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ABSTRACT

Although satellite precipitation estimates provide valuable information for weather and flood forecasts,

infrared (IR) brightness temperature (BT)-based algorithms often produce large errors for precipitation de-

tection and estimation during deep convective systems (DCSs). AsDCSs produce greatly varying precipitation

rates below similar IR BT retrievals, using IR BTs alone to estimate precipitation in DCSs is problematic.

Classifying a DCS into convective-core (CC), stratiform (SR), and anvil cloud (AC) regions allows an eval-

uation of estimated precipitation distributions among DCS components to supplement typical quantitative

precipitation estimate (QPE) evaluations and to diagnose these IR-based algorithm biases. This paper assesses

the performance of the National Mosaic and Multi-Sensor Next Generation Quantitative Precipitation Esti-

mation System (NMQ Q2), and a simplified version of the Self-Calibrating Multivariate Precipitation

Retrieval (SCaMPR) algorithm, over the state of Oklahoma using Oklahoma Mesonet observations. While

average annual Q2 precipitation estimates were about 35% higher than Mesonet observations, strong cor-

relations exist between these two datasets for multiple temporal and spatial scales. Additionally, the

Q2-estimated precipitation distribution among DCS components strongly resembled the Mesonet-observed

distribution, indicating Q2 can accurately capture the precipitation characteristics of DCSs despite its wet bias.

SCaMPR retrievals were typically 3–4 times higher than Mesonet observations, with relatively weak cor-

relations during 2012. Overestimates from SCaMPR retrievals were primarily caused by precipitation

retrievals from the anvil regions of DCSs when collocated Mesonet stations recorded no precipitation.

A modified SCaMPR retrieval algorithm, employing both cloud optical depth and IR temperature, has the

potential to make significant improvements to reduce the wet bias of SCaMPR retrievals over anvil regions

of a DCS.

1. Introduction

In addition to rain gauge networks, sources for quan-

titative precipitation estimates (QPEs) such as satellites

and ground-based radars are critical to the National

Oceanic and Atmospheric Administration (NOAA)/

National Weather Service (NWS) flood and river fore-

casts (Zhang and Qi 2010; Zhang et al. 2011). Rain

gauge networks face limitations in spatial coverage, and

radar estimates have problems with beam blockage

and overshooting along with limited spatial coverage

(Krajewski and Smith 2002; Scofield and Kuligowski

2003; Smith et al. 1996; Zhang and Qi 2010; Zhang et al.

2011). QPEs derived from geostationary satellites such

as the Self-Calibrating Multivariate Precipitation Re-

trievals (SCaMPR) can help address spatial gaps by

providing continuous spatial coverage (Scofield and

Kuligowski 2003). This advantage of satellite QPEs

has led to their incorporation into the multisensor pre-

cipitation estimation algorithm (Kondragunta et al.

2005). Potential applications of near-real-time satellite

QPEs for disaster preparedness and mitigation are pos-

sible at both regional and global scales (Hong et al. 2007).
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The relationship between the satellite-retrieved, IR

brightness temperatures of storms and precipitation rates

at the surface has been well documented especially for

convection, and methods utilizing IR brightness temper-

atures to estimate precipitation have been developed and

modified over the last three decades (e.g., Negri and

Adler 1981; Adler and Negri 1988; Vicente et al. 1998).

The current operational satellite rainfall estimation al-

gorithm at the NOAANational Environmental Satellite,

Data, and Information Service (NESDIS) is the Hydro-

Estimator (H-E), which estimates precipitation from

geostationary platforms by relating IR brightness tem-

peratures to precipitation rates (Scofield and Kuligowski

2003). The next-generation operational NOAA/NESDIS

algorithm for the Geostationary Operational Environ-

ment SatelliteR series (GOES-R), SCaMPR, employs IR

brightness temperature and microwave data to retrieve

rainfall rates (Kuligowski 2010). Numerous other real-

time algorithms exist for retrieving rainfall rates from IR

and microwave data, including the Climate Prediction

Center morphing technique (CMORPH) (Joyce et al.

2004); Global Satellite Mapping of Precipitation, version

Moving Vector with Kalman (GSMaP_MVK1; the plus

sign refers to the version that utilizes rainfall estimates

from the AMSU-B sensor in addition to PMW images)

(Kubota et al. 2007); the Naval Research Laboratory

(NRL) blended algorithm (Turk et al. 2003); Precip-

itation Estimation fromRemotely Sensed Imagery Using

Artificial Neural Networks (PERSIANN) (Sorooshian

et al. 2000); and the Tropical Rainfall Measuring Mission

(TRMM) Multisatellite Precipitation Analysis (TMPA)

(Huffman et al. 2007). However, this paper will focus on

evaluating SCaMPR in preparation for its operational

application at NOAA/NESDIS.

As a large portion of rainfall and themajority of severe

weather reports in the United States arise from deep

convective systems (DCSs), improved understanding

and satellite QPEs of these systems are important. DCSs

can be separated into convective-core (CC), stratiform

(SR), and anvil cloud (AC) regions, with the most in-

tense precipitation in CC regions, light to moderate

precipitation in the SR regions, and light or no precip-

itation in AC regions, using a hybrid classification algo-

rithm (Feng et al. 2011, 2012; section 2d). This hybrid

classification product is produced over a grid resolution

of 4 km 3 4 km and is available with the same temporal

resolution as SCaMPR instantaneous estimates.

To improve satellite-derived QPEs during DCSs,

a source of validation data is needed with significantly

better spatial and temporal coverage and resolution

than what rain gauge networks provide. Recent studies

such as Kirstetter et al. (2012) and Amitai et al. (2012)

have utilized ground-based radar estimates as a

validation source for TRMM. Even more detailed vali-

dation and analysis can be achieved using a combination

of Next Generation Weather Radar (NEXRAD) ob-

servations and GOES satellite retrievals to classify the

three components of a DCS (Feng et al. 2011, 2012),

which provides some guidance to improve the spatial

precipitation characteristics of satellite QPEs such as

SCaMPR. Since the size of the anvil area of a DCS is

highly variable, and the IR brightness temperatures over

anvil regions are similar to those over convective cores

(Feng et al. 2011, 2012), effectively separating the anvil

from rain-core regions prior to calculating IR-based

precipitation rates could significantly improve geosta-

tionary satellite QPEs (Vicente et al. 1998). Using

a combination of the National Mosaic and Multi-Sensor

Next Generation Quantitative Precipitation Estimation

System (NMQ Q2) and GOES data, DCSs can be bro-

ken into three components that allow a better evaluation

of the strengths and weaknesses of SCaMPR retrievals.

