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Developed as a quantitative measurement of fire intensity, fire radiative power (FRP) and the potential applica-
tions to smoke plume injection heights, are currently limited by the pixel resolution of a satellite sensor. As a re-
sult, this study, the first in a two-part series, develops a new sub-pixel-based calculation of fire radiative power
(FRPf) for fire pixels detected at 1 km2 nominal spatial resolution by the MODerate Resolution Imaging
Spectroradiometer (MODIS) fire detection algorithm (collection 5), which is subsequently applied to several
large wildfire events in California. The methodology stems from the heritage of earlier bi-spectral retrievals of
sub-pixel fire area and temperature. However, in the current investigation, a radiative transfermodel is incorpo-
rated to remove solar effects and account for atmospheric effects as a function of Earth-satellite geometry at 3.96
and 11 μm (MODIS fire detection channels). The retrieved sub-pixel fire (flaming) area is assessed via the mul-
tispectral, high-resolution data (3–50 m) obtained from the Autonomous Modular Sensor (AMS), flown aboard
theNASA Ikhana unmanned aircraft.Withfire sizes ranging from0.001 to 0.02 km2, pixel-level fire area compar-
isons between MODIS and AMS are highly variable, regardless of the viewing zenith angle, and show a low bias
with amodest correlation (R=0.59). However, when lower confidence fire pixels and point-spread-function ef-
fects (fire hot spots on the pixel edge) are removed, the correlation becomes much stronger (R=0.84) and the
variability betweenMODIS and AMS is reduced. To account for these random errors via averaging, two clustering
techniques are employed and the resulting AMS and MODIS comparisons of fire area, after correcting for
overlappingMODIS pixels, are evenmore encouraging (R=0.91). Drawing from the retrieved fire area and tem-
perature, the FRPf is calculated and compared to the currentMODIS pixel area-based FRP.While the twomethods
are strongly correlated (R=0.93), the FRPf, in combination with retrieved fire cluster area, allows a large fire
burning at a low intensity to be separated from a small fire burning at a high intensity. Similarly, the flux of
FRPf over the retrieved fire area can be calculated, allowing for improved estimates of smoke plume injection
heights in modeling studies and creating potential applications for the future VIIRS and GOES-R fire detection
algorithms.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Observed in many regions of the globe, biomass burning is a key
component to the Earth-atmosphere system, climate change, and oper-
ational forecasts of meteorology and air quality. Individual fires are ig-
nited by natural causes, such as lightning strikes (e.g. Peterson et al.,
2010) and anthropogenic causes, such as agriculture and forest clearing
(e.g. Koren et al., 2007; van der Werf et al., 2008). Regardless of cause,
these fires subsequently burn large tracts of land across the globe
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every year. For example, Roy et al. (2008) estimated that nearly 3.7mil-
lion square kilometers burned globally from July 2001 to June 2002.
Wildfires also create concerns for air quality by releasing enormous
amounts of aerosols and trace gases into the atmosphere (e.g. Jordan
et al., 2008; Spracklen et al., 2007). Above the boundary layer, smoke
particles can be transported thousands of miles (e.g. Duck et al., 2007;
Sapkota et al., 2005) creating health concerns and interacting with me-
teorological processes a great distance from a fire (e.g. Wang et al.,
2006). In some cases, wildfires can even generate pyroconvection,
which has been shown to inject smoke aerosols and trace gasses into
the upper troposphere and even into the stratosphere (Fromm et al.,
2010). In addition, deposition of fire-generated black carbon particles
on ice sheets has been shown to reduce the surface albedo causing at-
mospheric warming and increased melting (Kopacz et al., 2011;
Randerson et al., 2006).
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Over the past three decades, several satellite sensors have been
able to provide observations of fire locations at different spatial
scales and temporal frequencies. These include the NOAA Advanced
Very High Radiometer (AVHRR), Geostationary Orbiting Environ-
mental Satellite (GOES), Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), and the MODerate Resolution
Imaging Spectroradiometer (MODIS). Some of these sensors also
map burned areas. Among these sensors, MODIS is especially important
because (1)MODIS has the highest saturation temperature of ~500 K at
its 4 μm fire detection channel (Gao et al., 2007; Justice et al., 2002;
Kelha et al., 2003), which allows a high percentage of detected fires to
be characterized through fire radiative power (FRP) — a quantitative
measure of fire intensity (Kaufman et al., 1998a), and (2) the twin
MODIS sensors aboard the Terra (launched in 1999) and Aqua
(launched in 2002) satellites allow wildfires to be observed globally
up to four times each day; twice in the daytime and twice at night.

Even though a large region may be burned by a fire over its lifetime,
only a portion of the burn area is actually in flames (fire front) at any
given observation time (Kaufman et al., 1998a; Lee & Tag, 1990). De-
spite much advancement in fire remote sensing during the last couple
of decades, all satellite sensors, including MODIS, provide fire locations
as pixels that are flagged as containing fires. Unfortunately, the pixel
resolution is usually too coarse to resolve the size of small fire hot
spots that may be very intense relative to large but low-intensity fires.
In fact, recent research indicates that FRP can be used as a quantitative
indicator for fire intensity and is proportional to both the fire's fuel con-
sumption and smoke emission rates (e.g. Ichoku et al., 2008a, 2008b;
Ichoku & Kaufman, 2005; Jordan et al., 2008; Roberts et al., 2009,
2005; Wooster, 2002, Wooster et al., 2003, 2005). Direct derivation of
smoke emission from satellite-based FRP can overcome the spatial er-
rors in the traditional estimate of fire emission in which the variation
of land surface types within the sensor pixel plays an important role
(Hyer & Reid, 2009). Val Martin et al. (2010) further show that regions
of intense burning (high FRP) commonly result in higher altitude smoke
plumes and a greater chance of smoke transport into the free tropo-
sphere. However, similar to fire detections, the primary drawback for
current MODIS FRP data is that they are estimates of fire radiative
power released over a pixel area. In reality, it is the rate of energy re-
lease over the fire area (the fire intensity (Byram, 1959)) that is directly
related to the thermal buoyancy (Kahn et al., 2007; Lavoue et al., 2000),
which influences the smoke injection height and the transport of smoke
plumes into the free troposphere. Therefore, an accurate retrieval of fire
intensity would be a valuable addition to the current suite of satellite
fire products.

Many early studies could not validate the results of sub-pixel re-
trievals due to the dearth of suitable data sources (e.g. Dozier, 1981).
However, multispectral, high-resolution data (3–50 m), obtained from
the airborne Autonomous Modular Sensor (AMS) are now available
for numerous fire events in the western United States (e.g. Ambrosia
&Wegener, 2009). Inmany cases, the AMS flight scan can be spatiotem-
porally collocated with MODIS scenes (Fig. 1), allowing for an unprece-
dented representation of the flaming, smoldering, and background
regions within a given MODIS fire pixel. By using the collocated
data, a quantitative assessment of a MODIS sub-pixel retrieval of
fire information can be conducted for multiple fire events in various
biomes. The AMS data can also be used to validate background tem-
peratures and to isolate the various sources of error known to affect
sub-pixel retrievals.

As shown in several studies (e.g. Giglio & Kendall, 2001), many vari-
ables must be considered when developing and assessing the accuracy
of a sub-pixel fire retrieval. Therefore, this study is the first in a
two-part series, and focuses primarily on: (1) developing an algorithm
to retrieve sub-pixel fire information for MODIS with atmospheric and
daytime solar effects taken into consideration, (2) demonstrating the
usefulness of an AMS-derived fire (hot spot) detection algorithm to as-
sess the results of the sub-pixelfire area fromMODIS and (3) calculating
the sub-pixel-based FRP. Subsequent sections of this paper describe
the current MODIS FRP, the need for a sub-pixel retrieval in the con-
text of FRP calculations, the history of sub-pixel retrieval methodol-
ogies, and the specifics of a modified MODIS sub-pixel retrieval
methodology. Results are shown from the comparison of MODIS re-
trieval fire area with AMS observations and comparisons between
the MODIS and sub-pixel-based FRP for several fire events occurring
between August and October 2007. A detailed theoretical sensitivity
analysis of the sub-pixel retrieval algorithm's uncertainty, including
a case study application, will be presented in part 2 of this series.

2. The need and method for a sub-pixel-based calculation of FRP

In contrast to earlier sensors, MODIS is currently the only opera-
tional satellite sensor designed to specifically measure FRP globally
(e.g. Ichoku et al., 2008a; Kaufman et al., 1998a, 1998b). Prior to
MODIS collection 5 data, the MODIS fire detection algorithm retrieved
FRP with respect to the individual pixel areas, or in units of Watts per
pixel area (Kaufman et al., 1998a). In collection 5, FRP is multiplied by
the pixel area (FRPp), and is provided in units ofMegawatts. Specifically,
the FRPp calculation employs a best-fit equation for awide variety offire
simulations and is calculated for all fire pixels (top-of-atmosphere)
using only the 4 μm channels:

FRPp ¼ 4:34� 10−19 T84−T84b
� �

Ap ð1Þ

where T4b is the background brightness temperature (in K), T4 is the
brightness temperature of the fire pixel, and Ap is the area of the pixel
(Giglio, 2010; Kaufman et al., 1998a, 1998b, 2003). Therefore, FRPp in
collection 5 is a function of satellite viewing zenith angle. Regardless
of the version of data collections, FRPp can be used for estimating the
total radiation from the fire, and consequently, can be related to the
total amount of trace gases and particles emitted by the fire, which is
useful for mesoscale modeling with a large model grid (e.g. Wang et
al., 2006). In addition, FRPp is being used for near real-time emission
maps at a global scale (Kaiser et al., 2009).

