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ABSTRACT

The use of geostationary satellites for monitoring the development of deep convective clouds has been

recently well documented. One such approach, the University of Wisconsin Cloud-Top Cooling Rate (CTC)

algorithm, utilizes frequent Geostationary Operational Environmental Satellite (GOES) observations to

diagnose the vigor of developing convective clouds through monitoring cooling rates of infrared window

brightness temperature imagery. The CTC algorithm was modified to include GOES visible optical depth

retrievals for the purpose of identifying growing convective clouds in regions of thin cirrus clouds. An au-

tomated objective skill analysis of the two CTC versions (with and without the GOES visible optical depth)

versus a variety of Next Generation Weather Radar (NEXRAD) fields was performed using a cloud-object

tracking system developed at the University of Wisconsin Cooperative Institute for Meteorological Satellite

Studies. The skill analysis was performed in a manner consistent with a recent study employing the same

cloud-object tracking system. The analysis indicates that the inclusion of GOES visible optical depth re-

trievals in the CTC algorithm increases probability of detection and critical success index scores for all

NEXRAD fields studied and slightly decreases false alarm ratios for most NEXRAD thresholds. In addition

to better identifying vertically growing storms in regions of thin cirrus clouds, the analysis further demonstrates

that the strongest cooling rates associated with developing convection are more reliably detected with the

inclusion of visible optical depth and that storms that achieve intense reflectivity and large radar-estimated hail

exhibit strong cloud-top cooling rates in much higher proportions than they do without the inclusion of visible

optical depth.

1. Background

The utility of geostationary satellite data for moni-

toring growing deep convective clouds has been well

documented in the recent literature (Carvalho and Jones

2001;Morel and Senesi 2002; Roberts andRutledge 2003;

Mecikalski and Bedka 2006; Vila et al. 2008; Zinner et al.

2008; Sieglaff et al. 2011; Hartung et al. 2013). These

studies have demonstrated the key advantages of geo-

stationary satellites for monitoring deep convective

cloud growth, including frequent refresh rate (5–15min),

fine spatial resolution (1–4km), and expansive coverage

(regional to full disk). Additionally, these studies have

demonstrated that satellite growth metrics (e.g., cooling

infrared brightness temperatures) often provide lead time

ahead of other remotely sensed convective development

metrics (exceedance of various radar reflectivity thresh-

olds, detection of storm electrification, etc.).

TheUniversity ofWisconsin Cloud-Top Cooling Rate

(CTC; Sieglaff et al. 2011) algorithm was developed to

quantitatively diagnose the vigor of vertical convective

cloud growth by determining cooling infrared window

brightness temperatures (IRW BTs; see the appendix

for a listing of term acronyms and abbreviations used

in this paper) between two consecutive Geostationary

Operational Environmental Satellite (GOES) imager

scans. The CTC output was recently related to future

Weather Surveillance Radar-1988 Doppler (WSR-88D)

Next Generation Weather Radar (NEXRAD Joint

System Program Office 1985) observations in an auto-

mated objective manner, testing a hypothesis that de-

veloping convective clouds with more intense vertical

convective cloud growth (inferred by stronger cloud-top

cooling) result in more intense precipitation signatures

observed by radar than comparatively weaker vertical

convective cloud growth (Hartung et al. 2013, hereinafter
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H13). This hypothesis was confirmed; more intense CTC

signals resulted in higher radar reflectivity, larger vertically

integrated liquid (VIL;Greene andClark 1972), and larger

maximum expected size of hail (MESH; Witt et al. 1998a)

than clouds with less intense CTC signals. These findings

are consistent with previous studies that related cooling

rates of IRW BTs to environmental instability and asso-

ciated updraft/precipitation (Adler and Fenn 1979a,b;

Adler et al. 1985; Roberts and Rutledge 2003; Cintineo

et al. 2013). Additionally, H13 showed the lead time of

CTC signals to the occurrence of the variety of radar

field thresholds studied. The lead-time analysis showed

the maximum CTC signal of a developing thunderstorm

largely occurs prior to the development of intense radar

signatures. For example, the median lead times of maxi-

mum CTC signals to 0.25- and 1.00-in. (1 in. ’ 2.54 cm)

MESHs were 28 and 45min, respectively. This analysis

showed the utility of the CTC algorithm to an operational

forecaster, even in regions well covered by radar.

The CTC output is generated in real time at the

University of Wisconsin and has been transmitted to

the National Oceanic and Atmospheric Administration

(NOAA) Hazardous Weather Testbed (HWT), the Uni-

versity of Wisconsin Cooperative Institute for Meteoro-

logical Satellite Studies (UW-CIMSS)/National Weather

Service (NWS)Milwaukee/Sullivan localHWT, and select

NWS Weather Forecast Offices (WFOs) since 2009. The

feedback results from NWS forecasters from the 2010 and

2011 testbeds (UW-CIMSS 2013) were largely positive;

however, the largest deficiency identified by the 2010–11

testbed participants was the inability to diagnose cooling

rates for storms developing in areas of thin cirrus clouds.

The CTC algorithm was originally designed to not op-

erate in areas of extensive ice clouds because cooling

IRW BTs between two GOES imager scans, in the ab-

sence of other information, can be ambiguous. A cooling

IRW BT in a scenario with upper-tropospheric cirrus

clouds and lower-tropospheric growing cumulus clouds

can indicate the following, or a combination of the two:

1) the upper-tropospheric cirrus clouds are growing

thicker and hence absorbing more radiation from the

lower troposphere and emitting at the colder tempera-

ture of the cirrus clouds or 2) the lower cumulus clouds

are growing vertically and hence are radiating at corre-

sponding colder temperatures as the cloud grows up-

ward. Using an additional information source from

the GOES imager, the retrieved visible optical depth

(Walther and Heidinger 2012), can mitigate this ambi-

guity. In response to the forecaster feedback, the CTC

algorithm was improved during early 2012 to address

this shortcoming by incorporating the GOES visible

optical depth (tvis) retrievals. The new version of the

algorithm was supplied to the NOAA HWT and local

NWSWFOs beginning in April 2012 (GOES-R Proving

Ground 2013).

