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ABSTRACT

The probability of turbulence in the region of identified cloud-top cooling (CTC) from a satellite-based

algorithm is calculated. It is found that the overall turbulence probability is low, with only 3.93% of 738

Boeing 737s and 757s experiencing light or greater turbulence. Predicting the probability of turbulence is done

using a Bayesian scheme. This prediction scheme relies on the CTC magnitude as well as the relationship

between the CTC and aircraft. At higher CTCmagnitudes [#216K (15min)21], turbulence is more common,

with the conditional probability of turbulence exceeding the conditional probability of no turbulence.Aircraft

with flight levels that are less than 8000 ft (;2440m) above the cloud height also have a higher conditional

probability of turbulence than no turbulence. Overall, the Bayesian scheme is found to be more skillful when

compared with use of climatological information alone.

1. Introduction

Convectively induced turbulence (CIT) is a docu-

mented in-flight aviation hazard (Hamilton and Proctor

2002). Thunderstorms account for most air traffic delays

in the United States (Kaplan et al. 2005; Murray 2002;

Mecikalski et al. 2007), but the developmental stages of

thunderstorms can also be a cause of CIT, sometimes

unseen by pilots. For example, on 3 August 2009,

a Continental Airlines Boeing 767-200 encountered

turbulence as a result of ‘‘the flight crew’s inadvertent

flight through the top of a convective updraft,’’ even

though the pilot was able to see ground lights minutes

before (National Transportation Safety Board incident

DCA09IA071; for brief and full narratives of the incident

see online at http://www.ntsb.gov/aviationquery/brief.

aspx?ev_id520090810X21314&key51).

Convective updrafts can be inferred by monitoring

cooling trends of infrared (IR) window brightness

temperatures (BT) from geostationary satellites [e.g.,

Geostationary Operational Environmental Satellite

(GOES)].One such approach, theUniversity ofWisconsin

cloud-top cooling (UW-CTC; Sieglaff et al. 2011) al-

gorithm, is shown in Fig. 1. The UW-CTC algorithm

diagnosed a rapidly cooling convective cloud just north

ofHispaniola coincident with the Continental flight. The

objective of this analysis is to predict light or greater

turbulence for aircraft flying within/over a cloud that

currently has a measurable UW-CTC rate. This paper

identifies the probability of experiencing CIT in the re-

gion of these clouds and uses attributes of the UW-CTC

algorithm to better predict the probability of CIT. In this

paper, CIT will refer to both in-cloud and out-of-cloud

turbulence.

2. Data

a. Cloud-top cooling algorithm

The UW-CTC algorithm that is used in this analysis

uses an approach called box averaging (Sieglaff et al.

2011). Centered on each GOES-East pixel is a box of

7 3 7 pixels that is used to compute a box-average IR

BT, excluding pixels deemed clear or fog by theGOES-R

Advanced Baseline Imager (ABI) cloud-typing algo-

rithm that is described in Pavolonis (2010). At least 5%

of the box must be cloudy for consideration, allowing

more than one pixel to contribute to the box-averaged IR

BT. The domain for this analysis covers a region ex-

tending from 218 to 518N and from 668 to 1048W.

Using the current and previous satellite scan times,

the box-averaged IRBT fields are differenced (current2
previous) to calculate the unfiltered CTC. This unfiltered
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CTC is normalized to a 15-min CTC rate to account for

temporal inconsistencies in the GOES scan schedule.

This unfiltered CTC rate can either represent horizontal

movement (cold cloud moving into the box previously

occupied by a warm cloud) or vertical growth (cloud re-

maining in the box and increasing in vertical extent). A

series of tests are performed to remove false cooling that

results from horizontal cloud advection, leaving only CTC

signatures that are related to vertical cloud growth. These

tests, as well as a full description of the CTC algorithm,

can be found in Sieglaff et al. (2011). In addition, GOES

visible optical depth (VOD;Walther andHeidinger 2012)

has been incorporated into the UW-CTC algorithm to

detect growing convection beneath regions of thin cirrus

clouds during daytime hours. The introduction of GOES

VOD to the UW-CTC algorithm has allowed for a higher

number of storm identifications while increasing the

UW-CTC algorithm skill (Sieglaff et al. 2013).