While the use of FRPp for estimating the fire emissions is well recog-
nized (Vermote et al., 2009), its potential use for other applications,
such as estimating smoke injection heights and fire intensity, is limited
by the lack of sub-pixel information for fires (Eckmann et al., 2010). This
can beunderstood via a simple example inwhich the FRPp value is equal
for two pixels covering the same area, but containing different burning
scenarios: (1) a large fire with burning at a low intensity or (2) a small
fire burning at a high intensity. Not surprisingly, a large difference in fire
behavior and the thermal buoyancy to drive the rise of smoke plumes
can be expected between (1) and (2). However, it will not be discern-
able in the current MODIS FRPp product unless sub-pixel information
of fire area and temperature is retrieved.

In contrast to the current MODIS FRPp calculation (Eq. 1), retrieved
sub-pixel data would allow for a direct fire area and temperature-based
calculation of FRP for each sub-pixel fire (FRPf). Similar to Zhukov et al.
(2006), the FRPf equation (units of Megawatts, above the mean back-
ground) uses the Stefan–Boltzmann relationship in the 4 μm channel

FRPf ¼ σ T
4
f −T

4
4b

� �
Af ð2Þ

whereσ is the Stefan–Boltzmann constant (5.6704×10−8 W m−2 K−4),
Tf is the retrieved kinetic fire temperature at the surface (not the
pixel temperature), T4b is the background brightness temperature,
and Af is the retrieved fire area. At cool 4 μm temperatures, atmo-
spheric effects, especially from water vapor content, are minor,
which allows T4b to be used as an approximation of surface kinetic
background temperature (Kaufman et al., 1998a, also explored in
part 2 of this series). While each FRP method is different for the
same fire, the FRPf (fire area and temperature-based FRP), in theory,



Fig 1. Projections of the four MODIS scenes that contain the six AMS flight scans (details provided in Table 1). Red dots denote the locations of MODIS fire pixels (not to scale) and
arrows highlight the fire pixels that are collocated with at least one AMS scan. While two collocations may come from the same MODIS scene, steps are taken to minimize overlap.
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should be strongly correlated to the pixel-based FRPp value. This as-
sumption can be used because at 4 μm, the radiative power from
flaming usually overwhelms that from smoldering within any
MODIS pixel (Kaufman et al., 1998a). However, an exact match is
not likely because FRPp (Eq. 1) is based on a best-fit curve from the-
oretic simulations of many sub-pixel fire scenarios, including varia-
tions in fire temperature, fire area, and smoldering or flaming
regions. FRPp also disregards the atmospheric attenuation of infrared
radiation, and hence may contain relatively large uncertainties for
individual fire events (Kaufman et al., 1998a).

3. Sub-pixel retrievals of fire area and temperature

Dozier (1981) made the first attempt to derive a sub-pixel fire
(target) retrieval using a bi-spectral approach. This “Dozier”method
uses the spectral contrast between a sub-pixel hot target and the sur-
rounding (presumably uniform) background of the pixel for the
3.8 μm middle infrared (MIR) and 10.8 μm thermal infrared (TIR)
channels. Although originally developed for the AVHRR, the Dozier
method, in principle, can be applied to any sensor having similar
MIR and TIR channels. Using MODIS fire detection as an example,
the calculation is performed for each wavelength used in fire detec-
tion (~4 and 11 μm) providing two equations that can be solved for
the fire temperature (Tf) and the fractional area of the pixel covered
by the fire (P), where 0bPb1, located within a uniform background
at temperature Tb (surface kinetic temperature). The observed radi-
ances at 4 and 11 μm (top-of-atmosphere), denoted by L4 and L11, re-
spectively, are

L4 ¼ PB λ4;Tf
� �

þ 1−Pð ÞB λ4;Tbð Þ ð3Þ

L11 ¼ PB λ11; Tfð Þ þ 1−Pð ÞB λ11;Tbð Þ ð4Þ
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where B(λ,T) is the Planck function and Tb is estimated from a temper-
ature dataset. The fire (hot target) and background are assumed to be
blackbodies with unit emissivity in both channels (Giglio & Kendall,
2001). In addition, all atmospheric effects are neglected, allowing the
computation of B(λ,T) to be considered a top-of-atmosphere value.
With these assumptions, the surface kinetic temperatures, Tf and Tb,
can be considered as brightness temperatures and can be used for
both channels; otherwise Eqs. (3) and (4) are not valid.

Due to the small size of sub-pixel fires and the lack of high spatial
and high thermal resolution data, the original Dozier retrieval is hard
to validate. Nevertheless, it was applied to several satellite sensors be-
tween 1981 and 2000 (e.g. Flannigan & Vonder Haar, 1986; Green,
1996; Langaas, 1993; Matson & Dozier, 1981; Prins & Menzel, 1992;
Riggan et al., 1993), and an extensive historical review from this period
can be found in Giglio and Kendall (2001). The following sections high-
light themodifications to the Doziermethod over the last decadewith a
focus on the uncertainty analysis and challenges for validation. This is
subsequently followed by the description of the sub-pixel implementa-
tion and initial assessment specific to this study.

3.1. Previous modifications and analysis of sub-pixel retrievals

Not surprisingly, the assumptions used in the original Dozier re-
trieval can be unrealistic. For example, atmospheric effects, such as
water vapor content, undoubtedly have a major impact on the re-
trieval, and the fire and background are not blackbodies. Therefore,
to create a more realistic retrieval, several studies modified the re-
trieval by adding relevant terms to the equations (e.g. (Giglio &
Kendall, 2001; Prins & Menzel, 1992). With these modifications,
the observed radiances at 4 and 11 μm, respectively, are

L4 ¼ τ4 PB λ4; Tfð Þ þ e4b 1−Pð ÞB λ4;Tbð Þ þ 1−Pð Þ 1−e4bð ÞI4ref½ � ð5Þ

L11 ¼ τ11 PB λ11;Tfð Þ þ e11b 1−Pð ÞB λ11; Tbð Þ½ � ð6Þ

where e4b and e11b respectively denote the background emissivity at
4 and 11 μm, I4ref is the reflected solar radiance in the 4 μm channel
at the surface (equal to zero at night), and τ4 and τ11 are the upward
MIR atmospheric transmittance and the upward TIR atmospheric
transmittance, respectively. The relationships in Eqs. (5) and (6)
contain several unknowns, and therefore require the aid of a radia-
tive transfer model. The emissivity of the fire is commonly assumed
to be equal to one (e.g. Giglio & Kendall, 2001), which has been
shown to be a reasonable assumption for most fire events with
thick fire fronts. As a result, Eqs. (5) and (6) do not include emissivity
in the fire term.

By assuming identical surface and atmospheric conditions, the
MODIS fire product estimates background brightness temperatures
(or radiances at the top-of-atmosphere) for the 4 and 11 μm chan-
nels by averaging several neighboring, fire-free pixels (Giglio et al.,
2003; Justice et al., 2002). These background radiances, denoted by
L4b and L11b, can be expressed respectively, as

L4b ¼ τ4 e4bB λ4; Tbð Þ þ 1−e4bð ÞI4ref½ � ð7Þ

L11b ¼ τ11e11bB λ11;Tbð Þ: ð8Þ

Substituting Eqs. (7) and (8) into Eqs. (5) and (6) will create a sim-
plified version of Eqs. (5) and (6), where P and Tf are the only unknown
variables. Therefore, fire fraction and fire temperature can be retrieved
simultaneously from a combined use of the MODIS-observed back-
ground and fire pixel radiances.

Even with improved calculations, two distinct hindrances to the
Dozier retrieval have become obvious: (1) the validation difficulty and
(2) the potential sources for error in the retrieval. For proper validation,
the sensor providing the ‘ground truth’ must do so at a relatively fine
spatial resolution and the observation time must be very close to that
of the satellite sensor under scrutiny. Unfortunately, such measure-
ments are typically not available in sufficient quantities to accomplish
a significantly representative validation. While the validation issues
are relatively straight forward, understanding the potential for error is
much more complex. Sources of error may include band-to-band
coregistration issues, improper selection of background temperature
and atmospheric transmittance, instrument noise, varying sub-pixel
proportions of flaming, smoldering, and unburned areas, the solar con-
tribution to the MIR, and the variation of surface emissivity between
MIR and thermal IR, etc. (e.g. Giglio & Kendall, 2001; Giglio et al.,
1999; Giglio & Justice, 2003; Shephard & Kennelly, 2003).