With the hybrid classification, the distribution of pre-

cipitation among theDCS components can be calculated

for SCaMPR retrievals and compared to observed

values from Mesonet observations. This analysis will

provide statistics for the precipitation distribution in

DCSs and will also quantify the SCaMPR wet bias in

non-rain-core regions for the first time. Findings from

these evaluations could eventually improve separation

of anvil and rain-core regions using only geostationary

satellite retrievals. Furthermore, this method of analysis

using the hybrid classification system can be used to

quantitatively evaluate potential improvements in fu-

ture algorithms addressing the wet bias of IR-based

precipitation retrievals in non-rain-core regions. How-

ever, the uncertainties and errors in radar-derived Q2

estimates and satellite-derived precipitation products

must first be properly analyzed and validated with

ground-based rain gauge measurements that can pro-

vide independent ‘‘ground truth.’’

Many uncertainties involved in radar precipitation

estimates and attempts to mitigate these uncertainties

have been discussed in previous studies (Andrieu et al.

1997; Austin 1987; Langston et al. 2007; Villarini and

Krajewski 2010; Smith et al. 1996; Zhang et al. 2005;

Zhang and Qi 2010; Zhang et al. 2011). In a recent

evaluation of the NMQ and the Precipitation Processing

System (PPS) over the conterminous United States

(CONUS), Wu et al. (2012) found that NMQ estimates

performed better on average than the PPS over the

CONUS and during heavy precipitation events. While

the findings of Wu et al. (2012) and Chen et al. (2013)

support the use of NMQ Q2 estimates as the primary

dataset for improving satellite QPEs, an evaluation of the

magnitude ofNMQQ2errors and their biases over longer
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time periods is necessary against a dense rain gauge net-

work in a region where precipitation is largely fromDCSs.

Furthermore, although the distribution of precipitation

into different reflectivity–rain rate (Z–R) regimes has been

studied (Chen et al. 2013), analysis of the distribution of

estimated precipitation in DCS regions is needed to quan-

titatively examine the errors and biases of satellite QPEs.

Recently, the NWS has upgraded its radar network to

include dual-polarization technology. Dual-polarization

radar transmits energy in both the horizontal and ver-

tical directions and provides more information about

targeted hydrometeors than a single-polarization radar

provides. Thorough overviews of dual polarization are

already available in literature (Islam and Rico-Ramirez

2013), so only a brief summary of dual-polarization ap-

plications to the hybrid classification (Feng et al. 2011)

and Q2 estimates will be discussed in this study. While

the Q2 algorithm utilizes only horizontal polarization,

some incorporation of dual-polarization technology

could aid in removing ground clutter contamination in

radar precipitation estimates (Zrni�c et al. 2006). This

could be useful for filtering out erroneous light pre-

cipitation estimates that occur from inversion-induced

ground clutter. In Q3, an updated version of Q2, dual-

polarization technology has been incorporated for more

accurate hydrometeor identification (Zhang et al. 2014).

Additionally, hail-core classifications could be added to

the current hybrid classification algorithm developed by

Feng et al. (2011) by utilizing the hydrometeor classifi-

cations developed for the Weather Surveillance Radar-

1988 Doppler (WSR-88D) (Park et al. 2009). As hail

cores are a significant part of DCSs, this revised classi-

fication algorithm would allow a more detailed exami-

nation of DCS structures and their life cycles.

To evaluate both NMQ Q2 estimates and SCaMPR

retrievals in a region with precipitation dominated by

DCSs, Oklahoma (OK) Mesonet-observed precipita-

tion has been used as ground truth in this study. This

study will use time scales from 24-h to annual precipita-

tion to examine the performance of SCaMPR retrievals

and Q2 estimates for both individual precipitation

events and longer time scales. The NMQ Q2 estimates

during the period 2010–12 will be directly compared to

collocated Oklahoma Mesonet observations to deter-

mine the accuracy, consistency, and any biases associ-

ated with Q2 estimates. The same analysis will be

performed on SCaMPR for 2012 data to evaluate the

performance of SCaMPR retrievals and possible sources

of error. Potential causes for any biases or errors will be

examined along with possible methods of improvement.

Special attention will be given to the absolute accuracy

of Q2 estimates and scenarios where SCaMPR retriev-

als produced significant overestimates. Additionally,

precipitation distributions will be calculated for each of

the DCS regions from both observations and estimates.

This will provide a quantitative insight into the pre-

cipitation characteristics of DCSs, while also evaluating

the accuracy of both Q2 and SCaMPR precipitation

estimates in providing reasonable precipitation distri-

butions for DCSs. By examining the estimated precip-

itation distribution from SCaMPR, the cause of errors

can be diagnosed and more precisely accounted for and

corrected than when using only qualitative studies.

Furthermore, an evaluation of the estimated pre-

cipitation distribution from Q2 can determine how

reasonable a substitute for ground truth this product is

where dense rain gauge networks are unavailable.

By evaluating the performance of both SCaMPR and

Q2, this study will explore potential pathways for im-

provements of satellite QPEs during DCSs in a more

targeted approach than previous studies. The accuracy

of Q2 in a region with annual precipitation dominated

by convection will first be examined to determine how

reliable of a substitute Q2 estimates can be for cali-

brating satellite QPEs when a higher-resolution valida-

tion dataset is needed compared to what rain gauge

networks provide. Next, SCaMPR estimates will be

evaluated on multiple temporal and spatial scales to

pinpoint the sources of bias and error for this IR-based

satellite QPE. Last, a discussion of the findings from this

study and preliminary results from a newly developed

method to correct the biases/errors of SCaMPR will be

provided.

2. Data and methodology

a. NEXRAD Q2 data

The NMQ Q2 tile 6 estimates from January 2010 to

December 2012were comparedwithOklahomaMesonet

observations and SCaMPR retrievals. NMQ tile 6 has

northern and southern boundaries at 408 and 208N and is

bounded longitudinally by 1108 and 908W. NMQ Q2

estimates provide multiradar precipitation estimates

with a grid resolution of 1 km 3 1 km (www.nssl.noaa.

gov/projects/q2/q2.php). Q2 estimates are produced

using quality-controlled radar reflectivity data from

multiple radars to automatically classify precipitation as

convective rain, stratiform rain, warm rain, hail, and

snow (Zhang et al. 2011). These classifications will as-

sign Z–R relationships to each pixel to provide the

Q2-estimated rain rates (Zhang et al. 2011). These pixel-

level estimates can be easily compared to collocated

Oklahoma Mesonet observations. The large spatial

coverage and high spatial resolution of the NEXRAD

Q2 estimates will provide some guidance to assess (and
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potentially improve) the performance of the SCaMPR

retrievals over large areas with a much finer resolution

than rain gauge networks.

b. Oklahoma Mesonet

Oklahoma Mesonet 24-h accumulated precipitation

from January 2010 to December 2012 was used as the

ground truth in this study. There are a total of 119

Mesonet stations with data spanning the entire time

period for this study. Potential time mismatch problems

during frozen precipitation events were minimal be-

cause frozen precipitation typically accounts for;1%of

annual precipitation in the study region during this study

(www.ncdc.noaa.gov/).