In addition to the UW-CTC algorithm, output from

the GOES-R ABI cloud-height algorithm (ACHA) is

also employed in this study. ACHA uses ancillary

data, including surface information and a radiative

transfer model, as well as data from numerical weather

prediction models (see section 2c) to derive cloud-top

height and pressure (Heidinger 2011).

b. Eddy dissipation rate turbulence observations

Eddy dissipation rate (EDR) values derive from ver-

tical motions experienced by an aircraft and provide a

quantitative measure of atmospheric turbulence intensity

(Cornman et al. 1995, 2004a). The Research Applications

Laboratory of the National Center for Atmospheric Re-

search provided the EDR values that were used in this

project. EDR values for aircraft above flight level 200

(20000 ft in pressure altitude coordinates; 1 ft’ 0.3m) and

not ascending or descending [defined as 5000 ft (15min)21]

will be considered in this analysis. Pressure altitude is the

altitude of a given value of atmospheric pressure according

to the International Civil Aviation Organization (ICAO)

standard atmosphere (Glickman 2000).

The dependent dataset used in this analysis includes

EDR data from United Airlines (UAL) Boeing 737 and

757 aircraft from 2008 andDeltaAirlines (DAL)Boeing

737 aircraft from 2010. In addition, EDR data from

DAL Boeing 737 aircraft from 2011 will be used in an

independent test of performance. EDR data are repor-

ted on a 0–1 scale, with UAL and DAL data being re-

ported at intervals of 0.10 and 0.02m2/3 s21, respectively.

EDR reporting strategies vary between UAL and

DAL. EDR data from UAL are estimated by using

FIG. 1. CTC and Continental Airlines flight 128 track at 0802 UTC 3 Aug 2009. The plotted track is within67min

of the satellite scan time. Note the flight track over the colored CTC just north of Hispaniola’s eastern point. The

timing of this occurrence corresponds to the time that the Boeing 767-200 aircraft experienced turbulence.
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vertical accelerometer data (Cornman et al. 2004b) and

are reported every minute. DAL EDR values are calcu-

lated by using vertical wind data (Cornman et al. 2004b),

and reporting relies on a triggering logic (Meymaris and

Sharman 2013). A DAL EDR is reported every 15min

unless one of the following three types of minimum events

occur:

1) in type 1, an EDR value of greater than or equal to

0.18 is experienced,

2) in type 2, an EDR value of greater than or equal to

0.12 is experienced for 3 of the last 6min, and

3) in type 3, an EDR value of greater than or equal to

0.06 is experienced for 4 of the last 6min.

A pictorial example of this type of EDR reporting,

adapted from Meymaris and Sharman (2013), can be

seen in Fig. 2. Although these data can be interpolated

to 1-min temporal frequency, only noninterpolated data

will be used in this analysis because lower EDR values

(those less than 0.18m2/3 s21) could be lost by the trig-

gering logic if not experienced over a certain length of time.

Categorical (e.g., light ormoderate) turbulence can be

identified by using EDR thresholds. According to the

International Civil Aviation Organization (2007), light

or greater turbulence (LOGT) is observed when EDR

values are greater than 0.1. A full comparison of EDR

values with categorical turbulence using the ICAO

standards can be found in Table 1. Another method for

identifying categorical turbulence can be found by

comparing EDR values with pilot reports (PIREPs) of

turbulence. The turbulence-intensity criteria definition

and numerical value assigned to each PIREP can be

found in Schwartz (1996). According to Pearson and

Sharman (2013), UAL and DAL EDR values are re-

lated to PIREP values by the equation EDR 5 0.0138

(PIREP intensity)2. Using the relationship between

categorical turbulence and PIREP intensity in Table 2

[adapted from Schwartz (1996)], the EDR value for light

turbulence is 0.055. Thus, EDR values greater than or

equal to 0.10 (0.06) for UAL (DAL) are considered to

be LOGT in this analysis, which is hereinafter referred

to as the PIREP standard. A full comparison of EDR

values with categorical turbulence for the PIREP stan-

dard can be found in Table 3.