Due to the small size of thefire in comparison to the pixel, the poten-
tial impact from the 4 and 11 μmpoint-spread-functions (PSFs), includ-
ing their coregistration, becomes a critical (and potentially the most
important) source of error for a bi-spectral retrieval, regardless of satel-
lite sensor. For example, Calle et al. (2009) showed that the fire pixel
brightness temperature, for a given sub-pixel fire size and temperature,
will greatly decrease when the sub-pixel fire is located near the edge of
the pixel, and increase for fires near the pixel center. Additionally, the 4
and 11 μm PSFs may deviate near the pixel edge (misregistration),
thereby increasing the potential error in retrieved fire area and temper-
ature in these cases. Daytime solar reflection in the MIR channel can
also have an impact on sub-pixel retrievals. Specifically, Li et al.
(2001) showed that the contribution of reflected solar radiation in the
AVHRR MIR channel increases as the surface temperature decreases.
The solar contribution was also found to be highly dependent on the
solar geometry and surface albedo. When considering the potential
error sources (aside from coregistration), Giglio and Kendall (2001)
found that the Dozier retrieval is possible when the fraction of the
pixel encompassed by fire is greater than ~0.005 (0.003 for MODIS).
Above this threshold, random retrieval errors will be within 50% and
100 K, at one standard deviation, for fire fractional area and tempera-
ture, respectively. However, uncertainties increase rapidly below the
threshold.

Despite the potential for error, several advances have been made to
sub-pixel retrievals over the past decade. One example is the Bi-Spectral
Infrared Detection (BIRD) small satellite mission (operational from
2001–2004). The BIRD satellite had a pixel size of 185 m, saturation
temperature of ~600 K, andMIR and TIR channels of 3.8 and 8.8 μm, re-
spectively (Zhukov et al., 2006). In contrast to MODIS, the BIRD fire de-
tection algorithm specifically included a component for a modified
Dozier retrieval. To avoid the potential error sources, especially
coregistration errors, the BIRD algorithm created pixel clusters using
any adjacent hotspot pixels (Wooster et al., 2003; Zhukov et al., 2005,
2006). Themodified Dozier retrieval was then performed on these clus-
ters rather than individual pixels. Ground validation tests for controlled
fires were performed (e.g. Oertel et al., 2004; Zhukov et al., 2005), but
detailed assessments of wildfires, using higher resolution sensors,
were not undertaken.

In recent years, a modified approach, using multiple endmember
spectral mixture analysis (MESMA) to retrieve sub-pixel fire proper-
ties, has been developed (Dennison et al., 2006; Eckmann et al., 2008,
2009, 2010). MESMA assumes that the radiative signature of each
pixel is a result of a linear combination of sub-pixel features (or
endmembers), and thus the radiances at multiple channels can be
used to disentangle the area fraction of each end-member (such as
fire and non-fire) provided that the number of channels is larger
than the number of sub-pixel features to be retrieved. The original
method was used for classification of land surface type. In that
case, a finite number of endmembers, each having unique land sur-
face characteristics, was incorporated into the analysis. However,
the application to wildfires is not straightforward because the num-
ber of fire classes can be infinite. Nevertheless, Eckmann et al. (2008,
2009, 2010) produced fire endmembers for a variety of temperatures
over a variety of wavelengths. Therefore, the MESMA retrieval is es-
sentially a Dozier retrieval over a variety of wavelengths instead of
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two channels. Results from the MESMA and Dozier-type retrievals
have been compared, but neither retrieval method could be shown
to be superior with available validation data (Eckmann et al., 2009).

3.2. Developing a sub-pixel retrieval for MODIS

Since MODIS data became available from Terra in February of
2000, few attempts have been made to implement a MODIS
sub-pixel retrieval, which is likely a result of the potential for error,
especially from atmospheric effects (Giglio & Kendall, 2001). In this
study, output from the Santa Barbara DISORT Atmospheric Radiative
Transfer (SBDART) model is used to provide a representation of at-
mospheric effects prior to the calculation step, which avoids creating
additional terms for atmospheric transmittance (as in Eqs. 5 and 6).
SBDART considers many processes known to affect the ultraviolet
through the infrared wavelengths allowing for detailed computations
of plane-parallel radiative transfer within the Earth's atmosphere and
at the surface (Ricchiazzi et al., 1998). Therefore, SBDART also includes
the solar reflectivity term (I4ref) in Eqs. (5) and (6). Based on previous
studies, e4b and e11b are assumed to be respectively equal to 0.95 and
0.97 (e.g. (Giglio et al., 1999; Petitcolin & Vermote, 2002; Tang et al.,
2009), which is true for relatively dense, green vegetation, such as the
temperate evergreen forests used in this study. With this configuration
and by including the MODIS spectral response function, SBDART is
ready to incorporate all terms in Eqs. (5) and (6) to simulate the
MODIS observation at its two fire detection channels (3.96 and
11.0 μm).

As a preliminary step, SBDART is run repeatedly for different
combinations of the possible geometry values, background tempera-
tures, and sub-pixel fire temperatures, and the output results are
saved together with the input parameters as a lookup table at 4
and 11 μm. The input temperature values are the kinetic tempera-
tures (not brightness temperatures) at the bottom of the atmosphere
and range from the lower limits for a background temperature
(277 K) to the upper limit for a sub-pixel fire (1500 K). Due to the loca-
tion and time of the events used in this study (Fig. 1), the atmospheric
profile is assumed to be a representative mid-latitude summer profile,
which includes 2.9 g/cm2 of water vapor in the atmospheric column.
However, the sensitivity to variations in the atmospheric profile is ex-
amined in the second part of this study. The final SBDART output allows
a lookup table, containing input surface temperature, solar zenith, view-
ing zenith, and relative azimuth angles, to be created as a function of
top-of-atmosphere radiance. Once complete, these lookup tables are
referenced repeatedly in the main retrieval process.

The actual retrieval, which is summarized in Fig. 2, implements the
lookup tables to aid in solving Eqs. (5) and (6) for each MODIS fire
pixel in any given MODIS scene (granule). However, the non-linear
equations require the use of a multistep, iterative process to obtain
fire area fraction and temperature. To begin, the observedMODIS geom-
etries and the first input temperature arematched to the lookup table to
obtain the top-of-atmosphere radiance of the pixel containing the fire.
The algorithm then continues to cycle through all input temperatures
(e.g. potential fire temperatures) and calculates the fire fraction using
a variation of the method developed by Shephard and Kennelly
(2003). A residual calculation is used to keep track of the fire tempera-
ture and area fraction corresponding to the best fit in the observed radi-
ances for the 4 and 11 μm channels, and the final fire temperature and
area fraction are selected based on the lowest residual.

Drawing from the BIRD satellite methodology, two clustering
methods are implemented to alleviate random errors within the
pixel-level retrievals. The first is a general summation method, where
each individual pixel-level retrieved fire area is summed to obtain the
area of an entire fire event. The second clusteringmethod is a single re-
trieval (via averaging), which performs a single retrieval for all MODIS
fire pixels corresponding to a given fire cluster. In this case, the
sub-pixel calculations use the mean geometry values, mean pixel
temperatures, and mean background temperatures of the fire pixel
cluster. Following these pixel and cluster-level calculations, FRPf is cal-
culated via Eq. (2). Therefore, there are threemajor outputs from the re-
trieval at both the pixel and cluster-levels: fire area, fire temperature,
and FRPf. As mentioned in Section 3.1, specific sources of error can
stem from indirect effects (e.g. PSF coregistration) to direct effects of
background temperature, surface emissivity, and water vapor, etc.
Section 6 of this paper examines the uncertainties from indirect error
sources, while a detailed examination of sensitivity to direct error
sources is left for the second part of this study.

4. MODIS and AMS data, their collocation, and pixel
overlap corrections

MODIS sub-pixel fire information is retrieved from an integrated use
of the following three data products, either from MODIS/Terra or
MODIS/Aqua, at a spatial resolution of 1 km2 at nadir: (1) level 1B radi-
ance data (MOD021KM/MYD021KM), (2) geolocation data (MOD03/
MYD03), and (3) level 2, collection 5 fire product data (MOD14/
MYD14). Data sources (1) and (2) are used to provide the radiance of
the entire pixel and all relevant geometry information, such as solar ze-
nith (SZA), relative azimuth (RAZ) and viewing zenith (VZA) angles
(e.g. Wolfe et al., 2002), while the fire product (3) provides information
on fire locations, background temperature, and FRPp. The sub-pixel re-
trieval is only applied to the pixels that are flagged as fire pixels by
the standard MODIS fire product (3).

