be derived if the noisy vectors could be

removed and the dominant motion could be isolated.

One way of accomplishing this is by using a cluster-

analysis algorithm to analyze the displacements.

a. Identifying the dominant motion

The justification for using a cluster-analysis algorithm

to analyze the local motion field is twofold. First, as

illustrated in Fig. 7, the local motion field can be very

noisy. As discussed previously, this is due in part to the

increased chance of finding a false match when using

a small tracking box, as well as the cloud scene possibly

containing motion associated with two or more cloud

layers and/or motions that are representative of differ-

ent spatial scales. Removing noise and separating the

sample into coherent motion clusters can prevent the

excessive averaging of these different motions and can

reduce their contribution to a slow speed bias. Second,

identifying clusters in the local motion field provides

a means for directly linking the tracking and height as-

signment steps. In other words, using only the pixels

FIG. 6. Schematic that details the nested-tracking algorithm.

FIG. 7. An example of the local motion field derived with nested tracking. The white vectors show the local motion

derived with a 5 3 5 box centered on the pixel location. The average local motion vector is shown in green, and the

vector derived by tracking the entire scene is shown in red. Note that local motion vectors are not generated near the

boundary where a full 5 3 5 box does not exist.
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belonging to coherent motion clusters allows us to limit

the sample of points used for height assignment to only

those pixels that are important for tracking. This will be

discussed later in the paper. First we discuss the problem

of isolating the distinct motion clusters.

The cluster-analysis algorithm we selected is called

density-based spatial clustering of applications with noise

(DBSCAN; Ester et al. 1996). As its name implies, it is

a density-based algorithm for identifying clusters in spa-

tial databases with noise. It was chosen because it is very

effective at identifying clusters of varying shapes and,

unlike other methods such as k means, does not require

the user to specify a priori the number of clusters to find.

Instead, the user specifies two parameters; the minimum

number of points defining a cluster, and the ‘‘neighbor-

hood’’ size, which is used to discriminate between interior

points (also called core points) and boundary points of

a cluster. Ester et al. (1996) suggested using a minimum

cluster size of four for 2D data, and this value was

adopted in our study. The neighborhood size was de-

termined empirically and is currently set at one-half of

a pixel. Such a small neighborhood size is possible be-

cause the integer displacements produced by the track-

ing step are refined by linearly interpolating between the

SSD values surrounding the minimum. As noted in the

introduction, this is a common practice of operational

wind producers that avoids ‘‘binning’’ the motion esti-

mates by speed.

Before invoking the clustering algorithm, we compute

a local motion estimate for all 5 3 5 subregions con-

tainedwithin the target window using the nested-tracking

approach. As before, we start from the middle image

and use the SSD method to find the scene that most

closely resembles the initial subregion from a successive

image. Only full 5 3 5 subregions are tracked, and each

local motion vector is assigned to the location of the

center pixel. In addition, to avoid gross mismatches, we

limit the initial sample to those matches possessing a

correlation score of 0.8 or higher. This produces a set of

line (north/south) and element (east/west) displacements

for the reverse vector and a separate set of displacements

for the forward vector for each target window. Each set

of displacements is then analyzed with DBSCAN to

filter out noise and to find the coherent motion clusters.

The line and element displacements of the largest (most

populated) cluster are then averaged to obtain the dom-

inant motion vector. The dominant motion vector for the

reverse time step is averaged with the dominant motion

vector of the forward time step to produce the final

motion estimate. Note that, instead of averaging the two

subvectors together, we could have combined the dis-

placements from the reverse time step with the dis-

placements from the forward time step and analyzed the

combined sample with DBSCAN. We chose not to take

this approach, however, because we wanted to compute

the acceleration between the reverse vector and the for-

ward vector and to use it as a gross error check. Figure 8

shows the output obtained after applying DBSCAN to

the set of local motion displacements shown in Fig. 7.