c. SCaMPR retrievals

The GOES-R algorithm for rain detection and esti-

mation, SCaMPR, attempts to capture the accuracy of

microwave (MW) rain rates along with the rapid refresh

ofGOES data by calibratingGOES IR-based predictors

against MW rainfall (Kuligowski 2010). Separately

matched datasets for four latitude bands and three cloud

types (determined using brightness temperature differ-

ences between bands) are updated every time new MW

rain rates become available and the oldest data are re-

moved. Whenever the matched datasets are updated,

discriminant analysis is used to identify the two best

predictors and coefficients for discriminating raining

from nonraining pixels; stepwise forward linear re-

gression is used to select the two best predictors and

coefficients for deriving rain rates. To account for the

nonlinear relationship between IR brightness tempera-

tures and rain rates, the former are regressed against the

latter in log–log space to produce additional rain-rate

predictors. To compensate for the compression of the

statistical distribution that results from applying re-

gression techniques to nonnormally distributed data, the

cumulative distribution functions (CDFs) of the rain

rates derived via regression from dependent data are

matched against the CDFs of theMW rain rates to create

a lookup table that restores the retrieved rain rates to

the correct distribution. Please refer toKuligowski (2010)

for additional details.

The full version of SCaMPR was developed using five

bands from the Meteosat Spinning Enhanced Visible In-

frared Imager (SEVIRI)—the water vapor bands at 6.2

and 7.3mm and the IR window bands at 8.7, 10.8, and

12.0mm. However, the version of SCaMPR evaluated in

this paper was simplified from the full version because only

twoof the five bands used by the algorithmare available on

the current GOES—one water vapor band at 6.7mm and

one IRwindowband at 10.7mm; amongother changes, this

meant that only two cloud types existed instead of three,

and the available predictor dataset was reduced by half.

SCaMPR precipitation retrievals were only available from

January toDecember 2012with a grid resolution of 4km3
4km and complete coverage of Oklahoma.

d. Hybrid classification method

Feng et al. (2011) developed a method to objectively

identify DCSs and subsequently classify their convective

core, stratiform regions, and anvil regions through an

integrative analysis of collocated, ground-based, scan-

ning radar and geostationary satellite data over the

southern Great Plains (SGP) region. Detailed and ac-

curate classification of these DCS components provided

by this method can be used to better quantitatively

evaluate the estimated/retrieved precipitation distribu-

tions among DCS components to supplement typical

QPE evaluations and to diagnose IR-based algorithm

biases. The CC region can be identified by radar and is

characterized by high reflectivity values using the

convective–stratiform algorithm originally developed in

Steiner et al. (1995) and modified by Feng et al. (2011).

For this study, the threshold for a pixel to be identified as

a CC was set to 45 dBZ. The SR region identified by

radar accounts for precipitation echoes that fall below

the convective dBZ threshold (Steiner et al. 1995). AC

regions can partially be identified by radar, typically by

using an echo-height threshold, 6 km in this study, but

limited power returns from anvil regions frequently

make these clouds undetectable by ground-based pre-

cipitation radars such as the WSR-88D. However,

GOES satellites can detect the entire cloud shield, in-

cluding regions of the anvil, typically thin anvil, which is

undetectable by radar. GOES data were used to sup-

plement the WSR-88D data when identifying anvil re-

gions of DCSs in this study. This hybrid classification

product is produced over a grid resolution of 4 km 3
4 km and is available with the same temporal resolution

as SCaMPR instantaneous estimates. An example out-

put from the radar-only classification (Fig. 1a) and

combined radar and satellite (Fig. 1b) illustrates the

contribution geostationary satellite data make in the

hybrid classification.

e. Methodology of evaluation

When evaluating NMQ Q2 estimates and SCaMPR

retrievals, Oklahoma Mesonet observations were treated

as ground truth. After determining that pixels on the

NMQand SCaMPR grids correspondedwith theMesonet

locations, the NMQ Q2 estimates and SCaMPR re-

trievals were directly compared to collocated Mesonet

observations. Comparisons were only made when both

datasets were available, such as Q2 versus Mesonet

during 2010–12 and SCaMPR versus Mesonet in 2012.
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Scatterplots were constructed between the Q2 esti-

mates and Mesonet observations when Mesonet obser-

vations had recorded precipitation ($0.25mm, the

minimumdetectable value for theMesonet rain gauges).

Regression lines were derived for two spatial scales:

1) the 24-h accumulated and annual precipitation from

each Mesonet station and 2) the statewide 24-h total

precipitation from all Mesonet stations. Since radar

coverage variation has been well documented over the

United States (Maddox et al. 2002), this study was also

performed only for those Mesonet stations in regions

of good radar coverage; that is, the bottom of the radar

base beamwas#1219mAGL (generallywithin;130 km

of the radar location).

Additionally, comparisons between the Q2 estimates

andMesonet observations weremade for both the warm

and cold seasons. Thewarm seasonwas defined asApril–

September, while the cold season was from October to

March (Wu et al. 2012). These seasons help broadly

separate precipitation characteristics to evaluate the

accuracy of Q2 estimates for precipitation dominated

by convection during the warm season and the typical

widespread and stratiform precipitation during the cold

season (http://cig.Mesonet.org/climateatlas/doc60.html).

Scatterplots were created for 24-h precipitation esti-

mates and observations during both the warm and cold

seasons along with their corresponding linear regression

equations. The same comparison between the SCaMPR

retrievals and Mesonet observations was done only for

2012.

In addition to regressing the Q2-estimated and

SCaMPR-retrieved precipitation against Mesonet ob-

servations, cumulative frequency distributions were

constructed for each of the datasets. To construct the

cumulative distribution functions, a total of 50 2-mm

bins were generated from all available samples for each

dataset. To visually compare the CFDs of the pre-

cipitation amount, the percentages of precipitation

events in each Mesonet bin were subtracted from the

percentages of precipitation events in the corresponding

Q2 estimate or SCaMPR retrieval bins. Finally, cate-

gorical scores were calculated for both NMQ Q2 esti-

mates and SCaMPR retrievals using four thresholds of

Mesonet rainfall accumulation for the false alarm rate

(FAR), probability of detection (POD), and critical

success index (CSI). The categorical scores are calcu-

lated as follows. POD is defined as the ratio of hits to the

sum of misses and hits. Each hit represents an occur-

rence of an estimate greater than the threshold value

when Mesonet-observed precipitation also exceeds the

threshold value. A miss represents an occurrence of an

estimate less than the threshold value when Mesonet-

observed precipitation exceeds the threshold value.