The goals of this manuscript are to 1) document the

inclusion of tvis into the CTC algorithm and 2) provide

a reader/forecaster a measure of increased CTC algo-

rithm skill by including tvis. This paper is presented as

follows: Section 2 describes the data and methodology

used to improve the CTC algorithm. Additionally, some

examples are provided to illustrate the improvement of

the CTC output by including tvis. Section 3 provides a

statistical analysis of the improved CTC output (CTCv2

or v2) versus CTC output without tvis (CTCv1 or v1) in

a manner consistent withH13. Section 4 summarizes our

key findings and provides information for accessing the

experimental real-time feed of v2 algorithm output.

2. Data and method

a. Data

GOES-12 imager data over the conterminous United

States are used for 23 convectively active afternoons

over the central plains during the spring and early

summer of 2008 and 2009. The validation domain is

consistent with Sieglaff et al. (2011) and H13 (central

and southern plains; bounded by 308–468N and 948–
1048W) and includes regions of both expected severe

thunderstorms and nonsevere thunderstorms. It en-

compasses convectively active regions with low in-

stability, high instability–high vertical wind shear, and

high instability–low vertical wind shear. Possible future

work may increase the domain size, allowing for in-

creased sample sizes and for grouping the analysis based

upon instability–wind shear combinations. All GOES-12

data are at the 4-km nadir IR resolution, including

visible data (largely for computational efficiency and

ease of processing). TheGOES-12 imager data are used

in many ways: 1) as input into a cloud-object-tracking

system; 2) as input into theGOES cloudmask (Heidinger

2011), cloud phase (Pavolonis 2010), and cloud optical

depth retrieval algorithms (Walther andHeidinger 2012);

and 3) as input into theCTCalgorithm.Quality-controlled

NEXRAD 0.018 WSR-88D radar data were provided by

the Cooperative Institute for Mesoscale Meteorological

Studies at the University of Oklahoma (OU-CIMMS;

Lakshmanan et al. 2007). The radar fields used in this

study include reflectivity at the 2108C isotherm (Ref-10)

(Lakshmanan et al. 2006), VIL, and MESH and are used

in the analysis section where CTC output is related to

these fields.

b. Method background

The CTC algorithm uses two consecutive GOES im-

ager scans to compute a ‘‘box averaged’’ IRWBT cooling
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rate leveraging GOES cloudmask (Heidinger 2011) and

GOES cloud phase (Pavolonis 2010) algorithms to

identify cloudy satellite pixels and classify the phase

(water, supercooled water, mixed, and ice) of the clouds.

The CTC methodology utilizes a two-box system: a

small box (73 7 satellite pixels) to compute the average

IRW BT for cloudy pixels and a large box (13 3 13

satellite pixels) to compute a variety of metrics. The

large-box metrics are used in a series of tests to identify

areas of cooling IRWBTs attributed to vertically growing

clouds and to eliminate ‘‘false’’ cooling due to horizontal

cloud advection. A high-level summary of CTC process-

ing involves the following: 1) computing box-averaged

IRWBTs, 2) temporal differencing of box-averaged IRW

BTs to produce unfiltered cloud-top cooling rates, and

3) applying a series of tests filtering false cooling rates

due to horizontal cloud advection and other undesired

artifacts with the end product being the final filtered

CTC field. Full details of the CTC algorithm are not

included here; the reader is encouraged to reference

Sieglaff et al. (2011) for the complete algorithm details.

The brief summary given here is intended to provide suf-

ficient background for understanding the description of

incorporating tvis into the CTC algorithm.

The GOES visible optical depth (Walther and

Heidinger 2012) is a dimensionless quantity represent-

ing the extinction of radiation between the satellite and

the earth’s surface (Nakajima and King 1990; Platnick

et al. 2003). A cloud-free atmosphere will have tvis near

0 (not absolutely 0 because of trivial gaseous extinction),

to small values (up to ;10) for cirrus clouds, and in

the tens to ;100 for deep cumuliform clouds (Platnick

et al. 2003). As such, significant separation exists be-

tween cumuliform clouds and thin cirrus clouds in the

retrieved visible optical depth fields. This separation is

exploited when incorporating tvis into v2. Mecikalski

et al. (2011) showed the tvis of immature, yet vertically

growing, cumulus clouds reaches a median value of

approximately 25, with considerable spread to larger

values (larger interquartile value of approximately 75)

0–45min prior to 35-dBZ rainfall reaching the surface,

further motivating the use of optical depth in diagnosing

convective development. Figure 1 illustrates tvis retrievals

with more familiar GOES visible and IRW BT imagery

(all fields at 4-km GOES resolution) for developing

thunderstorms over eastern Illinois–western Indiana

valid 1910–1932 UTC 30 March 2012. It is clear from

the visible and IRW imagery (Fig. 1) that convective

clouds are growing vertically and horizontally and be-

coming colder. The corresponding tvis retrievals in this

line of developing convection are also increasing with

time. It is the collocation of cooling IRW BTs and in-

creasing tvis retrievals that is exploited to diagnose

cloud-top cooling in regions of thin cirrus clouds. The

CTC ‘‘ice mask’’ algorithm (Fig. 1, defined below) in-

dicates a large area of thin cirrus clouds that largely

prevented v1 from diagnosing the cloud-top cooling

rates with these storms (a comparison between v1 and v2

for this case is shown in Fig. 2). The tvis improvement is

used only for solar zenith angles of 708 and less; in regions
with solar zenith angles greater than 708, the v1 logic fully
applies with no attempt to include tvis information.

As mentioned previously, the v1 algorithm was

designed to not operate in areas of ice clouds due to the

potential ambiguity associated with cooling IRWBTs in

these regions. Specifically, the v1 algorithm omits any

cooling rates for a pixel in which the large box contains

50% or greater ice cloud fraction (Sieglaff et al. 2011).

This ice fraction test omits developing storms beneath

thin cirrus clouds and in some cases the strongest cloud-

top cooling rates with developing storms when the

strongest cooling occurs after the developing storm top

had sufficiently glaciated. Note that tvis has been in-

corporated into the CTC algorithm and acts as a re-

storal, meaning the v1 algorithm flow is maintained and

the tvis logic described in this section only acts to add

cloud-top cooling rates to the final output field. As such,

subsequent skill analysis and comparisons between v2

and v1 are for daytime only (when tvis retrievals are

available). The v2 skill scores are only valid for daytime,

while the v1 skill scores as well as the results of H13

apply for nighttime scenes (when tvis is unavailable).

c. Incorporating tvis into the CTC algorithm

The v1 algorithm utilizes seven tests to remove false

cooling rates and these tests are broken into two groups:

two major tests that screen out false cooling rates due to

horizontal cloud advection and fiveminor tests to screen

out further false cooling rates/undesirable scenarios,

such as the ice cloud percentage testmentioned previously.