In this case, the clustering algorithm finds two primary

motion clusters, with the largest cluster shown in red and

the second largest cluster shown in green. A third smaller

cluster is shown in orange. The points that do not belong

to any cluster (i.e., noise) are shown in blue. The black

‘‘X’’ shows the average displacement of points in the

largest cluster. It is important to note that this displace-

ment is very different from the displacement indicated by

the gray ‘‘X,’’ which is the solution obtained by tracking

the entire cloud scene.

b. Case-study examples

Here we present two examples highlighting the new

nested-tracking approach. The first example, Fig. 9, is

the accompanying vector plot for the DBSCAN exam-

ple shown in Fig. 8. It highlights a fairly complex and

evolving cloud scene at upper levels. Figure 9 graphi-

cally depicts the filtering performed by the clustering.

This filtering can be thought of as a two-stage process.

The first stage removes noise from the data, and the

second stage isolates the largest cluster. It is clear that

the cluster analysis has removed many of the vectors that

‘‘cancelled’’ one another in the initial sample. By doing

so, the motion estimate has increased from 16.4 m s21

(red vector) to 23.6 m s21 (green vector).

A second example, shown in Fig. 10, is included to

demonstrate an additional potential use of the new tracking

approach—the ability to produce more than one useful

FIG. 8. DBSCANoutput for the cloud scene pictured inFig. 7. The

two largest clusters are shown by the red and green dots. The average

displacement of the points in the largest cluster is shown by the black

‘‘X’’ while the motion derived from tracking the entire scene is

shown by the gray ‘‘X.’’ The other colors are explained in the text.
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motion estimate from a single cloud scene. This figure

shows a well-defined frontal zone associated with an ex-

tratropical low pressure system. The cluster analysis of this

cloud scene reveals two primary motion clusters, one as-

sociated with the synoptic-scale motion of the frontal zone

and the second showing motion within the frontal zone

itself. In this particular case, it is the second motion esti-

mate that stands as a much better match to a coincident

rawinsonde observation (light blue vector in Fig. 10a).

The preceding examples help to illustrate an impor-

tant detail—the points in the final sample do not always

coincide with the location of the coldest cloud tops. This

is underscored by Fig. 11, which shows the cloud-top-

pressure distribution for a single target scene. The black

histogram shows the distribution of all cloudy pixels in

the scene, whereas the green histogram shows the dis-

tribution associated with the largest motion cluster.

Very few of the points in the largest motion cluster are

located in the coldest portion of the histogram (to the

left of the red line). Perhaps not surprising is that there is

a tendency for the nested-tracking approach to retain

vectors in regions of enhanced structure, where a second

strong gradient in the brightness temperatures exists.

These so-called corner points (a feature with two or

FIG. 9. Example of vector field produced with nested tracking (b) before and (c) after DBSCAN is applied to find

the largest cluster. Plotted in green is the average displacement associated with the points in the largest cluster.

Plotted in red is the motion derived by the operational tracking method. Speed units are meters per second. (a) A

wider view of the scene, with the control vector plotted in magenta (kt; 1 kt ’ 0.5 m s21).
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more well-defined edges) make for the most reliable

tracers because they lessen the aperture effect men-

tioned previously (Trucco and Verri 1998). The most

reliable 53 5 subtargets for tracking may unfortunately

contain thin cloud layers or partly cloudy pixels, where

cloud-top-height estimates are often less reliable. This

issue needs to be kept in mind when assigning a repre-

sentative height to the derived AMV. This issue is dis-

cussed further in the next section.

The fact that the points remaining in the final sample

are not always the coldest pixels argues against using

a cold sample of points to assign a height to the tracer.

One logical alternative would be to assign a height on

the basis of those points relevant to the tracking solu-

tion. This approach is discussed in the following section.

c. Linking height assignment with tracking

The GOES-R DMW algorithm runs within a pro-

cessing framework that includes cloud algorithms de-

veloped by the GOES-R Algorithm Working Group

(AWG) Cloud Team (Heidinger 2010; Heidinger et al.

2010; Pavolonis 2010). The cloud algorithms provide

pixel-level output of cloud coverage, cloud phase, and

cloud-top height.