4.1. MODIS fire products: fire detection and FRPp

MODIS is unparalleled in fire detection because of its ability to differ-
entiate a wide range of fire intensities, as a result of the synergy be-
tween its two 4 μm (more precisely 3.96 μm) channels whose
dynamic ranges are complementary (Justice et al., 2002). Fire pixels
are retrieved using a hybrid, contextual process, which includes abso-
lute and relative detection pathways. For absolute detection, a set of
thresholds for reflectance at 0.86 μm and brightness temperature at
the 4 μm and 11 μm infrared channels are used. The reflectance values
of the 0.86 um channel are employed to reduce the “false-positive” ef-
fects of bright reflective surfaces and sun glint characteristics in a
given scene that contains a mix of fire and those non-fire, highly reflec-
tive surface features. The brightness temperature thresholds at the
4 μm and 11 μm infrared channels are used to identify potential fire
pixels (Giglio et al., 2003; Justice et al., 2002). The relative detection
check is then incorporated to compare a pixel's spectral signature to
surrounding background pixels. Finally, both checks are combined (as
a Boolean union) to classify a potential pixel as a real fire pixel. The
MODIS FRPp (collection 5) is subsequently calculated for all fire pixels
via Eq. (1). The higher saturation temperatures of MODIS allow for the
derivation of FRPp for nearly every fire it detects, because 1 km2 pixels
with T4>500 K seldom occur in nature (Ichoku et al., 2008a).

The major caveats of the MODIS fire products are sun glint, coastal
false alarms (water reflectance), and clouds that may hamper the fire
detection. These non-idealities are accounted for by applying water
masks and cloud masks in the fire detection algorithm (Giglio et al.,
2003; Kaufman et al., 1998a). Using 30 m validation data (from ASTER
and ETM+), Schroeder et al. (2008) show that the probability of detec-
tion approaches 80% when the number of 30 m fire pixels (contained
within a MODIS fire pixel) approaches 75. The smallest detectable fire
size in any given MODIS fire pixel was found to be ~100 m2 (Giglio et
al., 2003). Though hard to validate directly and globally, MODIS FRPp
was found to be in fair agreement with FRPp measurements by other
sensors in several sub-global spatial domains (Ichoku et al., 2008a;
Roberts et al., 2005; Wooster et al., 2003). The FRPp detection limits
are about 9 and 11 MW for Terra and Aqua, respectively (Schroeder et
al., 2010).



Fig. 2. Flowchart illustrating the MODIS sub-pixel retrieval and the subsequent calculation of FRPf.
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4.2. Autonomous Modular Sensor (AMS) observations

The AMS, flown aboard the NASA Ikhana Unmanned Airborne
System (UAS) and additional piloted aircraft, provides the high-
resolution data for the initial assessment of the MODIS sub-pixel re-
trieval. The AMS was put into operations in 2005 and offers pertinent
spectral measurement capabilities, such as derivation of fire size, tem-
perature, and serves as a potential airborne, higher spatial resolution
FRP validation sensor. Both NASA and the United States Forest Service
(USFS) have collaborated on the use of the AMS for supporting wildfire
observations. The Ikhana UAS performance characteristics allow mis-
sion profiles that can extend from the Mexican border in the south to
the Canadian border in the north and from the Pacific Ocean in the
west to the Rocky Mountains in the east when operating out of its
home base at NASA-Dryden Flight Research Center, Edwards, California
(Ambrosia et al., 2011b; Ambrosia & Wegener, 2009). In addition, the
Ikhana is capable of supporting day and night operations with a
~24 hour endurance, 150–200 knots airspeed, ~13,720 m (45,000 ft)
altitude, and flight legs of over 7408 km (4000 nautical miles). A pilot
located at a ground control station remotely controls the Ikhana. Piloted
operations on various aircraft (Beechcraft B200 King-Air, etc.) have also
been accomplished, though with shorter flight profile capabilities.

The AMS spatial resolution is controlled by the platform altitude
and commonly falls in a range from 3 to 50 m. The total field of
view (FOV) can be set at 43° or 86°, and the instantaneous field of
view (IFOV) can be set at 1.25 mrad or 2.5 mrad (Ambrosia &
Wegener, 2009). Both the FOV and IFOV are user selectable based
on the mission requirements. For example, an altitude of 7011 m
(23,000 ft) Above Ground Level (AGL), with a 2.5 mrad IFOV would
provide a spatial resolution of 15 m (Ambrosia & Wegener, 2009).
The AMS is a multispectral instrument with 12 spectral channels in
the visible through thermal-infrared (Ambrosia et al., 2011a, 2011b).
Fire hot spots are detected near 4 and 11 μm using AMS channel 11
(3.75 μm) and channel 12 (10.76 μm) (Ambrosia et al., 2011b;
Ambrosia & Wegener, 2009). Originally applied to AVHRR imagery (Li
et al., 2000b), the AMS fire detection algorithm is based on that devel-
oped by the Canadian Center for Remote Sensing (CCRS) and provides
general hot spot information for each AMS scan (Cahoon et al., 1992;
Flasse & Ceccato, 1996; Li et al., 2000a, 2000b, 2001).

In this study, a separate AMS fire detection algorithm, developed
specifically for an initial assessment, is used to identify the individual
flaming regions within a given MODIS fire pixel (see Section 5). This
newalgorithm is based on the unique challenges encounteredwhen ap-
plying the AMS to obtain the precise area of a sub-pixel fire. For exam-
ple, changes in flight altitude and surface topography can affect theAMS
background temperature and fire detection thresholds within a scan or
from scan-to-scan. Therefore, in the initial assessment algorithm, each
threshold is image-based and allowed to vary within the boundaries
of each MODIS fire pixel. The AMS data collected in 2007 are saturated
in the 4 μm channel, with saturation temperatures varying from 510
to 530 K, depending on the flight characteristics. At spatial resolutions
of 50 m or better, this saturation level means that many fire pixels are
saturated, which precludes fire temperature or FRP investigations
using these data. Approximations of fire temperature can also be
achieved using the unsaturated 11 μm channel, but limitations are in-
troduced due to the lower sensitivity at higher temperatures. The
AMS engineering team is currently exploringmodifications to the scan-
ner, which would allow a large increase in the measured pixel temper-
atures of the ~4 μm channel, thereby facilitating an increased
probability of accurately determining fire pixel FRP estimates.
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4.3. AMS and MODIS collocation

Several AMS flight data scans, from August to October 2007, were
available for this study, which include single fires and multiple fire
events on the data collection dates. The high spatial resolution
(~15 m) AMS data, collected near-coincident with MODIS acquisi-
tions, allow for a determination of the fire hot spots within the
MODIS fire pixels corresponding to a given fire event (Fig. 3). With
a wide range in topography and biomass type (Westerling et al.,
2003), the western United States is known to experience a wide va-
riety of burning conditions. These variables affect the fire rate of
spread, which can reach 34 meters per minute (~0.5 km per 15 mi-
nutes) in the chaparral of Northern California (Stephens et al.,
2008), suggesting that some fires may change drastically in a short
time period. The large Zaca Fire example in Fig. 3 has a time lag of ap-
proximately an hour between the MODIS overpass and the AMS
flight, which explains some fire location dissimilarities between the
MODIS and AMS detections. Therefore, to produce an accurate as-
sessment, the temporal difference between AMS and MODIS was
limited to a maximum of 15–17 min before or after the MODIS over-
pass, ensuring that MODIS and AMS are observing the same fire char-
acteristics, near-simultaneously.

After applying the temporal limitation, a total of six collocated
cases (displayed in Fig. 1) are available from the 2007 dataset,
which include day, night, nadir, and off-nadir MODIS observations.
Specifically, four MODIS scenes (granules) are used to provide the
six collocations. Of these, cases #1–4 are from a single Santa Ana
burning event in Southern California (24–28 October 2007) and
cases #5 and #6 are from a fire event in Northern California on 9 Sep-
tember 2007. The Ikhana commonly flies over the same fire event
multiple times on adjacent flight tracks, used to derive a “mosaic”
of the total fire event region. The AMS on the Ikhana has also been
used to capture the same fire event during two (or more) time pe-
riods in a day to derive fire progression and some AMS fire data
scans can be as short as 3 min. Therefore, by examining neighboring,
short duration AMS scans, it is possible for a single MODIS scene to
provide more than one collocation (e.g. cases #5 and #6 in Fig. 1).
A spatial investigation is conducted to minimize any overlapping
MODIS fire pixels between collocation cases. Even still, three fire
pixels overlap between cases #3 and #4 and one fire pixel overlaps
cases #5 and #6. The specific details for calculating MODIS pixel di-
mensions are provided in following section.
Fig. 3. Example AMS and MODIS collocation map for the large Zaca Fire in August 2007. The
4.4. Calculating pixel area and accounting for MODIS pixel overlap

Another MODIS characteristic affecting sub-pixel retrieval is the
potential for off-nadir fire detection errors (e.g. Giglio & Kendall,
2001). The “bowtie” scanningmethod of MODIS results in pixel over-
lap near the edge of the granule (e.g. Gomez-Landesa et al., 2004;
Masuoka et al., 1998), which can result in the same fire being count-
ed in more than one scan, effectively producing duplicated – though
not identical – fire pixels. Therefore, to retrieve accurate fire size, any
pixel overlap must first be removed (shown in Fig. 2), especially for
the clustering analysis step. To begin, the pixel corners are calculated
by averaging the four pixel centroid points (provided byMODIS) sur-
rounding each corner. This calculation is different than the MODIS
pixel size approximation provided by Giglio (2010), which provides
a standardized calculation for every MODIS scene based on the
pixel's VZA and recognizes that MODIS pixels realistically have soft,
non-rectangular edges. However, this study requires an approxima-
tion of the specific boundaries of each pixel to account for any poten-
tial variations in pixel size caused by variations in local topography
and to facilitate the collocation of the AMS data. As a result, the di-
mensions of each MODIS pixel are calculated on a scan-by-scan
basis and steps are taken to minimize any error at the scan edges.
With this information, the area of each MODIS pixel is subsequently
calculated, allowing the true area of a fire (in km2) to be calculated
from each retrieved fire fraction (Section 3.2). In general, the calcu-
lated pixel areas fall within 5–12% of the values obtained via the
Giglio (2010) approximation.