By applying the twomajor tests to the unfiltered cloud-top

cooling rate field to produce an intermediate, partially fil-

tered cloud-top cooling rate field, tvis is integrated into the

CTCalgorithm.One additionalminor test is applied to this

partially filtered cloud-top cooling rate field and screens

the cooling rates for clouds determined to be marginally

cooling. This minor test can remove vertically growing

pixels at the very early stages of growth, but not all cooling

clouds within the very early stages of growth will mature

into thunderstorms. This test acts to reduce false alarms

(Sieglaff et al. 2011). After these three filtering steps are

complete, these remaining cloud-top cooling rates are

candidates for being restored into the final v2 output

field pending the methodology described below.

The tvis field for both (current and previous) satellite

scans is box averaged using the small box previously
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described. The partially filtered candidate cloud-top

cooling rate pixels are tested for specific conditions re-

lated to the tvis fields. For a pixel to be restored from the

partially filtered cloud-top cooling rate field into the fi-

nal v2 output, the following conditions must be met:

1) the box-averaged tvis time rate of change must be posi-

tive [.1.0 (15min)21] and 2) themaximumbox-averaged

tvis within the small box at the current time must be

sufficiently large (.25.0). The positive temporal trend of

tvis is straightforward; it should be increasing for verti-

cally growing and horizontally expanding convective

cloud. The sufficiently large threshold of 25.0 was chosen

based upon Mecikalski et al. (2011). When these con-

ditions within the tvis fields are met, the partially filtered

cloud-top cooling rate is restored into the final v2 output

field. Figures 2 and 3 illustrate the improvement of the

v2 versus v1 results. The case shown in Fig. 2 is for the

same date, time, and location as in Fig. 1; note how v1

only detects cloud-top cooling rates on one developing

storm at 1915 and 1925 UTC just east of the Illinois–

Indiana border. V2 identifies four additional storms in

regions flagged as ice cloud covered (one in eastern Il-

linois and three additional storms in Indiana; Fig. 2).

Figure 3 is another example of improved cloud-top cooling

rate detection with v2 for a case of dryline convection in

Oklahoma on 14 April 2011. Thin cirrus clouds covered

much of Oklahoma at this time (see CTC ice mask;

Fig. 3); as such, v1 only detected two storms near the

FIG. 1. GOES (left) visible, (center left) 10.7-mm IRWBT, and (center right) visible optical depth retrieval and (right) CTC algorithm

ice mask on 30 Mar 2012 over eastern Illinois and western Indiana. A line of developing thunderstorms is evident in the visible and IRW

imagery. The increasing visible reflectances and cooling IRW BTs associated with developing thunderstorms are collocated in space and

time with increasing retrieved visible optical depth. The ice mask regions are where v1 would not diagnose CTC rates.
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Red River at 1940–1955 and 2010 UTC (absence of thin

cirrus). The v2 algorithm detected three additional

storms over northern Oklahoma between 1955 and

2010 UTC (Fig. 3), as well as the most intense period

of cooling of the storm just north of the Red River

(2003 UTC), which was missed by v1. These examples

demonstrate the improvement of specific cases; the im-

provement in the form of bulk statistics, over the 23 days

studied is presented in the following section.

3. Analysis

a. Background and previous studies

Previous work performed by H13 demonstrated the

relationships between v1 output and future NEXRAD

observations for developing thunderstorms. H13 used

an automated cloud object tracking system that creates

cloud objects from GOES imager observations, assigns

each object a unique identifier (ID), and tracks these ob-

jects through space and time, all while maintaining the

unique ID (Sieglaff et al. 2013). The cloud object

tracking system utilizes the Warning Decision Support

System—Integrated Information (WDSS-II; Lakshmanan

et al. 2007) framework developed at the University of

Oklahoma to group adjacent cloudy satellite pixels into

cloud objects, similar to how a human would analyze

satellite or radar data, and track these cloud objects

through space and time. A postprocessing utility then

merges the WDSS-II output and performs steps to min-

imize the broken tracks of convective cloud objects. The

cloud object tracking system is designed to track con-

vective clouds from infancy into their mature phase and

provide a means to generate statistics of any number of

meteorological fields, as well as temporal trends of such

fields for each cloud object within a time period of in-

terest. The object-tracking system supports various geo-

spatial data, including satellite observations, satellite

algorithm output (such as CTC output), NEXRAD ob-

servations and derived fields, and numerical weather

prediction (NWP) data, and so on. The object-tracking

system allows for an objective, automated methodology

FIG. 2. (left) GOES visible, (center left) GOES visible optical depth retrieval, (center) v1 CTC rates, (center right) v2 CTC rates, and

(right) CTC algorithm ice mask on 30 Mar 2012 over eastern Illinois and western Indiana. The v2 algorithm detects more developing

thunderstorms than the v1.
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to validate and determine relationships between each

developing convective cloud’s cloud-top cooling rate

and future NEXRAD observations, as well as the lead

time the CTC signals provide ahead of NEXRAD ob-

servations. The details of the convective cloud object

tracking system are beyond the scope of this article; full

details can be found in Sieglaff et al. (2013).

The analysis presented in this section utilizes the

identical framework as that described by H13 and

Sieglaff et al. (2013). Consistent with H13, these com-

parisons do not include comparisons to surface storm

reports or severe thunderstorm warnings. While these

comparisons would be useful, and are the goals of future

work, NEXRAD data and derived output (e.g., MESH)

are the focus of this study. Many studies have docu-

mented the limitations of storm report data (Witt et al.

1998b; Stumpf et al. 2004; Ortega et al. 2006). Cintineo

et al. (2012) demonstrated that multiradar MESH pro-

vides superior level of coverage and spatial resolution

over storm reports, is free from nonmeteorological biases,

and is a good discriminator for the severe-sized hail

threshold (1.00 in.). This enables direct comparisons be-

tween v1 and v2 for the identical population of cases.