c. Numerical weather prediction models

The GOES cloud products require data from nu-

merical weather prediction (NWP) models—temperature

and moisture profiles, to be specific. For 2010 and 2011

cases, 12-h forecasts from the 0.58-resolution Global

Forecast System NWP model are used, and the 2008

analysis relies on 0-h forecasts from the 1.08-resolution
Global Data Assimilation System NWP model. Since

the NWP models are valid at 0000, 0600, 1200, and

1800 UTC, the forecasts valid prior to and after the

analysis time are used as inputs into the GOES cloud-

product computations.

3. Method

According to Sieglaff et al. (2011), the average

movement of convective clouds is 5 km (5min)21, with

a standard deviation of 2 km (5min)21. Therefore,

a cloud with a movement speed that is 3 standard de-

viations above the mean has a speed of 11 km (5min)21,

or 2.2 kmmin21, the upper bound for this analysis. For

an aircraft to have possibly flown though a cloud ex-

hibiting a UW-CTC rate, its location must be within

FIG. 2. Schematic illustrating the Delta Airlines EDR reporting

triggering logic. Blue represents a type-1 report in which an EDR

value greater than or equal to 0.18 is experienced. Red represents

a type-2 report in which an EDRvalue greater than or equal to 0.12

is experienced for at least 3 out of the last 6min. Black represents

a type-3 report in which an EDRvalue greater than or equal to 0.06

is experienced for 4 out of the last 6min.

TABLE 1. EDR value and corresponding turbulence category as

based on the International Civil Aviation Organization (2007)

standards.

EDR # 0.1 No turbulence

0.1 , EDR , 0.4 Light turbulence

0.4 , EDR , 0.70 Moderate turbulence

EDR $ 0.70 Severe turbulence

TABLE 2. Turbulence category and corresponding PIREP intensity

adapted from Schwartz (1996).

Categorical turbulence PIREP intensity

Null 0

Light 2

Moderate 4

Severe 6
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2.2 kmmin21 3 jEDR report time2 satellite scan timej
of the CTC location. This will be the radius of un-

certainty. The prediction interval used is 7min; one-half

of the average time between GOES-East scans over the

continental United States.

Because UAL EDRs are reported every minute

(Cornman et al. 2004a), an aircraft could report an EDR

up to 30 s after encountering a cloud exhibiting a UW-

CTC rate. A Boeing 737-800 has a typical cruising speed

of 0.785 3 Mach (see ‘‘commercial airplanes—737-800

technical characteristics’’ online at http://www.boeing.

com/commercial/737family/pf/pf_800tech.html), or about

15.5kmmin21 (where Mach 1 5 330ms21; see ‘‘Mach

number’’ online at http://www.grc.nasa.gov/WWW/k-12/

airplane/mach.html).

A Bayesian scheme will be utilized to calculate the

probability of CIT in the region of a CTC. According to

Bayes’s theorem, the probability of CIT is conditional

on the features set F, which can be described by

P(Cturb jF )5
P(Cturb)P(F jCturb)

P(F)
, (1)

where P(Cturb jF) is referred to as the ‘‘posterior prob-

ability.’’ The ‘‘prior probability’’ P(Cturb) is the proba-

bility assigned without knowledge of features. This is

also referred to as the ‘‘climatology,’’ that is, the number

of aircraft flights experiencing LOGT (Cturb) divided by

all aircraft flights within the radius of uncertainty. The

‘‘class-conditional probability’’ P(F jCturb) is the prob-

ability of observing a set of features when experiencing

LOGT, and P(F) is the probability of observing a set of

features independent of experienced turbulence (Kossin

and Sitkowski 2009; Wilks 2006). By assuming that

each feature within our feature set F is independent,

P(F jCturb) can be rewritten as

P(F jCturb)5P
N

i51

P(Fi jCturb) ,

where Fi represents a single feature in the set F. Thus,

our Eq. (1) can be rewritten as

P(Cturb jF)5
P(Cturb)P

N

i51

P(F jCturb)

P(F)
.