As noted previously, a key benefit to using a cluster-

analysis algorithm in tandemwith nested tracking is that

it allows us to identify those pixels contributing to the

final motion estimate (i.e., the pixels in the largest mo-

tion cluster). By choosing the cloud-top-pressure value

at the center of each 5 3 5 box as the pressure level of

FIG. 10. DBSCAN analysis of local motion near a frontal zone: (a)Meteosat-8 IR image at 1200 UTC 1 Feb 2007,

(b) clusters found by DBSCAN, (c) local motion vectors associated with the largest cluster, and (d) local motion

vectors associated with the second-largest cluster. In (a) the target box is outlined in yellow, the derived motion

associated with the largest cluster is shown in red, and a nearby rawinsonde observation at 500 hPa is shown by the

blue vector. In (b) the largest motion cluster is shown by the red points and the second-largest cluster is shown by the

green points. The average displacement of the points in the largest cluster is shown by the ‘‘X.’’ The colored vectors in

(c) and (d) show the average motion of the cluster.
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the local motion estimate we can construct a sample of

cloud-top-pressure values associated with the largest

motion cluster. The tracking process produces two such

‘‘intermediate’’ samples for each target scene; one sample

is generated for the forward vector, and one sample is

generated for the reverse vector. The median value of

each sample serves as an intermediate pressure assign-

ment for the AMV. A final pressure assignment is com-

puted by combining the two intermediate samples and

determining the median value of the combined sample.

A similar procedure is followed to obtain the median

cloud-top temperature and median cloud-top height of

the AMV. The alternative height assignment approach

just described usually yields a height estimate that is

significantly lower in the atmosphere than a height es-

timate computed from a cold sample drawn from the

entire target window. One example highlighting this

fact is shown in Fig. 11. In Fig. 11 two peaks in the

cloud-top-pressure distribution occur between 250 and

320 hPa, with a third peak located around 550 hPa. The

median of the cold sample (red line) is approximately

35 hPa above the median of the largest motion cluster

(green line). Also shown in in Fig. 11 is the mean pres-

sure (black dashed line) of the largest motion cluster.

Note that the median value is less influenced by the

outliers at 550 hPa than is themean. This is an important

point and will be discussed further below. Figure 11 is

consistent with the observation made earlier that the

final sample of points in the largest motion cluster may

not coincide with the coldest pixels. One concern we

have with coupling the tracking and height-assignment

processes in this manner is that it might increase the

reliance of the final height assignment on less-reliable

cloud-top-height information near cloud edges. To ad-

dress this concern, we limit the final sample of points in

the largest motion cluster to those pixels deemed cloudy

or probably cloudy by the cloud-mask algorithm. Fur-

thermore, we compute a median value of the cloud-top-

pressure distribution instead of computing the mean

value, which is less robust to outliers (Press et al. 1986).

Figure 11 highlights the robustness of the median, rela-

tive to the mean, in the presence of outliers. We have

also implemented amaximum-difference (100 hPa) thresh-

old on the median values associated with each subvector

and discard any AMVs that exceed this threshold. Last,

we are in the process of testing a 3D DBSCAN analysis

that includes the height dimension to limit the variability

in the cloud-top pressure estimates.

4. Impact of nested tracking on AMV quality

To assess the accuracy of AMVs derived with the new

approaches, image triplets, composed of Meteosat-8

10.8-mm imagery centered at 0000 and 1200 UTC, were

processed for August of 2006 and February of 2007 and

the derived winds were compared with coincident ra-

winsonde observations. Winds were generated over the

entire full disk domain using successive images sepa-

rated by a 15-min time interval. In addition to the test

winds, two control sets of AMVs were generated using

the conventional tracking and height-assignment ap-

proaches employed by the operational NOAA/NESDIS

FIG. 11. Distribution of cloud-top pressure for a single target scene (15 3 15 pixels).
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algorithm. One control set was generated by using a

19 3 19 target box, and the second control set was gen-

erated by using a 5 3 5 target box. Both control runs

utilized a cold sample (coldest 25%) of points from the

target box to assign a height to the AMV. The assigned

height in each case was themedian cloud-top pressure of

the cold sample distribution. The first control configu-

rationmirrors the traditional approach followed byAMV

producers to generate derived-motion winds, and the

second control configuration was added to measure the

impact of the new approaches (DBSCAN filtering and

height reassignment) on AMV quality. The second con-

trol configuration is an attempt to separate the impact of

a reduction in target-box size from the impact of the

DBSCAN filtering and height reassignment steps.