Since v2 is only different from v1 during the daytime

(specifically solar zenith angles less than 708), the com-

parisons between v1 and v2 are not directly drawn from

H13 because that study combined daytime and night-

time scenes. As such, the comparisons between the two

CTC versions are for 23 convectively active afternoons

(1800–0000 UTC) over the central plains of the United

States during the spring and early summer of 2008 and

2009. The total number of cloud objects considered in

the verification with valid Ref-10 is 3153 and the break-

downs as a function for multiple NEXRAD fields–

thresholds are provided in Table 1. The statistical analysis

and comparisons presented herein are intended to dem-

onstrate the improved algorithm skill by incorporating

tvis into the CTC algorithm. Similarities and differences

of relationships between versions of CTC with NEXRAD

observations are also presented.

Consistent with H13, CTC [K (15min)21] data points

are grouped into three bins (weak, CTC . 210; moder-

ate, 210 $ CTC . 220; strong, CTC # 220); however,

only CTC signals that precede or occur concurrently to

the occurrence of a givenNEXRAD threshold are counted

as hits (e.g., lead times less than 0min are counted as

FIG. 3. As in Fig. 2, but for 14 Apr 2011 (top to bottom) over Oklahoma. The v2 algorithm detects more developing thunderstorms than v1

(northern Oklahoma), as well as the most intense period of cooling in the southern storm at 2003 UTC.
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misses), while H13 counted CTC signals with lead time

of 217min and greater as hits; therefore, comparisons

between this study and H13 need to account for this

difference.

b. Caveats applicable to statistical analysis

The subsequent section presents a skill analysis for the

two versions of CTC versus three NEXRAD fields;

however, a discussion related to the limitations of the

automated objective validation technique and how to

interpret the resultant statistics is first necessary. The

automated cloud object tracking system (used by H13

and herein) was designed to track growing convective

clouds from infancy into satellite maturity (presence of

thunderstorm anvils). Ultimately, thunderstorm anvils

merge together and the tracking of separate thunder-

storms becomes difficult, if not impossible, only using

satellite data.While efforts weremade to track storms as

long as possible, tracking of any specific storm could end

prior to achieving maximum intensity as defined by a

variety of NEXRAD metrics (H13; Sieglaff et al. 2013).

This has a direct impact on the statistical analysis of

probability of detection (POD), false alarm ratio (FAR),

and critical success index (CSI). Specifically, there is

an underrepresentation of extreme NEXRAD values

(intense reflectivity, large estimated hail size, etc.)

within the validation framework.As such, for increasing

NEXRAD intensity, the POD values are likely under-

estimates and the FAR values are likely overestimates

(H13), thereby leading the CSI scores to be under-

estimates. Consider the following example: A developing

storm with valid CTC signal is tracked successfully to

a point of reaching 55-dBZ reflectivity, 0.25-in. MESH,

and 30 kgm22 VIL; thereafter, the storm is no longer

tracked since it merged into a large anvil mass. For

NEXRAD fields greater than these values, that cloud-

top cooling rate is counted as a false alarm.Additionally,

the number of hits at extreme values is also decreased,

and since such a storm had a valid cloud-top cooling rate,

the POD and CSI scores are likewise decreased. As

a final point, the validation domain is expansive and not

limited to only regions of expected severe weather, so

a proportion of the storms in the analysis should not be

expected to reach intense/severe NEXRAD values. As

such, the expanse of the validation domain acts to de-

crease POD/CSI for these intense/severe NEXRAD

values more so than if one only considers regions sup-

portive for severe thunderstorms. While these caveats

TABLE 1. Hit, miss, false alarm, POD, FAR, and CSI statistics for CTC [v1 and v2 (boldface)] and radar reflectivity threshold at the

2108C isotherm (Ref-10) for the interior plains region of theUnited States for the 23 convective days within the validation dataset. Hit and

miss counts include all hits and misses for Ref-10 $ the bin value. False alarm counts include cloud objects that had a CTC signal and no

Ref-10 value, as well as those objects that had a cooling rate and achieved a maximum Ref-10 , the bin value. A hit is defined as any cloud

object that was assigned a CTC rate and also achieved a Ref-10 value of the corresponding bin magnitude or greater during its lifetime. A

miss is a cloud object that achieved a Ref-10 magnitude that was$ the bin value during its lifetime but was never assigned a CTC rate, or

any cloud object that achieved a Ref-10 $ the corresponding bin prior to it being assigned a corresponding CTC rate. The italicized POD,

FAR, and CSI values are for all CTC values without distinction for CTC magnitude.

Reflectivity at 2108C

Weak

(Ref-10 ,
35 dBZ) Moderate (35 # Ref-10 , 60 dBZ)

Strong

(Ref-10 $

60 dBZ)

,35 dBZ 35 dBZ 40 dBZ 45 dBZ 50 dBZ 55 dBZ $60 dBZ

Total No. of hits 302 260 225 194 190 169 160 138 128 108 93 78 55 45

Total No. of misses 2851 2893 897 928 563 584 326 348 160 180 69 84 22 32

Total No. of false alarms 215 174 231 190 232 189 233 191 224 188 224 190 238 208

POD

All CTC 0.10 0.08 0.20 0.17 0.25 0.22 0.33 0.28 0.44 0.38 0.57 0.48 0.71 0.58

CTC . 210 0.02 0.03 0.03 0.05 0.03 0.06 0.04 0.07 0.04 0.09 0.04 0.09 0.03 0.08

210 $ CTC . 220 0.04 0.04 0.08 0.08 0.10 0.10 0.12 0.12 0.15 0.16 0.13 0.18 0.14 0.21

CTC # 220 0.03 0.02 0.09 0.05 0.12 0.07 0.17 0.09 0.25 0.13 0.41 0.21 0.55 0.30

FAR

All CTC 0.42 0.40 0.51 0.49 0.55 0.53 0.59 0.58 0.64 0.64 0.71 0.71 0.81 0.82

CTC . 210 0.08 0.14 0.11 0.19 0.13 0.21 0.15 0.24 0.16 0.25 0.18 0.28 0.18 0.30

210 $ CTC . 220 0.19 0.16 0.23 0.20 0.25 0.22 0.27 0.23 0.28 0.26 0.31 0.29 0.34 0.34

CTC # 220 0.14 0.09 0.16 0.11 0.17 0.10 0.18 0.11 0.20 0.13 0.22 0.14 0.29 0.17

CSI

All CTC 0.09 0.08 0.17 0.15 0.19 0.18 0.22 0.20 0.25 0.23 0.24 0.22 0.17 0.16

CTC . 210 0.02 0.03 0.04 0.05 0.04 0.06 0.05 0.08 0.05 0.09 0.05 0.09 0.03 0.05

210 $ CTC . 220 0.04 0.04 0.08 0.08 0.10 0.10 0.12 0.12 0.14 0.15 0.11 0.15 0.08 0.12

CTC # 220 0.04 0.02 0.09 0.05 0.13 0.07 0.18 0.11 0.24 0.15 0.32 0.22 0.28 0.23
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are imperative to consider when assessing the specific

performance scores, the statistical differences between

the two CTC algorithms are impacted identically, so

relative changes can be attributed solely to algorithm

modifications and not to any validation framework

shortcomings.