The potential features included in the Bayesian

scheme will be 1) CTC magnitude, 2) the horizontal

distance between the CTC and the aircraft, and 3) the

vertical distance between the aircraft flight level and the

ACHA cloud-top height (CTH) prior to CTC. The au-

thors of this paper do acknowledge the differing vertical

coordinate systems between aircraft height (pressure

altitude) and ACHA CTH (geopotential altitude). Al-

though this does not allow for an analogous comparison,

the Bayesian scheme relies on conditional probabilities

of the difference rather than exact figures, and the com-

parison can continue as long as the coordinate system

among the aircraft height and among ACHA CTH re-

mains consistent. We will maintain the pressure-altitude

coordinates for the aircraft height and the geopotential

coordinates for the ACHA CTH, because these are the

natural coordinates for both entities.

For inclusion in the Bayesian scheme, these three

features must be statistically different between turbu-

lent cases and nonturbulent cases at the 95% confidence

level using a 2-sided Student’s t test. Since ACHA CTH

is used as a potential feature in the Bayesian scheme,

pixels that are identified as cirrus or overlapping by the

GOES-R ABI cloud-typing algorithm (Pavolonis 2010)

will not be used in this analysis. In these cases, ACHA

would be identifying the height of the highest cirrus clouds

instead of the growing convective cumuliform cloud.

For a given aircraft flight within the radius of un-

certainty, three sets of potential features are analyzed

(assuming statistical significance). The first set is the

largest CTC magnitude and the vertical and horizontal

distances between the aircraft and the largest CTC

magnitude. The second set is the smallest vertical dis-

tance from CTC to aircraft, the horizontal distance be-

tween the aircraft and that CTC pixel, and the

magnitude of that CTC pixel. The final set is the smallest

horizontal distance between the aircraft and CTC, the

vertical distance between the aircraft and that CTC

pixel, and the magnitude of that CTC pixel. Thus, each

time interval will produce three sets of features for

analysis. This situation ensures an aircraft that is closer

to small-magnitude CTC pixels and farther from large-

magnitude CTC pixels is not analyzed the same as an

aircraft close to large-magnitudeCTC pixels. An aircraft

is determined to have experienced LOGT if at least one

EDR value is greater than 0.10 for the ICAO standard

or a UAL (DAL) EDR value is greater than or equal to

0.10 (0.06) for the PIREP standard. If that occurs, only

that segment where the LOGT occurs will be used to

assess features.

The probabilistic skill of the Bayesian scheme to

predict LOGTwill be assessed using the Brier skill score

(BSS). The BSS is defined as BSS 5 1 2 B/Bref where

TABLE 3. EDR value and corresponding turbulence category for

the PIREP standard as based on Pearson and Sharman (2013).

EDR # 0.055 No turbulence

0.055 , EDR , 0.22 Light turbulence

0.22 , EDR , 0.50 Moderate turbulence

EDR $ 0.50 Severe turbulence
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B5
1

k
�
k

i51

[P(Cturb jF)i2O(i)]2 and

Bref 5
1

k
�
k

i51

[P(Cturb)2O(i)]2 .

Here, O(i) represents the occurrence of LOGT, with

a value of 1 when LOGT occurs and 0 when it does not

occur; k is the total number of aircraft within the radius

of uncertainty. The Bayesian scheme is deemed skillful

if the BSS is greater than 0, with a perfect score being

a BSS equal to 1 (Wilks 2006).