The actual overlap correction takes advantage of the similarities
within every MODIS granule. For example, every granule contains 204
scans composed of 10 scan lines along-track (Wolfe et al., 2002), each
with an along-scan width of 1354 pixels (one scan=10×1354 pixels
or about 10×2300 km). While the average pixel size near-nadir is
1 km2, off-nadir pixel growth causes the total scan width to grow to
2300 km rather than 1354 km. Based on these similarities, any pixel
that overlaps another pixel in one granule will overlap that same pixel
in every granule. Therefore, by assuming the Earth is a perfect sphere
and topographic influences are minimal, a general overlap correction
can be developed and applied to all MODIS granules. For this study, a
pixel is defined as an overlapping pixel if it overlaps a pixel in the pre-
vious scan by 50% of its total area. This overlap definition is then tested
on every pixel on a scan-by-scan basis. For example, the locations and
dimensions of each individual pixel within the second scan are
re is approximately an hour time lag between the MODIS overpass and the AMS flight.
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Fig. 4. An example MODIS and AMS collocation case (case #4) at a MODIS viewing ze-
nith angle of 50.3°. (Top) Without a pixel overlap correction and (Bottom) with a pixel
overlap correction. Black polygons denote the boundaries of the AMS scan and the
pixels shaded in red are the MODIS fire pixels contained within the AMS scan.

Table 1
Specifics of the case studies and results of the pixel overlap correction.

Collocation
Case #

Date Overpass
Day/Night

Mean
Viewing
Zenith
Angle

# Fire Pixels
Uncorrected

# Fire Pixels
Corrected

1 10–28–2007 Day 13 7 7
2 10–26–2007 Day 32 5 5
3 10–24–2007 Day 50 10 9
4 10–24–2007 Day 50 17 11
5 09–08–2007 Night 64 7 3
6 09–08–2007 Night 64 4 2
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compared to the first scan's pixel locations and dimensions. The algo-
rithm keeps track of the locations (index) of any pixels that overlap
the first scan and the process repeats for each subsequent scan in the
granule. The end result is an index of pixel locations that must be re-
moved from each scan in any MODIS granule.

While pixel overlap may allow for multiple vantage points of the
same fire at the individual pixel level, future applications will not
have high resolution data available to discern which of these vantage
points is the best, and any overlap will also influence the cluster-level
results. Therefore, an overlap correction is used in each collocation
case to reduce the chance of artificially large fire clusters, which is espe-
cially critical for the general summation clustering method (described
in Section 3.2). Even with the overlap correction, small instances of
overlap and small gaps may still exist, but the pixel grid will become
much more realistic, especially at larger VZAs. As an example, the
overlap correction was tested on one of the six collocation cases
(case #4) with a mean VZA of 50° (Fig. 4). Without a correction,
this case had a total of 17 MODIS fire pixels and displayed consider-
able pixel overlap. However, when applying the correction to select
only the non-overlapping pixels, the pixel grid clears up and the
total number of fire pixels is reduced to 11. The specific details for
each collocation case are presented in Table 1 and show that the
overlap correction does little to alter the pixel grid when the VZA is
less than ~35° (near-nadir), but the number of fire pixels can de-
crease by more than 50% at large VZAs after the correction is applied.

5. AMS fire detection algorithm and background temperature

Similar to MODIS, AMS fire detection requires the use of thresholds,
which can be somewhat subjective (Giglio et al., 2003; Justice et al.,
2002; Kaufman et al., 1998a). Due to the shift in the peak of the Planck
Function toward shorter wavelengths at high temperatures, fire
detection thresholds are typically based on the 4 μm channel. However,
detection algorithms for different sensors, such as MODIS and GOES,
consider the 11 μm channel to varying degrees (Giglio et al., 2003;
Prins & Menzel, 1994). For example, MODIS incorporates the tempera-
ture difference between 4 and 11 μm and the early GOES algorithm
set a specific fire detection threshold for the 11 μm channel. In the
case of AMS, an 11 μm fire threshold is used as a secondary check
when saturation is reached at 4 μm. Through an automated process,
the AMS fire detection thresholds are allowed to vary for each MODIS
pixel and adapt to the unique characteristics of the AMS instrument.
The AMS algorithm is not meant for operational purposes and is specif-
ically designed to process the AMSdata points containedwithin a single
MODIS pixel.

Within any MODIS pixel, there are between 4000 and 9000 AMS
data points depending on the location relative to the AMS nadir and
the flight altitude (Fig. 5). These data points allow for a detailed investi-
gation of the ‘mixed’ MODIS fire pixels, which commonly contain a
background, smoldering, and actively burning region (e.g. Eckmann et
al., 2008; Kaufman et al., 1998a). However, it is assumed that the tem-
perature difference between actively burning and smoldering regions
is larger than the difference between background and smoldering.
Hence, AMS fire detection is currently aimed at obtaining the mean
state of temperature and fire size of two groups: (1) the data points of
actively burning fires, and (2) the data points of the remaining region
(including smoldering and cooling). The smoldering region is largely
neglected because the collocated cases (#1–6) are very intense fire
events and the sub-pixel calculation is likely weighted toward retriev-
ing the flaming region (largest contribution to pixel MIR radiance).
Fire modeling studies have shown that the depth of a fire front com-
monly ranges from a few meters to ~30 m for grassland fires (Mell et
al., 2007) and can reach 400 m in dense vegetation (Filippi et al.,
2009). Based on the potential fire front size, it is expected that the
AMS fire area fractions, within a MODIS pixel, will typically fall below
~0.2.
5.1. Background temperature and minimum thresholds

The AMS fire detection process is based on the histogram at 4 and
11 μm and begins with background temperature selection. In contrast
to the neighboring pixel method for MODIS background temperature
(Kaufman et al., 1998a), the histogrammethod for background temper-
ature considers the temperature of the unburnedAMSdata pointswith-
in the MODIS fire pixel (in-pixel background temperature). This
method is necessary because the AMS flying altitudes vary case by
case, and hence any thresholds on temperature should be image
based. Due to the scanningmethod of AMS, topographic effects, and as-
pect, the cool region of the pixel can vary 5–10 K (Fig. 6). However, this
variation is not likely over a 1 kmdistance unless there is a rapid change
in elevation. Therefore, to account for any of these observational differ-
ences, the AMS background temperature calculation at 4 and 11 μm
(dash-dotted blue lines in Fig. 6c,d) is a weighted average of all
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Fig. 5. Visualization of the variation in AMS pixel size (resolution in m2) based on the location within the scan and elevation. Cool colors indicate regions of higher resolution and
warm colors indicate the coarsest resolution.
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temperature bins (in the histogram) less than the median. A visual in-
spection of each histogram is also undertaken to be certain that the cal-
culated AMS background temperatures are representative of only the
Fig. 6. Example of AMS daytime fire detection within a MODIS pixel. (a) Map containing th
brightness temperatures. Blue dots indicate AMS data points disregarded as fires, green tr
the final AMS fire detection. Fire detection thresholds are displayed as solid orange lines an
to the center of an ICT test bin. (c) and (d) Histograms used in AMS fire detection at 4 μm an
the MODIS and AMS background temperatures are respectively displayed as dashed green
non-burning portion of the pixel. The AMS background temperature
can then be compared to the MODIS background temperature (green
dashed lines in Fig. 6c,d).
e AMS hot spot detections within a MODIS pixel. (b) Scatterplot of AMS 4 and 11 μm
iangles indicate the region to be examined as potential fires, and red squares indicate
d the minimum threshold is displayed as a solid pink line, with each dot corresponding
d 11 μm, respectively. Fire detection thresholds are displayed as solid orange lines, and
and dash-dotted blue lines.
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Fig. 7. Same as Fig. 6, but for AMS nighttime fire detection within a MODIS pixel.
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Following the background calculations, any AMS data points that are
obviously not fire hot spots (blue dots in Fig. 6b) are removed using an
interchannel comparison test (ICT), which searches for any AMS data
points that are cooler than the background temperature or display
cold 11 μm temperatures at high 4 μm temperatures. The ICT is neces-
sary because of variability in the AMS data from scan to scan that results
from varying saturation levels, flight altitudes, and scan widths. Specif-
ically, the ICT calculation divides the range of the 4 μm temperature
(~290–525 K) into ~10 bins and computes the 25% quartile of the
11 μm temperature within each 4 μm bin. Any temperatures that are
less than the 11 μm 25% quartile are disregarded as potential fires
(pink line in Fig. 6b). However, if the 25% quartile is above 350 K,
then the ICT threshold is set to 350 K. Any AMS data points above the
resulting ICT minimum threshold line move on to be considered as
fire hot spots (green triangles in Fig. 6b).