c. NEXRAD-derived skill analysis

1) REFLECTIVITY AT 2108C

Table 1 shows hits, misses, false alarms, PODs, FARs,

and CSIs for v2 (boldface) and v1 for Ref-10. Table 2

shows the total number of cloud objects having a valid

NEXRAD signal and valid cloud-top cooling rate bro-

ken down by cooling rate strength, and these totals are

only for the maximum cloud-top cooling rate observed

in a cloud object’s lifetime (valid means there were

nonmissing NEXRAD and CTC values for a given

cloud object). As such, these totals equal the hits in

Table 1 for the two CTC versions. Table 3 shows the

total instances of cloud objects having a valid NEXRAD

signal and valid CTC signal for each CTC strength bin

(a single cloud object could potentially be counted in

each CTC bin). For example, a storm may initially have

a weak CTC signal, the following scan have a moder-

ate CTC signal, and then later exhibit a strong CTC

signal; therefore, Table 3 has a larger population than

Table 2.

The v2 exhibits an increase in hits (and decrease in

misses) for all Ref-10 bins (Table 1). The POD for

strong to intense Ref-10 (50 dBZ and larger) increases

for v2 versus v1 with a general rise of 0.06–0.13 (from

0.38–0.58 to 0.44–0.71). Further examination of POD

metrics indicates the majority of storms achieving

strong to intense Ref-10 exhibited strong cloud-top

cooling rates in v2 and at a much higher proportion

than that of v1. The increased proportion of strong

CTC values for v2 is due to increased data points added

by the tvis algorithm methodology. In v1, the ice cloud

percentage test often prevented the strongest cooling

rate from being diagnosed; in some cases only the ini-

tial cooling rate was diagnosed (belonging to weak or

moderate bins). The inclusion of the tvis trend and

magnitude into the v2 algorithm allows for more suc-

cessful identification of the strongest cooling rate (note

the much larger fraction of strong cooling rates for v2

than v1 in Table 2, in addition to more storms being

diagnosed). Despite a small increase in the total num-

ber of false alarms in v2 than v1, the FAR increases

only slightly for Ref-10 45 dBZ and less and remains

unchanged or slightly decreases for Ref-10 50 dBZ and

larger (Table 1).

The increased POD and decreased FAR for Ref-10
translate into slightly increased CSI scores for v2 over v1

(Table 1) when assessing total CSI, but when consider-

ing only the strong CTC hits, the CSI scores increase by

larger proportions, especially for strong–intense Ref-10.

The largest CSI value for all CTC occurs at 50 dBZ (0.27

for v2; 0.23 for v1) and at 55 dBZ when considering only

the strong CTC (0.32 for v2; 0.22 for v1). The implication

of maximum CTC skill for storms achieving 50 or 55dBZ

at Ref-10 should be taken with caution, however. Recall

the previous discussion related to cloud object tracking

limitations. While not every storm that achieves 50dBZ

will go on to reach 55 or 60dBZ, the cloud object tracking

limitations compound the decrease in the number of

storms reaching more intense values. Attempts to de-

finitively declare the CTC algorithm to be most skillful

for a specific reflectivity threshold should be made with

caution, but the relative increase in skill between v2 and

v1 is unaffected by these concerns.

In general, v2 exhibits more skill in identifying storms

for all values of Ref-10 than v1 with the most notable

increase for moderate–strong Ref-10. The v2 (relative

to v1) algorithm identifies more storms with a POD as

high as 0.71 (0.58) for 60-dBZ Ref-10. Additionally, the

TABLE 2. Counts of cloud objects in the validation scheme with

maximum observed CTC and any measured value of the radar-

derived fields broken down by CTC intensity for v1 (first three

rows) and v2 (last three rows) in the validation domain.

Max CTC rate

intensity [K (15min)21] Ref-10 VIL MESH

v1 . 210 83 32 18

210 $ v1 . 220 114 72 41

v1 # 220 63 48 37

v2 . 210 58 17 5

210 $ v2 . 220 135 85 32

v2 # 220 109 102 82

TABLE 3. Counts of cloud objects for all CTC and any measured

value of the radar-derived fields broken down by CTC intensity for

v1 (first three rows) and v2 (last three rows) in the validation do-

main. All CTC refers to all cooling rates exhibited by a single cloud

object. For example, if a cloud object exhibited weak, moderate,

and strong CTC at different times of growth, the cloud object

would be counted in each CTC bin, as opposed to only the strong

CTC bin in Table 2. As such, Table 3 has more counts than Table 2.

All CTC rate

intensity [K (15min)21] Ref-10 VIL MESH

v1 . 210 151 91 47

210 $ v1 . 220 172 125 77

v1 # 220 79 64 50

v2 . 210 159 107 59

210 $ v2 . 220 259 191 115

v2 # 220 164 156 128
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increased identification of the strongest cooling rates

(and associated large percentage of strongRef-10 values)

by v2 can lend to increased confidence that a developing

storm should exhibit a strong CTC signal if strong Ref-10
is to be achieved later in the storm’s life cycle than one

would expect with v1.

2) MAXIMUM EXPECTED SIZE OF HAIL

Table 4 shows hits, misses, false alarms, PODs, FARs,

and CSIs for v2 (boldface) and v1 for MESH. Similar to

Ref-10, the number of hits increased (and misses de-

creased) for all values of MESH. The POD significantly

improves by 0.15–0.20 for all total MESH bins. V2

captures 64% of all storms generating any hail (0.251-in.

MESH) and 83% of storms with radar-estimated severe

hail (1.001 in.) while v1 only achieved 51% and 67% for

these MESH thresholds. The majority of all storms pro-

ducing any hail (0.251-in. MESH) exhibit strong v2s.