Table 1 shows the AMV-rawinsonde collocation sta-

tistics for February of 2007 for the 193 19 control winds

and the new nested-tracking winds sorted by pressure

layer (all levels, high, middle, and low), as is the standard

CGMS convention for reporting AMV verification sta-

tistics. One immediately notices themuch-improved value

for the speed bias in the test output. The improvement

in the speed bias is achieved through a combination of

lower height assignments (note the nearly 70-hPa dif-

ference in average pressure between the control and the

test) and faster wind speeds. Although greatest at upper

levels, the improvement in the speed bias is evident

throughout the atmosphere. This intuitively makes sense

because the risk of capturing motion at multiple levels is

greatest at upper levels. Note also in Table 1 that the

RMSE is much improved in the test case and that a sim-

ilar tendency exists for the improvement to increase with

height.

Table 2 shows the AMV-rawinsonde collocation sta-

tistics for February of 2007 for the 53 5 control and test

winds. As noted above, this comparison was performed

with the aim of separating the impact of a reduction in

target-box size from the impact of the DBSCAN filter-

ing and height-reassignment steps. The sample size for

this comparison is unfortunately much smaller, which is

an indication that most target locations were different in

the two samples. A collocation was not performed un-

less the center of the 5 3 5 box coincided exactly with

the center of the nested-tracking target box. Still, the

conclusions drawn from the second comparison are very

similar to the conclusions from the first comparison. The

speed bias is again much improved in the test relative to

the control, but the disparity between the test value and

the control value is less dramatic (note the smaller change

in the speed bias between the test and control in Table 2).

One reason the impact is smaller is that the average speed

of the control (18.42 m s21) is now greater than the

TABLE 1. AMV–rawinsonde collocation statistics (m s21) for

February 2007.

Control

19 3 19 box Nested tracking

All levels (100–1000 hPa)

RMSE 7.43 6.81

Speed bias 22.47 20.12

Avg AMV speed 16.37 16.69

Avg pressure (hPa) 442 509

Sample 13 105 13 105

High level (100–400 hPa)

RMSE 8.42 7.82

Speed bias 23.00 20.10

Avg AMV speed 19.58 20.06

Avg pressure (hPa) 281 335

Sample 7317 7317

Midlevel (400–700 hPa)

RMSE 6.98 6.10

Speed bias 22.36 20.08

Avg AMV speed 13.98 14.16

Avg pressure (hPa) 526 621

Sample 3356 3356

Low level (700–1000 hPa)

RMSE 4.08 3.88

Speed bias 20.99 20.25

Avg AMV speed 9.99 10.06

Avg pressure (hPa) 812 879

Sample 2433 2433

TABLE 2. As in Table 1, but the comparison is with a control run

using a 5 3 5 box.

Control

5 3 5 box Nested tracking

All levels (100–1000 hPa)

RMSE 6.96 6.54

Speed bias 21.15 0.61

Avg AMV speed 18.42 18.11

Avg pressure (hPa) 410 476

Sample 1208 1208

High level (100–400 hPa)

RMSE 7.52 7.25

Speed bias 21.44 0.60

Avg AMV speed 21.03 20.75

Avg pressure (hPa) 275 328

Sample 768 768

Midlevel (400–700 hPa)

RMSE 7.11 6.05

Speed bias 20.96 1.12

Avg AMV speed 16.67 16.23

Avg pressure (hPa) 496 605

Sample 231 231

Low level (700–1000 hPa)

RMSE 3.96 3.75

Speed bias 20.29 0.11

Avg AMV speed 10.77 10.47

Avg pressure (hPa) 807 881

Sample 209 209
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average speed of the test (18.11 m s21). This is to be

expected given that the derived speed in the control re-

flects the motion of a single 5 3 5 box, whereas the de-

rived speed in the test is an averagemotion ofmany 53 5

boxes.One unexpected result of the second comparison is

a fast bias for the nested-tracking winds. The fast bias

suggests that the AMV height assignments might be too

low, especially in the middle of the atmosphere. A more

definitive conclusion is not possible, however, because of

the small sample size.