Since LOGT is a yes/no variable, the deterministic

skill of the Bayesian scheme can also be assessed using

the Pierce skill score (PSS). LOGTwill be forecast if the

Bayesian probability is higher than the climatology.

Like the BSS, the PSS is skillful for values greater than

0 and is perfect for a value of 1. The PSS is equal to the

probability of detection (POD: the ratio of the correctly

forecast LOGT occurrences to the actual number of

LOGT occurrences) minus the probability of false de-

tection (POFD: the number of false alarms divided by

the total number of nonoccurrences). The POFD has

a negative orientation; therefore, lower values are pre-

ferred. A 2 3 2 contingency table, as well as equations

for each metric, can be found in Tables 4 and 5, re-

spectively.

4. Results

a. Dependent results

On the basis of the 2008 UAL EDR reports, the cli-

matological probability of LOGT is 3.93%. Of the 738

flight tracks within the radius of uncertainty, only 29

experienced LOGT. Because of the nature of the UAL

EDR reports, in increments of 0.1m2/3 s21 beginning at

0.05m2/3 s21, the climatology of LOGT is the same for

the ICAO and PIREP standard. DAL EDR reports are

not used in this metric because of their potentially in-

consistent temporal frequency. This low probability is

a result of many different factors. One factor is the large

area of analysis resulting from GOES-East temporal

resolution. The area of analysis for an EDR report at

67min is approximately 936km2. Other potential factors

for the low probability are the uncertainty in CTC lo-

cation, because it takes approximately 4min for GOES

to scan the region of interest, as well as the temporal

resolution of GOES-East.

Only two features, the magnitude of the CTC and the

vertical distance between the aircraft flight level and

CTH, are statistically significant at the 95% confidence

interval using a 2-sided Student’s t test based on the

dependent analysis. Therefore, the features used as in-

puts in the Bayesian scheme will be the highest CTC

magnitude, the vertical distance between the aircraft

and that CTC pixel, the smallest vertical distance from

CTC to aircraft, and the CTC magnitude that is the

closest in vertical distance to the aircraft. These features

can no longer be assumed to be independent; the

Bayesian scheme has been shown to perform well even

when independence is violated, however (Domingos

and Pazzani 1997).

The conditional probabilities for these features for the

ICAO standard can be found in Fig. 3. CTC magnitude

and aircraft vertical distance are binned into 2-K and

2000-ft boxes, respectively. These conditional proba-

bilities have been smoothed using a nine-point running

boxcar average.

Figure 3a shows the conditional probability of turbu-

lence with respect to CTC magnitude for the ICAO

standard. For higher CTC magnitudes [less than 216K

(15min)21], the conditional probability of LOGT ex-

ceeds the conditional probability of no turbulence. The

same configuration exists for the PIREP standard (not

shown). CTC magnitude represents the vertical growth

of the cloud (Sieglaff et al. 2011), with higher CTC

magnitude representing more rapid vertical growth. It is

assumed that this vertical growth is the result of upward

vertical velocity (Adler and Fenn 1979; Glass and

Carlson 1963), which is a known cause of aircraft tur-

bulence (Sharman et al. 2006).

The conditional probability for the aircraft vertical

distance from the CTC for the ICAO standard can be

seen in Fig. 3b. Vertical distances of less than zero rep-

resent an aircraft flight level that is below the CTH.

Higher conditional probability of LOGT exists at these

distances, potentially a result of aircraft flying through

TABLE 4. Relationship between Bayesian probability forecasts and

LOGT observations in a 2 3 2 contingency table.

Obs

Yes No

Forecast Yes h f

No m z

TABLE 5. Forecast metrics for the Bayesian probability forecasts

using the 2 3 2 contingency table in Table 4.