Effectively every storm exhibiting radar-estimated severe

hail (1.001-in.MESH) hadmoderate or strong cloud-top

cooling rates in v2; much less of a definite relationship is

observed with v1. The proportion of storms reaching the

strong CTC bin is again much higher for v2 than v1 as a

result of tvis enabling detection of each storm’s strongest

cooling rate (Tables 2 and 4). The FAR values are gen-

erally slightly smaller for v2 than v1 when considering all

CTC data points. This translates into increased CSI

scores for v2 relative to v1. The CSI scores for the total

CTC bins generally increase slightly for v2 relative to v1,

but when only considering the strongest CTC bin, the

skill increases by as much as ;0.15.

Like with Ref-10, the apparent decrease in skill for

increasing MESH needs to be taken in context. The

validation domain contains storms within regions where

severe convection was not expected and the limitations

of the cloud object tracking system contribute to fewer

storms reaching severe hail sizes than actually occur.

Perhaps the most useful skill metric is the v2 POD

numbers (0.83 for 1.001-in. MESH, 0.91 for 1.501-in.

MESH). These extremely high POD numbers suggest

that when the environment is supportive for severe

hail, a forecaster can have very high confidence the v2

algorithm will identify a storm that will achieve radar-

estimated severe hail and likely have a strong CTC

(Table 4). While the FAR values are quite high, this is

expected because severe hail is quite rare relative to all

thunderstorms (consider count decreases from Ref-10 to

MESH in Table 2 and the prior statement that valid

cloud-top cooling rates with no associated NEXRAD

bin values are counted as false alarms). Also, the FAR

values, while high, are slightly lower than the POD num-

bers for v2.

Overall, v2 is shown to be more skillful in diagnosing

storms that produce any radar-estimated hail (0.251-in.

MESH), with high PODs for storms producing severe

MESHs. Of most significance is that the very large pro-

portion of storms that produce radar-estimated hail ex-

hibit strong CTC. Again, this suggests to a forecaster that

in an environment supportive of hail development, any

developing storm that will produce hail, particularly se-

vere hail, should be expected to exhibit strong CTC, es-

pecially with v2.

3) VERTICALLY INTEGRATED LIQUID (VIL)

Table 5 shows hits, misses, false alarms, PODs, FARs,

and CSIs for v2 (boldface) and v1 for VIL. The various

TABLE 4. As in Table 1, but with radar-estimated MESH.

MESH (in.) 0.25 0.50 0.75 1.00 1.50 $2.00

Total No. of hits 119 96 103 80 77 62 62 50 40 32 25 20

Total No. of misses* 68 91 51 80 23 38 13 25 4 12 2 7

Total No. of false alarms 203 178 211 184 222 196 227 200 246 215 262 227

POD

All CTC 0.64 0.51 0.67 0.52 0.77 0.62 0.83 0.67 0.91 0.73 0.93 0.74

CTC . 210 0.03 0.09 0.03 0.09 0.02 0.11 0.01 0.09 0.00 0.09 0.00 0.07

210 $ CTC . 220 0.17 0.21 0.16 0.21 0.12 0.23 0.15 0.24 0.14 0.27 0.19 0.30

CTC # 220 0.44 0.21 0.48 0.21 0.63 0.28 0.67 0.33 0.77 0.36 0.74 0.37

FAR

All CTC 0.63 0.65 0.67 0.70 0.74 0.76 0.79 0.80 0.86 0.87 0.91 0.92

CTC . 210 0.17 0.27 0.17 0.27 0.18 0.28 0.19 0.30 0.19 0.31 0.19 0.32

210 $ CTC . 220 0.29 0.26 0.30 0.29 0.33 0.32 0.34 0.34 0.35 0.36 0.36 0.38

CTC # 220 0.17 0.12 0.20 0.14 0.23 0.16 0.26 0.16 0.32 0.20 0.37 0.22

CSI

All CTC 0.31 0.26 0.28 0.24 0.24 0.21 0.21 0.18 0.14 0.12 0.09 0.08

CTC . 210 0.04 0.10 0.05 0.09 0.03 0.09 0.01 0.07 0.00 0.04 0.00 0.02

210 $ CTC . 220 0.17 0.20 0.14 0.18 0.09 0.16 0.09 0.14 0.05 0.11 0.05 0.07

CTC # 220 0.40 0.23 0.40 0.23 0.41 0.26 0.36 0.28 0.26 0.21 0.16 0.14
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skill metrics for VIL exhibit very similar improvements

as forRef-10 andMESH. For brevity an in-depth analysis

of VIL is omitted, but Table 5 shows the full statistics.

The most important points are that, in general, the POD

numbers are again improved for all VIL thresholds for

v2 relative to v1 with very high POD (.0.80) for VIL of

40 kgm22 and larger. The largest CSI scores are asso-

ciated with strong CTC values, suggesting a forecaster

should expect strong CTC values (especially for v2) with

any developing storm in regions where large VIL totals

are anticipated.

d. CTC and maximum NEXRAD distributions

Using the hits from Tables 1, 4, and 5, distributions of

the maximum radar value achieved (for Ref-10, MESH,

and VIL) versus all CTC and maximum CTC were

constructed. Figures 4–6 show distributions of all and

maximum CTC versus maximum NEXRAD values

achieved for Ref-10, MESH, and VIL, respectively. In

Figs. 4–6, the left panels are for v2 and the right panels

are for v1; the top panels correspond to all CTC (any

storm may have more than one valid cloud-top cooling

rate diagnosed) and the bottom panels correspond to a

cloud object’s maximum cloud-top cooling rate observed.

The distributions in Figs. 4a and 4c show generally

wide distributions for all CTC versus maximum Ref-10
for each CTC bin. The weak and moderate CTC bins do

not show any appreciable differences between the two

algorithm versions; however, the strong bin for v2 (Fig.