5.2. Daytime and nighttime fire detection thresholds

The actual AMS fire detection thresholds (day and night) are calcu-
lated for both the 4 and 11 μmchannels (orange lines in Fig. 6) using the
temperature histograms of each channel. During the day, considerable
variability is added to the histograms from uneven surface heating
and solar effects, making it difficult to separate the data points of the ac-
tively burning region. Even with this daytime noise, it is assumed that
actively burning portions of a MODIS pixel will show some separation
from the cooler portions in the histogram. Therefore, several bins with
a low density in the 4 or 11 μm histograms are the starting point for
the fire detection thresholds. At 11 μm, the histogram is searched,
starting from the minimum threshold, for the first region with at least
5 bins displaying a density less than two. The fire threshold is then set
to the lowest value within the region of low density.

The fire thresholdmethod at 4 μm is slightly different due to satura-
tion occurring between 510 and 530 K. It is assumed that any AMSpixel
at the saturation level is hot enough to be considered. However, the
remaining data between the ICTminimum threshold and the saturation
level must also be investigated. The procedure begins by calculating the
high temperaturemedian (HTM), defined as themedian of all AMS data
points above the ICTminimum threshold. All AMS data points below the
HTM are subsequently searched for a region of low density as in the
11 μmprocedure. However, in this case, the region of low density is de-
fined as a region with at least 4 bins displaying a density less than one.
The limits are stricter than for 11 μm because the region under consid-
eration is at relatively low temperatures and in many cases, the fire
threshold will not exist below the HTM. In addition, the 4 μm data dis-
plays more variability at higher temperatures than 11 μm, which re-
quires stricter limitations. As with 11 μm, the fire threshold is then set
at the bin with the lowest valuewithin the region of low density. If a re-
gion of low density is not found below the HTM, then the HTM itself is
used as the 4 μm fire threshold.

The region of low density definition is very strict because the em-
phasis is on retrieving the actively burning region. If the density thresh-
olds are increased, the retrieved fire area will be larger. However,
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increasing the density threshold by one at 4 and 11 μm will only pro-
duce a relative increase infire area of approximately 10%. In contrast, in-
creasing the density thresholds by three will increase the retrieved fire
area by 40%. In this case, the 11 μm (4 μm) region of low density would
bedefined as thefirst regionwith at least 5 bins displaying a density less
thanfive (four). Obviously, amuch larger region of the histogramwould
then be considered as fire. Therefore, the region of low density is based
on the area of minimum sensitivity.

The nighttime fire thresholds are more straightforward than the
daytime thresholds. Reduced background noise allows for a detection
approach similar to MODIS, where separation is obtained by selecting
pixels with temperatures that are a few standard deviations from the
Fig. 8. Spatial representation of all six case studies in California. The large black polygons d
pixel mesh (corrected for overlap). The MODIS fire pixels are shaded in color based on the
three pixels shaded in black and corresponding to a brown “E” indicate where the MODIS
The viewing zenith angle increases from case #1 (13°) to case #5 and #6 (64°).
mean (Giglio et al., 2003; Justice et al., 2002). Specifically for AMS, the
fire thresholds at 4 and 11 μm are set at two standard deviations from
the mean (Fig. 7). Regardless of daytime or nighttime, the 4 and
11 μm fire thresholds are not allowed to fall below 380 K and 340 K, re-
spectively. Theseminimum values are rarely reached, but are necessary
forMODIS pixels containing only a few hot AMS data points (very small
fire fractions). Any AMSdata pointswith a temperature greater than the
4 and 11 μm fire thresholds are flagged as fire hot spots (red squares in
Figs. 6b and 7b). The area of these AMS pixels is then summed to calcu-
late the fire hot spot area within the MODIS pixel under consideration
(assessment data, displayed in Figs. 6a and 7a). In some cases, negative
radiance values will occur adjacent to a region of hot, saturated AMS
enote the boundaries of the AMS scan and smaller gray polygons represent the MODIS
percent difference between the AMS observed and the MODIS retrieved fire area. The
background temperature was higher than the fire pixel temperature (retrieval error).
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Fig. 9. Pixel-level comparisons between retrieved MODIS fire area and AMS observed fire area from all six collocated cases. (a) Color scheme indicates the fire detection confidence
level provided by the MODIS fire product. (b) Color scheme indicates the viewing zenith angle (distance from nadir). (c) Color scheme indicates the variation in AMS pixel size
(based on Fig. 5). (d) Color scheme separates the pixels with distinct sub-pixel hot spots located on the pixel edge from the remaining pixels. The statistics corresponding to
the color schemes in (a–d) are presented in Table 2. The idealized cases, which contain only the high confidence and the combination high confidence/center hot spot fire pixels,
are displayed in (e) and (f), respectively. For display purposes, (a–f) use a log vs. log scale. However, the statistics reflect the linear regression.
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Table 2
Statistics corresponding to the color scheme used in Fig. 9a–d.a

Variable
(Indirect Effect)

# Pixels
Out of 33

Mean AMS
Fire Area
km2

Mean MODIS
Fire Area
km2

Bias

km2 %

MODIS confidence level (Fig. 9a)
Low 2 0.034 0.070 0.036 105.88
Medium 6 0.015 0.011 −0.004 −26.67
High 25 0.043 0.038 −0.005 −11.62

Viewing Zenith angle (Fig. 9b)
VZAb40° 9 0.013 0.009 −0.004 −30.77
VZA=50° 19 0.035 0.029 −0.007 −20.00
VZA=64° 5 0.085 0.102 0.017 20.00

AMS pixel size (Fig. 9c)
>200 m2 3 0.028 0.046 0.018 64.29
150–200 m2 10 0.046 0.047 0.001 2.17
100–149 m2 16 0.032 0.025 −0.007 −21.88
b100 m2 4 0.043 0.035 −0.009 −20.93

Location of sub-pixel hot spots (Fig. 9d)
Center 25 0.037 0.034 −0.003 −8.11
Edge 8 0.037 0.036 −0.001 −2.70

a Negative bias indicates that the mean AMS fire area is greater than the mean
MODIS retrieved fire area.
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pixels. However, negative AMS radiance values usually comprise a very
small faction of the total number of AMS pixels within a MODIS fire
pixel footprint, and are currently disregarded.

6. Comparing the MODIS retrieved fire area with AMS observations

The ~15 meter resolution AMS fire data provide a direct ground as-
sessment (in km2) for the retrieved fire areas within each MODIS fire
pixel. From a spatial perspective, Fig. 8 shows that 12 of the 37 MODIS
fire pixels have retrieved fire areas within 50% of the AMS value,
while the fire area for 3 of the MODIS pixels cannot be retrieved due
to background temperature mischaracterization. These 3 pixels have
an 11 μm background temperature that is warmer than the fire pixel
temperature, which stems from the current MODIS fire detection algo-
rithm and may be caused by heterogeneities (noise) in the region of
background pixels (e.g. Kaufman et al., 1998a; Zhukov et al., 2006). In-
terestingly, there is a MODIS fire pixel in case #1 that does not contain
any AMS fire hot spot detections, and is therefore the largest error
displayed in Fig. 8. This pixel was not flagged as high confidence by
theMODIS fire detection algorithm andmay be aMODIS false detection
(described in the following section). The remaining 21 valid fire pixels
display significant deviations in retrieved fire areas from the counter-
parts of the AMS observations, which is expected based on the large po-
tential for pixel-level errors highlighted in earlier studies (e.g. Giglio &
Kendall, 2001). Therefore, the following sections focus on the analysis
of several indirect, random processes than can partially explain the
large differences between the MODIS and AMS pixel-level fire areas.

6.1. Specifics of pixel-level comparisons

For all MODIS fire pixels, AMS and MODIS fire area comparisons
(Fig. 9a-d) have shown promise for a fire area greater than
~0.001 km2 (1000 m2), which corresponds to a fire area fraction of
0.001 in a 1 km2 MODIS pixel. While the overall bias is low,
pixel-by-pixel differences in AMS-MODIS fire areas are significant,
producing a modest correlation (R=0.59). It is also interesting that
all 33 fire pixels displayed in Fig. 9a-d have an AMS observed fire
area greater than 0.001 km2 (1000 m2), which is above the lower
limit of MODIS fire detection for a reasonable retrieval accuracy
(Giglio et al., 2003). Even though few fire pixels have an AMS fire
area between 0.0001 km2 and 0.003 km2, a range that is expected
to have the greatest potential for error in the retrieval, it is still gen-
erally observed that the relative variation in retrieved fire area is
smaller for larger fires (>0.015 km2) and larger for AMS fire areas
below 0.01 km2.