FAR is defined as false alarms divided by the sum of

false alarms and hits. A false alarm represents an oc-

currence of an estimate greater than the threshold value

when Mesonet-observed precipitation did not exceed

the threshold value. Last, CSI is defined as the ratio of

hits to the sum of hits, misses, and false alarms. The

threshold values were 0.25, 2.5, 12.5, and 25mm for 24-h

accumulated precipitation events spanning 3 years of

NMQ Q2 estimates and 1 year of SCaMPR retrievals.

Root-mean-square error (RMSE) values were calculated

for 24-h precipitation events with four threshold values.

Additionally, RMSE scores were calculated for the an-

nual average and for 2012 when both SCaMPR and Q2

data were available.

To analyze the precipitation characteristics of DCSs

and to evaluate Q2 and SCaMPR performance in

DCSs, precipitation distributions were calculated from

FIG. 1. Examples of the classification output (a) from radar only and (b) using the hybrid combination of radar and satellite.
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Mesonet observations and from SCaMPR and Q2 esti-

mates. DCS components (CC, SR, and AC) were clas-

sified using NEXRAD and GOES data (Feng et al.

2011, 2012) over OK. All SCaMPR and Q2 pixels were

matched with the classified components, and their cor-

responding precipitation distributions were then calcu-

lated based on the sum of rates for each classified pixel.

For the Mesonet precipitation distribution, the classifi-

cation over each Mesonet station was matched with the

5-min accumulated precipitation ending at the time of

the classification. There was little sensitivity between

choosing the 5-min accumulation starting/ending at the

time of the DCS classification.

3. Results

a. Q2 versus Mesonet

Figure 2 shows the scatterplots of 24-h accumulated

precipitation from collocated Oklahoma Mesonet ob-

servations and Q2 estimates during the period 2010–12.

There are a total of 27 201 samples when precipitation

was recorded by a Mesonet station ($0.25mm) and Q2

estimates were also available. A linear relationship

between the two datasets was found, providing a strong

correlation of 0.881. On average, Q2 estimates were

about 25.6% higher than Mesonet observations (Fig. 2a),

mainly because of contributions by the warm season

(April–September) when Q2 estimates had a positive

bias of 37.9% (Fig. 2b).During the cold season (October–

March), however, an excellent agreement (;5%) was

reached between the two datasets (Fig. 2c). The sample

sizes during the warm and cold seasons were nearly

equal, and their correlations were also similar. There

were more intense precipitation events during the warm

season than during the cold season; as a result, the mean

24-h accumulated precipitation from Mesonet observa-

tions increased from 7.42 to 10.66mm (43.7%) from the

cold to warm season, while Q2 estimates increased from

7.81 to 14.70mm (88.2%). The excellent agreement

during the cold season indicates that the Q2 pre-

cipitation estimates from NEXRAD reflectivity are

reasonable for stratiform-dominated precipitation. The

Q2-estimated precipitation during the warm season,

however, produced overestimates. These overestimates

are likely attributed to incorrect classifications of trop-

ical rain in the Q2 algorithm (Chen et al. 2013) and

possibly from increased reflectivity due to hail and

graupel (Wu et al. 2013).

Figure 3 compares the CFDs of 24-h accumulated

precipitation and the percentage differences (Q2 2
Mesonet) for each bin from a total of 125 543 collocated

Q2 estimates and Mesonet observations during the 3-yr

FIG. 2. Each dot represents a pair of collocated Mesonet-observed

andQ2-estimated 24-h accumulated precipitation (rainfall.0.25mm;

i.e., excluding nonprecipitating events at each Mesonet station)

during the period 2010–12. Shown are (a) all available collocated

Mesonet andQ2observations, (b) thewarmseason (April–September),

and (c) the cold season (October–March).
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period. As opposed to the samples in Fig. 2 (rainfall $

0.25mm), the total samples in Fig. 3 include all collo-

cated Q2 estimates and Mesonet observations; that is,

nonprecipitating events are included in Fig. 3. These

samples were sorted into 50 2-mm bins where both

Mesonet and Q2 CFDs were dominated by their first bin

(0–2mm, ;85%) because the nonprecipitating events

were included in this bin. Both CFDs approached 100%

with very similar slopes as the precipitation amounts of

the bins increased (Fig. 3a). The corresponding per-

centages of the samples in each bin to total samples

(;3 yr3 365 days3 119 stations) for both Mesonet and

Q2 were calculated first, and then their percentage dif-

ferences (Q2 2 Mesonet) for each bin were calculated

and shown in Fig. 3b. The largest difference occurred in

the first bin, 0–2mm, where theQ2 percentage was 3.2%

lower than the Mesonet percentage (Fig. 3b). This sug-

gests that Q2 overestimated precipitation for light rain

events compared to Mesonet observations because the

distribution is shifted toward higher precipitation

amounts for Q2 estimates. For other bins, the Q2 per-

centages were slightly higher than the corresponding

Mesonet percentages, and the differences became neg-

ligible as the precipitation amounts of the bins increased

(Fig. 3b).

To evaluate the spatial average of 24-h accumulated

precipitation, statewide 24-h total precipitation, the sum

of all Mesonet observations (collocated Q2 estimates),

are plotted in Fig. 4. This comparison only includes

precipitation events (at least one Mesonet station re-

corded 24-h total precipitation $0.25mm). Similar to

the analysis of the individual gauge values in Fig. 1a,

a linear relationship between the two datasets was found

with a stronger correlation of 0.943 (vs 0.881 in Fig. 2a),

which would be expected from a statewide total pre-

cipitation comparison with less temporal variability than

the individual gauges. Again, Q2 estimates, on average,

were higher thanMesonet observations by 34.4% in this

comparison. Two outliers appeared in Fig. 4 where the

Q2 estimates were 1219 and 3000mm, while the corre-

sponding statewide Mesonet observations were nearly

zero and less than 400mm, respectively. Further exam-

ination into these two outliers using data from the Na-

tional Climatic Data Center (NCDC) revealed that

both outliers occurred during heavy snowfall events

over Oklahoma. Because the Mesonet gauges were

unheated, they were not able to record the falling frozen

FIG. 3. (a) Cumulative frequency of 24-h accumulated pre-

cipitation from all samples (rainfall $0mm) during the period

2010–12. Both Mesonet and Q2 samples were sorted into 50 2-mm

bins. (b) The percentages of the samples of each bin to total sam-

ples (3 yr3 365 days3 119 stations) for both Mesonet and Q2 are

calculated, respectively, and their percentage differences (Q2 2
Mesonet) for each bin are calculated until bin 10 (up to 20mm;

after that the percentage differences are negligible).

FIG. 4. Each dot represents 24-h total precipitation (statewide

rainfall$0.25mm; i.e., excluding nonprecipitating events) from all

Oklahoma Mesonet stations and collocated Q2 estimates during

the period 2010–12 (N 5 798).
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precipitation during these two events. Removal of these

outliers from the analysis produces negligible changes in

the results.