4a) has a significantly more narrow distribution (bottom

1s value is 40 dBZ instead of 30 dBZ and the 25th-

percentile value is 45 dBZ instead of 40 dBZ) and has

a larger median Ref-10 of 55 dBZ instead of 50 dBZ. The

narrower distribution width and larger median suggest

the added strong CTC points of v2 are more often asso-

ciated with storms that achievemore intenseRef-10, which

agrees with the skill score analysis. Figures 4b and 4d are

the same as Figs. 4a and 4c except only themaximumCTC

for a cloud object is considered. The distributions in

Figs. 4b and 4d are significantly narrowerwhen compared

with all CTC results (Figs. 4a,c), simply because the

initial weaker growth of strong storms is omitted in the

maximum CTC distributions (included in all of the CTC

distributions). The v2 distributions (Fig. 4b) are gener-

ally narrower [toward larger (smaller) Ref-10 for the

strong (weak) CTC bin] than those for v1 (Fig. 4d). The

narrowing and shift toward smaller Ref-10 for the weak

CTC is attributed to the increased diagnosis of strong

cooling rates with v2. The better diagnosis of strong

cooling rates, in turn, results in the weak CTC bin to be

populated with storms that never actually achieve

moderate or strong cooling rates as opposed to storms

that did have strong growth but the strong growth period

was missed in v1. This narrowing and the shift toward

larger Ref-10 for the strong CTC occurs for similar rea-

sons; the added data points are largely from storms that

achieve strong to intense Ref-10 (Table 2: 109 strong for

v2; 63 strong for v1). These distributions give increased

confidence that a strong cooling rate from v2 will result

in strong to intense Ref-10 and that a developing storm

with only weak cooling in v2 will, in general, not develop

strong to intense Ref-10 when compared to v1.

Figure 5 is the same as Fig. 4 but is for MESH.

Similar relationships exist between all CTC and maxi-

mum MESH results (Figs. 5a,c), as shown with Ref-10.

The v2 distributions for weak and moderate are more

TABLE 5. As in Table 1, but with radar VIL.

VIL (kgm22) 5 10 20 30 40 $50

Total No. of hits 204 158 169 128 121 96 84 66 63 48 40 35

Total No. of misses* 287 333 191 232 87 112 32 50 23 28 5 10

Total No. of false alarms 202 183 202 183 213 186 216 192 226 202 246 212

POD

All CTC 0.42 0.32 0.47 0.36 0.58 0.46 0.72 0.57 0.83 0.63 0.89 0.78

CTC . 210 0.03 0.08 0.04 0.09 0.03 0.10 0.03 0.10 0.01 0.09 0.00 0.07

210 $ CTC . 220 0.17 0.15 0.17 0.15 0.17 0.18 0.14 0.22 0.13 0.22 0.11 0.31

CTC # 220 0.21 0.10 0.26 0.11 0.38 0.18 0.56 0.25 0.68 0.32 0.78 0.40

FAR

All CTC 0.50 0.54 0.54 0.59 0.64 0.66 0.72 0.74 0.78 0.81 0.86 0.86

CTC . 210 0.15 0.23 0.16 0.24 0.17 0.27 0.18 0.28 0.19 0.30 0.19 0.31

210 $ CTC . 220 0.21 0.21 0.24 0.23 0.28 0.26 0.32 0.31 0.34 0.34 0.36 0.36

CTC # 220 0.14 0.10 0.15 0.12 0.19 0.13 0.22 0.15 0.25 0.16 0.31 0.19

CSI

All CTC 0.29 0.23 0.30 0.24 0.29 0.24 0.25 0.21 0.21 0.17 0.14 0.14

CTC . 210 0.05 0.08 0.05 0.09 0.04 0.10 0.03 0.09 0.01 0.06 0.00 0.03

210 $ CTC . 220 0.19 0.15 0.18 0.15 0.16 0.17 0.11 0.16 0.08 0.13 0.04 0.13

CTC # 220 0.23 0.12 0.28 0.13 0.35 0.20 0.40 0.25 0.38 0.26 0.27 0.24
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constrained to smaller MESH values than for v1, while

the strongCTC bin is largely the same.When considering

the maximum CTC (Figs. 5b,d), the distributions are

again much narrower for v2 than v1 for similar reasons to

those with Ref-10. [The weak bin in Fig. 5b is very narrow

largely because of a very small sample size (six storms had

a maximum v2 in the weak bin and 0.251-in. MESH).]

When considering maximum CTC, v2 (Fig. 5b) has much

narrower distributions shifted to smaller MESH values in

the weak and moderate bins than does v1 (Fig. 5d), as well

as smaller populations (Table 2). The strong bin is

largely the same between the two CTC versions. Figures

5b and 5d imply that one can more confidently expect

radar-estimated severe hail (1.001 in.) when a devel-

oping storm exhibits strong cloud-top cooling rates in v2

than was possible with v1 (where severe hail was more

common in the weak and moderate CTC bins).

Figure 6 is the same as Figs. 4 and 5 but is for VIL.

Again, for brevity, a full analysis of Fig. 6 is omitted.

The key points taken from Fig. 6 are similar to those of

Figs. 4 and 5; a forecaster can have increased confidence

that a developing storm with strong (weak) v2 will more

likely produce large (small) VIL values in the future than

could be deduced from the analysis of v1.

H13 included a lead-time analysis of the CTC signal

(both all and maximum) ahead of maximum NEXRAD

values obtained for each storm, as well as lead time ahead

of operationally significant thresholds (e.g., MESH of

1.00 in. and VIL of 40 kgm22). The lead time from H13

indicates a 20- (601-) minute lead time for VIL values of

FIG. 4. Comparison of (a),(b) all instantaneous and (c),(d) maximumCTC values with maximum reflectivity at2108C isotherm [Ref-10;

dBZ] for (left) v2 and (right) v1 for cloud objects that had both a CTC and associated Ref-10 at some point in their lifetime. CTC rates for

cloud objects are binned by intensity [K (15min)21] with weak, moderate, and strong convective growth rates defined as CTC . 210,

210 $ CTC . 220, and CTC # 220, respectively. For each boxplot, the median (red line), 25th and 75th percentiles (lower and upper

bounds of the blue box), and one standard deviation (whiskers) are shown. The medians of different intensity bins are significantly

different at the 5% significance level if the widths of the notches centered on the medians do not overlap.