The MODIS fire product provides detection confidence levels for
each fire pixel (Giglio, 2010), which can be investigated in the context
of the sub-pixel results (Fig. 9a, Table 2). For example, the majority of
fire pixels in the six case studies are flagged as high confidence with
only eight pixels flagged as medium or low confidence. AMS observa-
tions show that the high confidence pixels contain the largest mean
fire area (0.043 km2). In contrast, the medium confidence pixels have
a much smaller mean fire area (0.015 km2), which is expected because
the smaller sub-pixel fire area likely produces a fairly small increase in
mean pixel brightness temperature. Therefore, the currentMODIS algo-
rithm may reduce the confidence level for these pixels. The two low
confidence pixels actually have a larger mean fire area, but the bias is
very large (105.88%). In contrast, the bias is greatly reduced with the
high confidence pixels (−11.62%), suggesting that the results from
higher confidence pixels show stronger agreementwith the AMS obser-
vations (Table 2). This observation suggests that the MODIS low and
mediumconfidence levels generally represent the small fires or the out-
liers in the retrieved sub-pixel areas, at least for the pixels used in this
study.

Surprisingly, the location relative to nadir has a minimal effect on
the retrieved fire area bias (Table 2), but pixels with larger VZAs have
a large mean retrieved fire area of 0.102 km2, while the pixels with
small VZAs have a lower mean retrieved fire area of 0.009 km2.
This observation is expected because the MODIS pixel size increases
dramatically with large VZAs, resulting in an increase in the smallest
detectable (and retrievable) fire area (Giglio, 2010). However, all
cases, regardless of pixel location, display considerable variability
at the pixel-level with some retrieved fire areas matching the AMS
observations and other pixels deviating from AMS by an order of
magnitude or more (Fig. 9b). Therefore, it is likely, and will be
shown below, that other indirect factors, such as the size and loca-
tion of the fire within the pixel, have the greatest impact on the re-
trieval results. The potential impacts from variations in AMS pixel
geometry (as displayed in Fig. 5) are considered in Fig. 9c, but this
does not seem to have a major impact on the assessment results.

Drawing from earlier studies (e.g. Calle et al., 2009), the impacts
from the 4 and 11 μm PSFs must be investigated examining the
sub-pixel physical disposition of fire. For example, sub-pixel fire hot
spots near the edge of a pixel will likely result in an underestimated
fire pixel brightness temperature, while fires near center of a pixel
may overestimate the pixel's brightness temperature. Similarly, a fire
located on the boundary between pixels, will likely increase the bright-
ness temperature of both pixels. This may help to explain the probable
MODIS false detection in case #1 because the pixel boundaries (on two
sides) are located near the sub-pixel fire hot spots contained within the
adjacent pixels. A closer examination of the AMS fire data, displayed in
Fig. 10, indicates that there are threemajor distributions offire hot spots
within the MODIS fire pixels used in this study: (1) center hot spot
pixels, (2) edge hot spot pixels, and (3) a long fire front, which bisects
the pixel. By using similar visualization methods, it was discovered
that 8 of the 33 MODIS fire pixels contain pixel-edge fire hot spots
(Fig. 9d). The center and edge hot spot pixel samples have nearly iden-
tical mean observed and retrieved fire areas with a very low bias
(Table 2), but 6 of the 8 edge cases show significant deviations in re-
trieved fire area from the AMS observations and the pixel with the larg-
est error in retrieved fire area is an edge case. The low bias in Table 2
results from similar magnitudes of overestimated and underestimated
retrieved fire areas for the 8 pixels containing edge hot spots. In the
non-edge hot spot cases, especially those with distinct center hot
spots (e.g. Fig. 10a), it is possible that error may be introduced from a
pixel brightness temperature that is overestimated (a potential bias).
However, the edge cases are more likely to suffer from inter-channel,



Fig. 10. Spatial display of the sub-pixel fire region within four MODIS fire pixels showing (a) center hot spots, (b) edge hot spots, and (c), (d) long fire front situations. Black poly-
gons indicate the boundaries of the MODIS fire pixels and red shading indicates the locations of fire hot spots as observed by the AMS.
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PSF coregistration errors (Calle et al., 2009; Shephard&Kennelly, 2003),
and are therefore more likely to increase the potential for error in the
sub-pixel retrieval output.

Along with PSF effects, the combination of sub-pixel fire size, tem-
perature, and the overall distribution of sub-pixel hot spots can affect
the retrieved fire area. For example, Fig. 10a,b shows a somewhat coun-
terintuitive resultwhere the center hot spot case has a larger error in re-
trieved fire area (70.71%) than the edge hot spot case (42.52%). The
11 μmAMS channel, though limited by reduced sensitivity at high tem-
peratures, shows that the edge case has a much higher mean fire tem-
perature (443.94 K) than the center case (410.88 K) and both cases
are very heterogeneous (large standard deviation). Hot spots occupy
about the same fractional area of each pixel (~0.01 for the 1 and
3 km2 pixels), but the edge hot spot case contains an organized, large
cluster of hot spots and the center hot spot case contains a more diffuse
hot spot cluster spread over a large portion of the pixel. Therefore, it is
possible that the pixel brightness temperature of the edge hot spot
case is more representative of the observed sub-pixel fire properties
than the center hot spot case, even when considering PSF effects.
Similarly, the fire front case in Fig. 10c has a larger error in retrieved
fire area (72.66%) than Fig. 10d (50.00%), but, unlike Fig. 10a,b, the
fire fronts in Fig. 10c,d do not occupy the same area fraction of the
~3 km2 pixels. Fig. 10c contains a small and very narrow fire front
with a low 11 μm mean fire temperature (407.28 K), while the fire
front in Fig. 10d is much larger and highly concentrated, with a higher
11 μm mean fire temperature (469.64 K). Therefore, this analysis con-
firms that fire pixels containing high temperature, large, and highly
concentrated regions of sub-pixel fire hot spots are likely to produce
the most accurate retrieved fire areas, especially when located near
the center of the pixel.

The comparisons in Figs. 9a–d and 10a–d show the individual in-
direct effects (not originating from input variables) on the sub-pixel
retrieval. These results suggest that multiple factors, such as a lower
confidence fire pixel with pixel-edge hot spots, contribute to the
large variability observed in the retrieved pixel-level fire area. There-
fore, to visualize an ideal situation for the sub-pixel retrieval, the low
and medium confidence fire pixels are removed (Fig. 9e) and the
resulting correlation between MODIS and AMS shows a slight
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Fig. 11. Cluster-level comparisons between retrieved MODIS fire area and AMS ob-
served fire area for all six collocated cases. (Top) Clustering using the sum of
pixel-level retrievals method. (Bottom) Clustering using the single retrieval from aver-
ages method. Solid line corresponds to the linear fit equation and collocation case la-
bels correspond to the first column of Table. 1. The color scheme is based on the
viewing zenith angle (distance from nadir).
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increase (R=0.67). When the fire pixels with pixel-edge hot spots
are also removed (Fig. 9f), the correlation becomes much stronger
(R=0.84) and the variability between MODIS and AMS is reduced.
This suggests that the combination of lower confidence fire pixels,
typically from small sub-pixel fires (Fig. 9a) and PSF effects
(Fig. 9d), including the distribution of sub-pixel hot spots
(Fig. 10a-d), have the largest indirect impact on the accuracy of the
retrieval. Similar to Fig. 9a–d, the results in Fig. 9f show a relatively
low bias, but this accuracy is obtained by excluding 45% of the avail-
able fire pixels. When considering global fire observations, many
cases of low confidence pixels are likely to exist, especially in regions
with agricultural burning, and real-world applications would not be
able to separate pixel-center from pixel-edge sub-pixel fires.

6.2. Clustering-level comparisons

While the AMS initial assessment algorithm enables the identifica-
tion of fire pixels that have the greatest uncertainty in the retrieval,
the majority of the future applications of the sub-pixel algorithm will
not have these data available. Therefore, the sub-pixel retrieval will
have to rely on a clustering methodology to increase the accuracy of
the retrieved fire area. The results from the two clustering methods
(Fig. 11) show stronger agreement than the pixel-level results. The clus-
tering summethod of pixel-level retrievals produces the highest corre-
lation (R=0.91) suggesting that the random variation can be reduced
by averaging, when looking at a fire event as awhole. The single retriev-
al method from averages also produces a high correlation (R=0.84),
but may be limited by the larger surface area used in the retrieval,
where the contrast between fire and background may be reduced. Re-
gardless, comparisons between the clustering and pixel-level results
highlight the importance of averaging to reduce errors that are difficult
to characterize on a per-pixel basis, such as the distribution of sub-pixel
fires (Fig. 10a–d), general PSF effects (Fig. 9d), and PSF coregistration
errors.