To further investigate the temporal averages of 24-h

accumulated precipitation at each Mesonet station, the

average annual precipitation distributions for both

Mesonet and Q2 over the entire state of OK during the

period 2010–12 are presented in Fig. 5. As illustrated in

Fig. 5, Mesonet observations varied from ;300mm in

western Oklahoma to slightly over 1000mm in eastern

Oklahoma (Fig. 5a), whereas Q2 estimates reached

around 1500mm in eastern Oklahoma (Fig. 5b). Mean

Q2 precipitation estimates over the state exceeded the

mean Mesonet-observed precipitation by 242.4mm

(;35.1%) (Fig. 5c). Q2 estimates were higher than

Mesonet observations across most of Oklahoma with

a few notable exceptions. In extreme southeastern

Oklahoma, the western panhandle, and northwestern

Oklahoma to the northeast of the Texas panhandle,

Q2 estimates were significantly less than Mesonet ob-

servations (Fig. 5c). The Q2 underestimates over these

regions are primarily due to poor radar coverage shown

in Fig. 6. The regions of significant underestimates are

located where the bottom of the base beam height is

greater than 1219m AGL and in some cases exceeds

3000m AGL (Fig. 6). With the volume scans over-

shooting much of the falling precipitation in these re-

gions, underestimates occur.

Figure 7 presents the same scatterplot as Fig. 2 except

for the samples with good radar coverage. Compared to

the results in Fig. 2, the correlations are slightly stronger

and the means are slightly higher in Fig. 7. The largest

increases in correlation (10.019) and wet bias (15.84%)

occurred during the cold season, while those during the

warm season only increased slightly. It is likely the Q2

estimates during the cold season were impacted more by

radar coverage than those during the warm season be-

cause precipitating clouds tend to be more shallow

(more likely to be overshot by radar) during the cold

season.

The impacts of radar coverage on Q2 estimates on an

annual time scale are shown by scatterplots of average

annual precipitation from collocated Mesonet observa-

tions and Q2 estimates at eachMesonet station in Fig. 8.

Based on all available radar samples, a linear relation-

ship between Q2 estimates and Mesonet observations

was found with a strong correlation of 0.875 (Fig. 8a),

although Q2 estimates were still higher than Mesonet

observations for most cases. After removing the data

points where Mesonet stations were located in the re-

gions of poor radar coverage, the linear relationship still

holds and the correlation increases to 0.92 (Fig. 8b).

Limiting the comparison to only regions of good radar

coverage increases the slope of the regression line in

addition to increasing correlation. Note that the differ-

ence betweenQ2 estimates andMesonet observations in

Figs. 4 and 8a are the same (;35%), while the difference

FIG. 5. Average annual precipitation (a) observed by the Okla-

homa Mesonet stations, (b) estimated by NEXRAD Q2, and

(c) their difference (Q2 2 Mesonet) during the period 2010–12.
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is;38.6% in Fig. 8b. This result indicates that the actual

positive bias of Q2 precipitation estimates may be

slightly larger than the value calculated using all quali-

ties of radar coverage.

Examining the Q2-estimated rain distribution yielded

results consistent with Mesonet observations. As shown

in Table 1, Q2 estimates indicated that ;69.8% of ac-

cumulated rainfall occurred in CC regions, compared

to ;71.0% observed by Mesonet. The 24.3% of Q2-

estimated precipitation fell in SR regions, approxi-

mately 0.2% less than what was observed by Mesonet.

Q2 estimates indicated ;6.0% of precipitation in non-

rain-core regions compared to ;4.4% observed by

Mesonet.

b. SCaMPR versus Oklahoma Mesonet

A similar study has been performed to evaluate the

SCaMPR retrievals using Mesonet observations for the

year 2012. Figure 9 shows CFDs of 24-h accumulated

precipitation from SCaMPR andMesonet with a total of

43 852 collocated samples. The CFD comparison be-

tween SCaMPR and Mesonet is similar to that between

Q2 and Mesonet in Fig. 3a except that the SCaMPR

CFD starts below 80%. Further examination shows that

the first bin (0–2mm) in SCaMPR retrievals is 10%

lower than the corresponding Mesonet bin, indicating

that SCaMPR retrievals overestimated precipitation for

light rain events. For other bins, the SCaMPR percent-

ages are greater than the corresponding Mesonet per-

centages. These percentage differences are almost an

order of magnitude larger than the Q2 versus Mesonet

comparison.

A scatterplot for 24-h precipitation retrieved by

SCaMPR and observed by Mesonet is presented in

Fig. 10a with a modest correlation of 0.489 for a linear

relationship. The mean 24-h accumulated precipitation

was 25.20mm for SCaMPR compared to 8.98mm for

Mesonet observations (Fig. 10a). Annual comparisons

produced an increase in correlation to 0.567 as shown

in Fig. 10b. However, the SCaMPR-retrieved precip-

itation, on average, is about 3.7 times the Mesonet ob-

servations with an annual precipitation of 2431mm for

SCaMPR and 662.6mm forMesonet. Nearly 63% of the

SCaMPR overestimates across all stations occurred

from April to June when precipitation primarily came

from intense convection. Statewide 24-h total pre-

cipitation comparisons between SCaMPR retrievals and

Mesonet observations (Fig. 11) were consistent with

their annual precipitation comparison at each Mesonet

station. The mean statewide 24-h total precipitation was

1090.29mm for SCaMPR and 304.19mm for Mesonet,

roughly the same ratio as their annual precipitation, but

with a stronger correlation of 0.665.

The precipitation distribution from SCaMPR esti-

mates was significantly different from the Mesonet-

observed precipitation distribution, as shown in Table

1. A large dry bias occurred in the CC region, where only

;12.2% of SCaMPR-estimated precipitation fell com-

pared to the ;71.0% observed by Mesonet. However,

a significant wet bias occurred in the non-rain-core

FIG. 6. (left) Image ofNEXRADradar coverage provided by theNOAANWSRadarOperational Center. Bottom

of base beam height assuming standard atmospheric refraction is contoured for volume coverage pattern 12 scans.

Light yellow color (good radar coverage in this study) represents coverage with the bottom of base beam height #

4000 ft (1219m), orange color represents .4000 ft and #6000 ft (1829m), and light blue represents .6000 ft and

#10 000 ft (3048m). (right) Location of all Mesonet stations represented by black triangles.
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regions where SCaMPR-estimated precipitation was

57.1% versus the ;4.4% observed by Mesonet. For

the SR region, the SCaMPR-estimated precipitation

percentage was 30.7%, only 6.1% greater than the

Mesonet-observed percentage. Inclusion of relative hu-

midity (RH) corrections into the SCaMPR algorithm

reduced the amount of precipitation in non-rain-core

regions by ;13.0%.