516 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53



20 (45) kgm22 and a 45-min lead time for severe hail

MESH (1.00 in.). While the lead-time threshold that

defines hits differs between H13 and this manuscript

(217 and 0min, respectively), the lead times determined

herein were very similar to those reported by H13. As

such, only median lead times for v2 and v1 for various

thresholds of Ref-10, MESH, and VIL are provided in

Table 6. The most significant difference between the

CTC versions was toward smaller median lead times

from v2 compared to v1 for the 23 days studied. This

trend is not unexpected given that the added v2 data

points are a result of including tvis trends, which occur at

a slightly later stage in the storm’s development and that

the strongest cooling rates are more reliably detected

(occur later than the preceding weaker CTC). The slight

decrease in lead time does not limit the usefulness of

v2 data, as demonstrated at the 2012–3 NOAA HWT

(GOES-R Proving Ground 2013), especially given the

increased algorithm skill for operationally significant

echoes.

4. Summary

The use of remote sensing data with high spatial and

high temporal resolution is essential when monitoring

the development and growth of deep convective storms.

The University of Wisconsin Cloud-Top Cooling Rate

algorithm was developed to monitor the vertical growth

rate of developing convective clouds by diagnosing re-

gions of cooling IRW BTs between consecutive GOES

imager scans. Feedback from various experiments

with operational meteorologists indicated the largest

deficiency of the v1 algorithm was the inability to di-

agnose cooling rates in regions of thin cirrus clouds. The

v1 algorithm was designed to exclude regions domi-

nated by cirrus clouds because cooling IRW BTs in

regions of cumulus cloud growth shielded by upper-

level cirrus clouds can be ambiguous in the absence of

additional information. To address this deficiency, the

CTC algorithm was modified to include tvis retriev-

als. The inclusion of tvis retrievals (v2) increased the

FIG. 5. As in Fig. 4, but for comparison with MESH (in.).
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identification of developing storms that were otherwise

missed by v1.

A skill score analysis compared the output of v1

and v2 with many NEXRAD fields and thresholds

(Ref-10,MESH, andVIL) for 23 convectively active days

during spring–early summer 2008 and 2009. It is im-

portant to reiterate the skill analysis of v2 applies to

the daytime—when visible optical depth retrievals are

available. Near the terminator and at night the v1 logic

applies and the v1 skill scores and results from H13 best

describe the algorithm performance during those con-

ditions. The skill score analysis shows that the inclusion

of tvis into the CTC algorithm acts to increase PODs for

all thresholds of all NEXRAD fields analyzed, especially

for strong/intense values of those fields [e.g., PODs for

50-, 55-, and 60-dBZ Ref-10 for v2 (v1) are 0.44 (0.38),

0.57 (0.48), and 0.71 (0.58), respectively]. The CSI was

shown to slightly increase for most thresholds of the

NEXRAD fields for v2 relative to v1, with more notable

CSI increases for strong CTC and strong/intense Ref-10,

MESH, andVIL. The analysis also demonstrated that v2

more often identified the strongest vertical growth rate

(cooling rate), whereas v1 sometimes missed the stron-

gest cloud-top cooling rate as a result of specific algo-

rithm configuration (e.g., ice cloud percentage test). The

more complete identification of the strongest cloud-top

cooling rates with v2 acted to narrow the distributions of

maximum CTC and maximum NEXRAD values and

shift those distributions to more intense (weak) NEX-

RAD values for strong (weak) CTC bins relative to v1

(even in regions absent of thin cirrus shields). In practical

terms, a forecaster can have increased confidence in the

following: 1) developing storms with strong CTC values

will more often be associated with future strong/intense

NEXRAD observations, while storms with weak CTC

values will more often fail to reach strong/intense

NEXRAD values; 2) the strongest cloud-top cooling rate

of a developing storm will more often be successfully

FIG. 6. As in Fig. 4, but for comparison with VIL (kgm22).
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identified; 3) growing cumulus clouds within regions of

thin cirrus clouds will more often be detected; and 4) de-

veloping storms that will achieve severe radar-estimated

hail (1.001-in. MESH), strong Ref-10 (551 dBZ), and

largeVIL (301 kgm22)willmost often exhibit strongCTC

with v2 rather than with v1. Additionally, the inclusion of

tvis results in only a small reduction in the lead time of the

maximum CTC signal to NEXRAD-observed reflectivity

and derived field thresholds. Finally, it is important that the

relatively high FARs for intense Ref-10, radar-estimated

severe hail (via MESH), and so on are taken in context.

The high FAR values are due to 1) the validation domain

encompassed regions of expected severe and nonsevere

thunderstorms; 2) intense reflectivity, large hail, and so

on being rare relative to all thunderstorms; and 3) the

satellite-based cloud-tracking validation technique em-

ployed being designed to track into the mature thun-

derstorm stage, and not necessarily to radar maturity.

Therefore, the database is, to a degree, an underrepre-

sentation of maximum NEXRAD intensity actually

achieved. However, given the high POD values of v2 for

intense radar signatures [e.g., 0.83 for 1.001-in. MESH,

0.71 for 60-dBZ Ref-10], when considering the mesoscale

and synoptic environmental conditions, in situations fa-

vorable for severe weather, a developing storm will likely

exhibit strong CTC prior to the onset of intense re-

flectivity and/or large radar-estimated hail in most cases.

The v2 output has been generated in real time at UW-

CIMSS since April 2012 and is available currently via

the CIMSS local data manager. More details on how to

ingest CTC fields into the AdvancedWeather Interactive

Processing System (AWIPS) are available online (http://

cimss.ssec.wisc.edu/goes_r/proving-ground/awips/ci/

index.html), as is ‘‘quick look’’ imagery (http://cimss.

ssec.wisc.edu/snaap/convinit/quicklooks/).
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APPENDIX

List of Key Acronyms and Abbreviations

tvis Visible optical depth

BTs Brightness temperatures

CSI Critical success index

CTC Cloud-top cooling

dBZ Decibels relative to Z

FAR False alarm ratio

GOES Geostationary Operational

Environmental Satellite

HWT Hazardous Weather Testbed

IRW Infrared window

MESH Maximum expected size of hail

NEXRAD Next Generation Weather Radar

NOAA National Oceanic and Atmospheric

Administration

NWS National Weather Service

POD Probability of detection

Ref-10 Reflectivity at 2108C isotherm

UW-CIMSS University of Wisconsin

Cooperative Institute for

Meteorological Satellite Studies

v1 Version 1 of the CTC algorithm

v2 Version 2 of the CTC algorithm

VIL Vertically integrated liquid

WDSS-II Warning Decisions Support

System—Integrated Information

WFO Weather Forecast Office

WSR-88D Weather SurveillanceRadar-1988Doppler
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