Figure 12 shows the average AMV-rawinsonde RMSE

and absolute speed bias profiles for the 300-hPa level

for August of 2006 and February of 2007. In the ideal

case, the level of best fit (minimum in RMSE or speed

bias) would coincide with the assigned pressure level

(300 hPa). One measure of the goodness of the fit is the

vertical departure of the minima from the assignedAMV

pressure level. For the control, the disparity between the

assigned AMV level and the level of best fit is roughly

50 hPa. For the test, the disparity is 25 hPa for theRMSE

profile and 0 hPa for the absolute speed bias profile. The

profiles suggest that the cold sample heights are too high

in the atmosphere and that the new heights (and winds)

are a better fit to the rawinsonde observations. A histo-

gram of speed bias values for August of 2006 (Fig. 13)

confirms this result.

5. Summary and future plans

A nested-tracking algorithm has been developed to

minimize the slow speed bias commonly observed with

satellite-derived AMVs at mid- and upper levels of the

atmosphere. By using small subregions (53 5 pixel box)

nested within a conventional target window, the algo-

rithm produces a set of local motion vectors for each

cloud scene. The field of local motion vectors is sub-

sequently analyzed with a cluster-analysis algorithm to

remove outlying motions and to isolate distinct motion

clusters that can represent motion at different scales or

heights. Clustering of the computed displacements has

the major advantage of minimizing the averaging of

motions at different scales or different levels that can

occur if too large a target window is used for tracking. In

general, nested tracking yields slightly faster derived

FIG. 12. Profiles of RMSE (profiles on right) and absolute speed

bias (profiles on left) at 300 hPa forAugust 2006 and February 2007

for the control (green) and test (blue).

FIG. 13. Histogram of speed bias values for August 2006 for the control (solid black) and test

(red).
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motions than does a more conventional tracking ap-

proach. Formultilayer cloud scenes or situations in which

the clouds are evolving, however, the speed adjustment

can be much larger.

Another advantage of the nested-tracking approach is

its ability to identify which pixels within the cloud scene

are contributing to the tracking solution. Knowing which

pixels are contributing to the dominant motion allows

for a more representative height to be computed and

assigned to the AMV. This, in turn, directly links the

height-assignment and tracking processes. In general,

the new height-sampling approach yields considerably

lower (by roughly 70 hPa) height estimates than do

those based on a cold sample of pixels.

Comparison statistics between AMVs derived using

Meteosat-8 IR imagery and collocated rawinsondes for

August of 2006 and February of 2007 show that the new

methods substantially reduce the slow speed bias. The

reduction in bias is accomplished through a combination

of faster winds and lower height assignments. Further-

more, the AMVs derived with the new approaches show

a significant improvement in quality (as indicated by the

RMSE) versus AMVs derived with more conventional

methods.

The new methods discussed in this paper represent

core components of the derived-motion-winds algo-

rithm developed for the future GOES-R ABI. We have

initiated work (Nebuda et al. 2011) to perform numerical

weather prediction model impact studies using NCEP’s

Global Forecast System to assess the impact of winds de-

rived from the nested-tracking approach on the accuracy

of GFS model forecasts. Given the significant improve-

ment in quality we have observed with these new ap-

proaches, we are hopeful that they will have a positive

impact on the accuracy of GFS forecasts. If successfully

demonstrated, our plans call for this new winds algorithm

to replace the current operational derived-motion-winds

algorithm running atNOAA/NESDIS. In addition, as part

of this effort we plan to take a look at thewind information

content contained in the second- and third-largest clusters

to see if there are situations in which this information

would be more useful than the wind information content

derived from the largest cluster.
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