4. Discussion

Despite having a wet bias, Q2 estimates were very

strongly correlated with Mesonet observations, while

SCaMPR estimates suffered from a very large wet bias

likely owing to excessive precipitation retrievals from

anvil regions of DCSs. Q2 estimates were strongly cor-

related withMesonet observations for 24-h accumulated

precipitation at each Mesonet station (0.881), statewide

24-h total precipitation (0.943), and average annual

precipitation (0.92). Q2 estimates were consistently

higher (;35%) than collocated Mesonet observations

regardless of time scale (24 h vs annual) and spatial

coverage (oneMesonet station vs all OklahomaMesonet

stations), particularly during the warm season when

more intense convection occurred. However, despite

these consistent overestimates, the distribution of pre-

cipitation into the DCS regions from Q2 estimates

closely matched Mesonet observations, particularly in

the convective-core and stratiform regions. Slight dif-

ferences occurred in the anvil cloud region, where the

tipping-bucket limitations (0.25mm) in Mesonet ob-

servations would create bias-favoring rain-core pre-

cipitation over non-rain-core precipitation. This bias

likely occurs because AC precipitation is typically light

and may not accumulate .0.25mm within 5min to

trigger the tipping bucket, while Q2 estimates do not

face this limitation. As a result, the Mesonet-observed

AC precipitation is slightly lower than reality, while the

Mesonet-observed CC and SR precipitation are slightly

higher than reality. SCaMPR retrievals were weakly

correlated to Mesonet observations at the 24-h time

scale and modestly correlated at an annual time scale.

Regardless of time scale, SCaMPR retrievals drastically

overestimated precipitation compared to Mesonet ob-

servations. Furthermore, the distribution of SCaMPR

retrievals showed a strong dry bias for rain-core regions

and a strong wet bias for anvil regions.

Although insignificant in this study, sampling errors

are possible when comparing both the 1 km3 1 km grid

resolution of Q2 estimates and the 4 km 3 4 km grid

resolution of SCaMPR retrievals to point observations

fromMesonet. For example, intense precipitation could

occur over part of the grid box where the Mesonet sta-

tion is not located, making the gridbox estimate higher

than the point observation. On the other hand, the most

intense precipitation could occur over the Mesonet

station, making the gridbox estimate less than the point

FIG. 7. As in Fig. 1, but for the data collected over regionswith good

radar coverage demonstrated in Fig. 6.
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observation. While errors such as these are unavoidable

for this study and similar studies, with a sufficiently large

sample size these errors of representativeness will tend

to balance one another over a long time period. As the

location of the precipitation maxima inside the grid box

can be viewed as random, the expected value of total

precipitation at the station and the total precipitation in

the grid box will be equal. Part of this impact is likely

apparent in the trend of observing stronger correlations

between the estimates and observations as the time scale

of comparison was increased. While this source of error

does not appear to be very significant for this study, it

could require special attention for studies utilizing much

smaller sample sizes for comparison.

a. Strengths and weaknesses of Q2 estimates

The strong correlations between Q2 estimates and

Mesonet observations regardless of time scale or spatial

coverage make it possible to use Q2 estimates as a sub-

stitute for surface rain gauge networks in the studies

where finer spatial and temporal resolution is needed.

However, the 35% wet bias in Q2 estimates must be

considered, although it is likely an upper bound of the

Q2 estimate errors because rain gauges are prone to un-

derestimate rainfall during intense precipitation events

(www.mesonet.org/index.php/site/about/moisture_

measurements). Furthermore, with simple linear

relationships between Q2 estimates and Mesonet ob-

servations, Q2 estimates could be easily adjusted to

better represent ground truth. However, further studies

are required to quantitatively determine the magnitude

ofQ2 overestimates and the catchment errors associated

with tipping-bucket rain gauges used in theOKMesonet

during different seasons (Humphrey et al. 1997; Ne�spor

and Sevruk 1999; Sevruk 1985; Steiner et al. 1999).

Based on this study, bias-adjusted Q2 estimates in the

regions such as the southern Great Plains and U. S.

Southeast should be reliable because precipitation is

mainly in liquid phase and dominated by convective

events, where the highest correlations between Q2 es-

timates and Mesonet observations were found.

The primary weakness of Q2 estimates is a disconti-

nuity in precipitation estimates depending on available

radar coverage. While Q2 estimates have strong corre-

lations withMesonet observations in the regions of good

radar coverage, this is not true in the areas where radar

coverage is less sufficient. As the base beamheight of the

available radar coverage increased, Q2 estimates shift

from overestimates to underestimates compared to

Mesonet observations. This change reduces the corre-

lations from 0.92 for good radar coverage to 0.875 for all

radar samples, as illustrated in Fig. 6. Although the

correlation for all radar samples is still strong, caution

must be taken because underestimates in regions of

poor radar coverage may mask the tendency of Q2

to overestimate. As the base beam height increases, the

FIG. 8. Each dot represents the average annual precipitation (2010–12) observed at a Mesonet station and the

collocated Q2 estimate for a grid box of 1 km 3 1 km containing the Mesonet station. (a) All available collocated

Mesonet and Q2 observations (N15 119) and (b) only for the stations (N25 106) after removing data points where

Mesonet stations were located in the regions of poor radar coverage (bottom of base beam height .1219m AGL).

TABLE 1. Distribution of observed and estimated rainfall among

DCS components. Constructed using data from 16 days with

widespread convection over Oklahoma during 2012. SCaMPRRH

represents SCaMPR with corrections using modeled RH. The

percentage represents the amount of total rainfall that fell in each

DCS region.

Platform

Rainfall per region (%)

CC SR AC

Unclassified/thin

anvil

Mesonet 71.01 24.55 2.46 1.97

Q2 69.75 24.31 4.46 1.49

SCaMPR 12.23 30.68 35.21 21.88

SCaMPR RH 15.46 40.48 31.15 12.91
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probability that precipitation will be overshot and

therefore underestimated by Q2 also increases. While

the magnitude of this difference is not significantly large

in most cases, depending on the specific use of Q2 esti-

mates, this factor should be carefully considered when

using estimates from the regions of poor radar coverage.

b. Evaluation of SCaMPR

SCaMPR retrievals overestimated precipitation at all

Mesonet stations for 2012, with overestimates of annual

precipitation ranging from 1400 to 2000mm (Fig. 10b).

Correlations between SCaMPR retrievals and Mesonet

observations were relatively low on an annual time scale

(0.567) and even lower at a 24-h time scale (Fig. 10a).While

the direct comparison between the SCaMPR 4km 3
4 km pixels and point observations from Mesonet

stations may reduce the correlations to some degree, the

low correlations arise primarily from SCaMPR pre-

cipitation retrievals during the following situations.