Forecast metric Equation

PSS
h

h1m
2

f

f 1 z

POD
h

h1m

POFD
f

f 1 z
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intense upward vertical motions. Aircraft just above the

CTH also have a greater conditional probability of

LOGT in comparison with no turbulence. This is con-

sistent with Lane et al. (2012), who indicated that the

risk of moderate turbulence is 10 times as great for air-

craft within 12 000 feet of the Next-Generation Radar

echo top. Since the CTH represents the height of the

cloud prior to CTC, it is possible that these aircraft are

also potentially flying through intense upward vertical

motions as the cloud grows. Another potential reason is

vertical gravity waves that are excited by the growing

cloud (Alexander et al. 1995; Hung et al. 1980), which is

another known cause of observed turbulence (Bedard

et al. 1986; Lane et al. 2012). Again, the same condi-

tional probability pattern exists for the PIREP standard

(not shown) as for the ICAO standard that is seen in

Fig. 3b.

b. Independent results

Using the conditional probabilities of turbulence

represented by Fig. 3, the probability of LOGT for the

independent dataset from 2011 is predicted using

the Bayesian scheme. With a BSS of 0.032 (0.174) for

the ICAO standard (PIREP standard), the Bayesian

scheme is skillful at predicting LOGT in the vicinity

of CTC when compared with climatology alone. The

FIG. 3. (a) Conditional probability of turbulence with respect to CTC magnitude for the

ICAO standard of LOGT for EDR values of .0.1. The conditional probability of turbulence

exceeds the conditional probability of no turbulence when the CTC magnitude is less than

216K (15min)21, a result of greater upward vertical velocity. (b) Conditional probability of

turbulence with respect to aircraft vertical distance from cloud-top height for the ICAO

standard of LOGT for EDR values of .0.1. Distances of less than zero represent an aircraft

flight level that is below the cloud-top height in geopotential coordinates.
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difference in the BSS between the ICAO standard and

PIREP standard is due to 13 EDR reports in the in-

dependent dataset that are considered to be LOGT by

the PIREP standard but not by the ICAO standard.

When using the ICAO standard conditional probabili-

ties, these 13 EDR reports have an average Bayesian

probability of 16.0%. This is higher than the climato-

logical probability of LOGT, and thus the forecast skill

of the Bayesian scheme is reduced when they are not

considered to be LOGT. Using the ICAO standard

conditional probabilities in Fig. 3 from the dependent

dataset but including these 13 EDR reports from the

independent dataset to be considered as LOGT in-

creases the ICAO standard BSS to 0.141. The PSS for

the Bayesian scheme is also skillful at 0.284 (0.283) for

the ICAO standard (PIREP standard).

The impact of the Bayesian scheme on turbulence

prediction can be seen in Fig. 4. For instances in which

ICAO standard (PIREP standard) LOGT does not oc-

cur, 64.3% (69.1%) had a Bayesian probability that was

lower than the climatology. For instances in which

ICAO standard (PIREP standard) LOGT does occur,

64.0% (59.3%) have an increased probability relative to

climatology.

5. Summary and conclusions

This study uses a satellite-based cloud-top cooling

(UW-CTC) algorithm to identify the probability of

convectively induced aircraft turbulence in the vicinity

of a cloud exhibiting a UW-CTC rate. The overall

probability of turbulence around CTC is low, with only

3.93% of 738 Boeing 737s and 757s from 2008 experi-

encing light or greater turbulence.Whenusing aBayesian

scheme, the skill of predicting convectively induced

turbulence is increased when compared with predicting

turbulence on the basis of climatology alone. This result

indicates that knowledge of the CTC magnitude, as well

as the spatial proximity between the aircraft and CTC,

increases turbulence predictability. Light-or-greater

turbulence is associated with CTCmagnitudes of greater

than or equal to 216K (15min)21. Aircraft with flight

levels below 8000 ft above the cloud height also have

a higher conditional probability of LOGT than of no

turbulence.

While the overall probability of LOGT is low with

respect to CTC, the Bayesian schememodel can be used

in conjunction with other satellite turbulence predictors

to create a global turbulence probability product. Initial

plans include combining theCTC turbulence probabilities

with turbulence probabilities associated with mountain

waves, transverse banding, tropopause folds, and over-

shooting tops.
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