The fire clusters in Fig. 11 are currently defined as all MODIS pixels
within an AMS scan, allowing for only six fire clusters and creating dif-
ficulty when discerning any impact from VZA and day/night cases.
However, as with the pixel-level results, the larger VZA clusters gener-
ally display larger retrieved fire areas than the small VZA cases with a
small bias toward larger AMS fire areas. Both clustering methodologies
will likely improve estimates of retrieved fire area for large fire events,
but future implementation of the single retrieval from averagesmethod
will require a strict definition of what constitutes a cluster in any given
MODIS granule. Therefore, the sumof pixel-level retrievalsmethodmay
be more advantageous because the definition of a cluster can be
changed as needed. Unfortunately, isolated, smallfiresmay only include
one or two fire pixels and will not benefit from either clustering
methodology.

7. Comparing the sub-pixel-based FRPf with the current
MODIS FRPp

With saturation occurring at higher temperatures in the AMS 4 μm
channel, and thus providing very little data to validate retrieved fire
temperatures, the comparison between the current MODIS FRPp and
FRPf is the only available method to assess the overall consistency of
MODIS sub-pixel fire retrievals. The pixel-level comparisons from all 6
collocation cases (Fig. 12a) produce a strong correlation (R=0.93),
which suggests that the sub-pixel retrieval can generate acceptable
fire temperatures, even at the pixel level. However, the sensitivity anal-
ysis for the BIRD satellite (e.g. Zhukov et al., 2006) showed that the er-
rors in retrievedfire area and temperaturemay counteract each other in
a sub-pixel-based FRP calculation (Eq. 2). As a result, fire temperature
errors may be present regardless of the accuracy in the retrieved fire
area. When considering this dilemma and the lack of temperature
validation data, the retrieved fire temperature should be usedwith cau-
tion, and only when FRPf is not sufficient to examine the problem of
interest.

In contrast to the fire area results in the previous sections, Fig. 12b
shows that the off-nadir pixels (large VZAs) commonly have a much
larger difference between FRPp and FRPf than cases close to nadir
(small VZAs). The reason stems from the best-fit methodology of the
MODIS FRPp in combination with off-nadir pixel growth. For example,
the size of the MODIS pixels displayed in Fig. 8 can grow to over
8 km2 near the edge of the satellite ground swath (cases #5 and #6).
In these cases, the background region of the pixel becomes very large,
suggesting that the flaming region will contribute less to the observed
pixel radiance. The FRPp is also based on a top-of-atmosphere observa-
tion and the longer path lengths at large VZAs may mask the signal of
fires. As a result, FRPp will likely be much lower than FRPf, which is in-
deed observed in most off-nadir pixels in Fig. 12a,b. Similarly, when
FRPp is divided by the pixel area, lower values (large-area pixels) will
result in a greater potential for error in theMODIS FRPp estimate. There-
fore, with atmospheric effects taken into consideration, FRPf is likely an
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Fig. 12. (a) Pixel-level comparison between FRPp (Current MODIS pixel-based FRP) and FRPf (sub-pixel-based FRP) for all six cases. Solid line corresponds to the linear fit equation.
(b) FRPf — FRPp as a function of viewing zenith angle. (c) Cluster-level comparison between FRPp per cluster area (FRPp flux) and FRPf per fire area (FRPf flux) for all six cases using
the sum of pixel-level retrievals method. (d) Same as (c) but for the single retrieval from averages method. Solid line corresponds to the linear fit equation and collocation case
labels correspond to the first column of Table. 1. The color scheme is based on the viewing zenith angle (distance from nadir).
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improved methodology for off-nadir fire pixels, but produces results
similar to FRPp for the remaining pixels.

The real motivation for choosing FRPf over FRPp becomes obvious
when FRPf is used in combination with the retrieved fire cluster area.
This can be illustrated by comparing the cluster-level FRPp flux to the
FRPf flux, given by

FRPpFlux ¼

Xn
i¼1

FRPpi

Xn
i¼1

Api

ð9Þ

FRPf Flux ¼

Xn
i¼1

FRPf i

Xn
i¼1

Af i

ð10Þ
where the output is provided in units of Wm−2 per fire pixel cluster
(Fig. 12c,d). The FRPf flux and FRPp flux are strongly correlated for
both the sum method (R=0.83) and the single retrieval method
(R=0.89). Furthermore, a strong rank correlation (Rrank sum=0.89
and Rrank single=0.66) suggests that there is a strong monotonically
increasing relationship between the FRPf and FRPp fluxes. While lim-
ited by a small sample size, Fig. 12c,d shows that the magnitude of
FRPf flux ranges from ~3000 to 10,000 Wm−2, and the FRPP flux
ranges from ~20 to 80 Wm−2. Obviously, the magnitude of the
FRPf flux (based on retrieved fire area) is more realistic for the
large fire clusters used in this study.

Along with an improved quantification of fire intensity, FRPf flux
can be used to examine the basic properties of a fire event by differ-
entiating large fires burning at a low FRPf from small fires burning at
a high FRPf. For example, the cluster fire area in case #5 is one of the
largest (~0.38 km2), while the FRPf flux is one of the smallest
(~3900 Wm−2). In fact, both large VZA cases (#5 and #6) have the
smallest FRPf fluxes, which are expected because they are nighttime
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cases. Therefore, the general fire evolution and smoke plume charac-
teristics in case #5may be considerably different than case #1, which
contains a relatively small fire cluster area (~0.01 km2) with a much
larger FRPf flux (~10,000 Wm−2). These types of comparisons dem-
onstrate the potential utility of the sub-pixel retrieval for providing a
detailed characterization of any given fire event, and show that FRPf
flux may be useful for providing improved estimates of initial smoke
plume buoyancy and injection heights. However, more observational
analysis is needed to support this hypothesis.

8. Summary and applications to future satellite missions

In an effort to provide a fire area and temperature-based FRP
product, this study has developed a MODIS sub-pixel retrieval algo-
rithm for fire area and temperature, which are used to calculate
FRPf and FRPf flux. The retrieval was designed such that it can be
run on any MODIS granule across the globe and a radiative transfer
model was used to account for atmospheric effects. Using a lookup
table approach, the retrieval can be run at both the pixel and cluster
levels and corrections are made for overlapping pixels. Currently, the
4 and 11 μm background temperatures are direct inputs from the
MODIS fire product (collection 5).

For the first time, the AMS sensor, flown aboard the NASA Ikhana
UAS, allowed the retrieved MODIS sub-pixel fire area results to be
assessed using high spatial resolution data. This initial assessment
showed that pixel clustering should be implemented to reduce errors
that are difficult to characterize on a per-pixel basis, such as those
from PSF differences, and the clustering sum of individual retrievals
method may have the greatest relevance to future operational algo-
rithms. In addition, a strong correlation (R=0.93) was found between
the fire area/temperature-based FRPf and the current pixel-based
MODIS FRPp. This suggests that a sub-pixel retrieval of FRPf has the
same merit as the current FRPp, but contributes information that the
current MODIS product is lacking. As an example, the combination of
FRPf and retrieved fire area (FRPf flux)may offer a reliable characteriza-
tion of thermal buoyancy for estimates of smoke plume height, at least
for medium to large fires (>1000 m2). Improved plume height esti-
mates have the most value for these large fire events due to the in-
creased chance of injection above the boundary layer.

Over the next decade, the new generation of satellite sensors, such
as VIIRS (http://jointmission.gsfc.nasa.gov/viirs.html) and GOES-R
(http://www.goes-r.gov/), will replace the current generation sensors,
including MODIS. The sub-pixel algorithm described in this paper is
designed for easy application to these future sensors, provided the
basic spectral properties are similar. The VIIRS and GOES-R fire detec-
tion algorithms, currently being designed and evaluated, will perform
sub-pixel fire characterization (e.g. Schmidt et al., 2011). However, in
contrast to MODIS, the VIIRS sensor will provide a finer pixel resolution
of about 750 m across the entire scan (nadir and off-nadir), reducing
off-nadir pixel growth (Csiszar et al., 2011), and thereby enhancing
any potential FRPf product. If the sub-pixel algorithm developed in
this study becomes operational, the approximate size of the fire front
could be calculated at each observation time, which will facilitate the
analysis of meteorological impacts on fire intensity, size, and tempera-
ture (e.g. Peterson et al., 2010). From the operational perspective,
there is a growing need for a near-real-time fire intensity rating system
(Ichoku et al., 2008a). The incorporation of FRPf will allow future
fire-rating techniques to include aspects of fire front size, which will
likely help fire suppression teams to allocate their resources more effi-
ciently during a fire emergency.

The initial assessment methodology for the MODIS sub-pixel re-
trieval can also be applied to future studies. In fact, as sub-pixel re-
trievals are incorporated into operational satellite missions, increasing
quantities of high-resolution validation data will be required. This high-
lights the value of airborne-sensor-collected fire data, such as those
obtained from the AMS sensor aboard NASA's Ikhana aircraft. Currently,
the Ikhana is flown over large fire events to support fire suppression op-
erations on the ground. However, these flights also have an enormous
scientific value for understanding wildfire behavior and are a potential
tool for the direct validation of FRPf. This study has shown that the
greatest potential for error occurs with small sub-pixel fires, but valida-
tion data for these events are not currently available. Therefore, future
airborne missions must focus on data collection for both large and
small fire events over a wide variety of biomass types.
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