Quite often SCaMPR-retrieved precipitation from the

anvil regions of DCSs, while the collocated Mesonet

stations recorded nothing. This is apparent in Table 1,

where the majority of SCaMPR-estimated precipitation

occurred in non-rain-core regions. These excessive

precipitation retrievals from anvil regions are most

likely due to the limitation of SCaMPR retrievals arising

from SCaMPR’s dependence on cloud-top IR bright-

ness temperature, which is similar for both rain-core and

anvil regions of the DCSs. This problem, as well as

possible cirrus contamination, could be responsible for

the majority of SCaMPR overestimates during DCS

events (Zhang et al. 2013). Therefore, it is necessary to

quantitatively estimate the SCaMPR retrievals (and Q2

estimates) under different precipitation ranges using

collocated Mesonet observations as ground truth. In an

unpublished study, we found that there is a much lower

incidence of false alarms than in this studywhen comparing

the full version of the algorithm using SEVIRI data with

TRMM data (B. Kuligowski 2013, unpublished study).

This suggests that the SCaMPR algorithm will likely per-

form better when it is run on the GOES-R Advanced

Baseline Imager instead of on the current GOES imager.

c. Categorical scores for Q2 and SCaMPR

Categorical scores were calculated for both the 24-h

accumulated Q2 precipitation estimates and SCaMPR

retrievals using thresholds of 0.25, 2.5, 12.5, and

25.0mm from Mesonet observations. Probability of

detection (POD), false alarm rate (FAR), and critical

success index (CSI) were calculated for each of these

thresholds. The Q2 categorical scores were computed

for two periods, 2010–12 and 2012 only, while SCaMPR

retrieval categorical scores were calculated only for

2012 to allow a direct comparison to the Q2 estimates.

As shown in Table 2, progressing from the 2.5-mm

threshold to the 25.0-mm threshold, both POD and CSI

of Q2 estimates decreased while FAR increased. This

observed trend is consistent with the Wu et al. (2012)

results, but the decreased magnitudes in POD are sig-

nificantly different. In the Wu et al. study PODs

dropped significantly as the threshold level increased,

while the POD decreased only 0.04 from 0.85 to 0.81 in

this study. Using 0.25mm as an additional threshold

that was not used in the Wu et al. (2012) study, a rela-

tively high FAR of 0.37 for Q2 estimates was observed.

This relatively large FAR is most likely attributed to

very light precipitation that evaporated before reach-

ing the ground and occasional ground clutter problems

[as demonstrated in Fig. 12 caused by beam ducting

from temperature inversions (Turton et al. 1988)].

Figure 12 represents an example when clear skies were

present over Oklahoma, but Q2 indicated precipitation.

FIG. 9. As in Fig. 2, but for the collocated SCaMPR retrievals and

Mesonet observations for 2012.
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Although the contributionofQ2overestimates fromground

clutter is quite small (Fig. 12), a binary precipitation/no

precipitation threshold was used to identify this issue in

the FAR and CSI scores.

The categorical scores for SCaMPR retrievals were

consistent with expectations based on the large over-

estimates from precipitation retrievals in nonprecip-

itating regions of DCSs. FARs increased as the

threshold level increased, ranging from 0.50 at the

0.25-mm threshold to 0.83 at the 25.0-mm threshold.

This increase can be attributed to retrievals of heavy

precipitation from nonprecipitating and lightly pre-

cipitating portions of DCSs, which cause the FAR to

increase as the frequency of heavy precipitation re-

trievals drop more slowly than actual occurrences of

these events. Although SCaMPR POD scores were high

and close to Q2 values, FAR scores rose to 0.83 at the

25.0-mm threshold, resulting in much lower CSI scores

(0.16). Therefore, it is important to improve the

SCaMPR retrieval algorithms in the future, particularly

for the conditions that produce high FAR and low CSI

scores.

An analysis of RMSEs for both Q2 and SCaMPR was

consistent with expectations based on the skill scores

and linear regression fits. As shown in Table 3, both Q2

and SCaMPR RMSEs rose as the amount of recorded

precipitation increased. For the 0.25–2.5mm precipi-

tation bin in Table 3, the SCaMPRRMSE (10.26mm) is

nearly 8 times the Q2 RMSE (1.30mm). This large

difference in RMSE between Q2 and SCaMPR can be

attributed to SCaMPR precipitation retrievals in non-

precipitating regions of DCSs. As illustrated in Fig. 13f,

SCaMPR-retrieved precipitation is very similar to the

GOES, cloud-top, IR temperatures (Fig. 13c) and over-

estimates the precipitation over the AC regions, such

as northern Missouri and eastern Arkansas owing to

cold cloud-top temperatures, whereas Q2 estimates

(Fig. 13d) and a modified SCaMPR algorithm (Fig. 13e)

showed nothing over this region.

The modified SCaMPR algorithm, employing both

cloud optical depth and IR brightness temperature, can

significantly reduce the spatial extent of the SCaMPR-

estimated precipitation, particularly over the anvil re-

gions of DCSs. As illustrated in Figs. 13e and 13f, the

SCaMPR precipitation areas were reduced to 31% in

the modified version from 48% in its original algorithm

(IR temperature only). The new coverage is very close

to the Q2-estimated precipitation coverage (33%,

Fig. 13d). A more robust comparison covering 14 con-

vective events over Oklahoma during the Midlatitude

Continental Convective Clouds Experiment (MC3E)

campaign has also shown the improvements of the

modified SCaMPR (Fig. 14). As demonstrated in Fig. 14,

the probability density functions (PDFs) of the rain area

FIG. 10. (a) As in Fig. 2a, but for SCaMPR retrievals and Mesonet observations for 2012. (b) As in Fig. 8a, but for

SCaMPR retrievals and Mesonet observations for 2012.

FIG. 11. As in Fig. 4, but for SCaMPR retrievals and Mesonet

observations for 2012 (N 5 261).
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from the modified version are very close to those from

Q2 estimates, while those from the original SCaMPR

algorithm are significantly lower at the 10% bin and

significantly higher in the 40% bin. For example, nearly

60% of the events were estimated to have rain area

percentages less than 10%byQ2 and the new algorithm,

while only ;40% of events were estimated to have rain

area percentages less than 10% by SCaMPR retrievals.

On average, the precipitation area estimated from the

modified algorithm (9.64%) is closer to the Q2 estima-

tion (12.06%) than that (19.11%) from the SCaMPR

original algorithm. This new algorithm and further

analysis of its performance will be discussed in much

greater detail in future work.

On the annual and average annual time scales, RMSE

values were consistent with the overestimates seen from

both statewide and station to gridbox comparisons. For

Q2, the RMSE for average annual comparisons was

267.6mm, and the average was 280.5mm when using

comparisons only in regions of good radar coverage as

shown in Fig. 7. RMSE was actually higher in regions of

good radar coverage because the tendency of Q2 over-

estimating precipitation was not diminished by the

overshooting of precipitation in the regions of poor ra-

dar coverage. Although RMSE was slightly higher,

correlation was stronger between Q2 and Mesonet

in regions of good radar coverage. The RMSE for Q2

statewide comparisons was 308.8mm.Again, the SCaMPR

RMSEwas significantly higher (1777.7mm), as expected

for the annual station to grid box comparison as shown

in Fig. 9.

5. Conclusions and future work

With the immensely better spatial and temporal cov-

erage and resolution compared to rain gauge networks,

and the strong correlations with gauge observations, Q2

estimates can serve as a reasonable substitute for ground

truth to validate satellite precipitation retrievals in the

future as long as the 35% wet bias in Q2 estimates is

adequately adjusted or accounted for. Although Q2 es-

timates were higher than Mesonet observations during

the warm season, an excellent agreement was reached

for the cold season, and there were strong correlations in

both seasons. Additionally, the precipitation distribu-

tion among deep convective system components from

Q2-estimated precipitation strongly resembled the

Mesonet-observed distribution. The similarity of the

precipitation distributions indicates that, although Q2

has a wet bias in this region, it can accurately capture

the precipitation characteristics of DCSs. As Q2 esti-

mates accurately depict the precipitation distribution

among the components of DCSs, they can be used

to evaluate improvements in precipitation distribution

TABLE 2. Categorical scores for SCaMPR-retrieved precipitation (2012), Q2 estimates (2010–12), and Q2 estimates (2012) for 24-h

periods.

Range

(mm)

Q2 POD

(all)

Q2 FAR

(all)

Q2 CSI

(all)

SCaMPR POD

(2012)

Q2 POD

(2012)

SCaMPR FAR

(2012)

Q2 FAR

(2012)

SCaMPR CSI

(2012)

Q2 CSI

(2012)

$0.25 0.78 0.37 0.53 0.75 0.83 0.50 0.37 0.43 0.56

$2.5 0.85 0.27 0.64 0.81 0.89 0.59 0.24 0.37 0.69

$12.5 0.84 0.31 0.61 0.83 0.84 0.72 0.31 0.26 0.61

$25.0 0.81 0.40 0.53 0.78 0.80 0.83 0.42 0.16 0.51

FIG. 12. An illustration of the ground clutter contribution to Q2-estimated precipitation with precipitation starting at

(left) 0 and (right) 1mm. At this time clear skies were reported over Oklahoma.
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characteristics made in future modifications to SCaMPR.

Furthermore, with the Mesonet stations likely under-

estimating the true precipitation amounts during DCSs,

thewet bias calculated forQ2 during this study is likely an

upper bound. While these overestimates could be ad-

justed using the best-fit linear regression equations, fur-

ther studies are needed to determine the extent of

required adjustments. The catchment errors in Mesonet

observations should be carefully analyzed and considered

before adjusting Q2 estimates (Sevruk 1985; Ne�spor and

Sevruk 1999; Humphrey et al. 1997).

Minor ground clutter issues were detected, but the

contribution of ground clutter to Q2 precipitation esti-

mates was negligible. It also seemed that virga could

possibly be causing Q2 overestimates during light pre-

cipitation events or in cases where no precipitation was

observed. Again, this effect was very minor, producing

only very small overestimates at times. However, cau-

tion should be taken in using Q2 estimates for binary

rain/no rain distinction at a threshold value of 0.25mm if

conditions are conducive to producing ground clutter

such as temperature inversions (Turton et al. 1988).

SCaMPR retrievals were much higher than the col-

located Mesonet observations, by a factor of 3–5 times.

The severe overestimates in SCaMPR retrievals were

primarily caused by precipitation retrievals over the

anvil regions of DCSs when collocatedMesonet stations

recorded no precipitation. This problem is most appar-

ent in the precipitation distributions among DCS com-

ponents where the majority of SCaMPR-estimated

precipitation falls in anvil regions rather than the rain-core

regions. These precipitation retrieval problems con-

tributed significantly to the high FAR and lower CSI for

SCaMPR retrievals. The bulk of these overestimates

mainly occurred fromApril to June, which had frequent

intense convective systems. As POD scores are already

quite high, reducing the FAR would make SCaMPR

a valuable and reliable source of precipitation estimates.

The problem of excessive SCaMPR-estimated pre-

cipitation rates over the anvil regions of DCSs can be

corrected by utilizing NMQ Q2 estimates and GOES

cloud optical depth and IR temperature retrievals. A

strong optical depth gradient was found between the

precipitating and nonprecipitating (anvil) regions of

DCSs, although their cloud-top temperatures are

TABLE 3. RMSE for 24-h Q2 and SCaMPR estimates. The

ranges used for the calculations are determined from the Mesonet

observations. Q2 RMSE is shown for all data (2010–12) and for

only 2012 data.

Range (mm)

Q2 RMSE

(all) (mm)

Q2 RMSE

(2012) (mm)

SCaMPR RMSE

(2012) (mm)

0 # x , 2.5 1.07 1.30 10.26

2.5 # x , 12.5 7.09 7.20 36.59

12.5 # x , 25 11.73 12.82 55.44

25 # x 21.62 24.27 61.03

FIG. 13. Instantaneous (a) Q2-estimated precipitation rate (mmh21), (b) GOES-retrieved cloud optical depth, and (c) IR temperature

(K) at 2045 UTC 25 Apr 2011. Accumulated (d) Q2-estimated rainfall (areal coverage 33.4%), (e) estimated rain area (31.1%) from the

newly developed algorithm using both cloud optical depth and IR brightness temperature, and (f) SCaMPR-retrieved rainfall (areal

coverage 48.3%) over the large domain during 2000–2100 UTC 25 Apr 2011.
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nearly the same. This strong gradient can be used to

identify the precipitating and nonprecipitating regions

of a DCS. Preliminary testing of this method has shown

significant reductions in the precipitating area that will

reduce the percentage of non-rain-core precipitation

(Fig. 14). While cloud optical depth does appear to

better capture the spatial features of precipitating

areas, IR brightness temperature is still superior in

providing information about the intensity of precipi-

tation (Fig. 13c).

Similar studies for other regions of the CONUS

should be performed to investigate the similarities and

differences in precipitation characteristics of DCSs be-

tween the SGP and other regions. These studies will

provide insights into potential regional similarities and

differences in DCSs that can be used for algorithm de-

velopment and forecasting. With the NWS radar net-

work now having dual-polarization capabilities, hail

cores could also be added as a DCS component, possibly

allowing further understanding of DCSs. Additionally,

the new algorithm developed and additional modifica-

tions to SCaMPR will be evaluated in future work using

the hybrid classifications and Q2 estimates as a source of

validation data.
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