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ABSTRACT

This work evaluates the short-term forecast (#6h) of the 29–30 June 2012 derecho event from the Advanced

Research core of the Weather Research and Forecasting Model (WRF-ARW) when using two distinct data as-

similation techniques at cloud-resolving scales (3-km horizontal grid). The first technique assimilates total lightning

data using a smooth nudging function. The secondmethod is a three-dimensional variational technique (3DVAR)

that assimilates radar reflectivity and radial velocity data. A suite of sensitivity experiments revealed that the

lightning assimilationwas better able to capture the placement and intensity of the derecho up to 6h of the forecast.

All the simulations employing 3DVAR, however, best represented the storm’s radar reflectivity structure at the

analysis time. Detailed analysis revealed that a small feature in the velocity field from one of the six selected radars

in the original 3DVAR experiment led to the development of spurious convection ahead of the parent mesoscale

convective system, which significantly degraded the forecast. Thus, the relatively simple nudging scheme using

lightning data complements the more complex variational technique. The much lower computational cost of the

lightning schememay permit its use alongside variational techniques in improving severeweather forecasts on days

favorable for the development of outflow-dominated mesoscale convective systems.

1. Introduction

It is a challenging problem to numerically forecast iso-

lated convective storms owing to the need to accurately

treat complex physical interactions between dynamical

and microphysical processes over a large range of scales

(e.g., Stensrud et al. 2009). Mesoscale convective systems

(MCSs), which consist of a grouping of isolated convec-

tive storm cells and often associate with a broad area of

nonconvective or stratiform precipitation (e.g., Houze

1993; Cotton 1999), are also difficult to forecast owing to

the nonlinear interactions of the component convection

with the mesoscale cold pool (Ziegler 1999). MCSs

occasionally doproduce severeweather (e.g.,Maddox 1983;

Johns and Hirt 1987; Houze et al. 1990), generate over half

of the annual U.S. warm season precipitation (Fritsch et al.

1986), and often produce copious cloud-to-ground (CG)

lightning activity (Goodman and MacGorman 1986).

Consequently, considerable attention has been recently

devoted toward improving the forecast skill for storm

and MCS events at cloud-resolving scales (#4km) using

numerical weather prediction (NWP) models.

This study focuses on evaluating two distinct data

assimilation techniques that are aimed at improving the

initial representation (e.g., placement, intensity, and

morphology) of the convection during the analysis time

and subsequent short-term (i.e., #6 h) forecasts for the

case of the 29–30 June 2012 MCS and derecho event.

The first technique is a recently developed, computa-

tionally inexpensive lightning data nudging method

Corresponding author address: Alexandre O. Fierro, CIMMS,

National Weather Center, Ste. 2100, 120 David L. Boren Blvd.,

Norman, OK 73072.

E-mail: alex.fierro@noaa.gov

JANUARY 2014 F I ERRO ET AL . 183

DOI: 10.1175/MWR-D-13-00142.1

� 2014 American Meteorological Society

mailto:alex.fierro@noaa.gov


(Fierro et al. 2012), while the second technique is the

more detailed Advanced Regional Prediction System

(ARPS; Xue et al. 2001, 2003) three-dimensional vari-

ational data assimilation (3DVAR) system (Gao et al.

1999, 2004; Hu et al. 2006a,b; Stensrud andGao 2010; Ge

et al. 2010, 2012; Gao et al. 2013). The lightning data

assimilation technique makes use of two-dimensional

gridded total lightning flash rate densities. The 3DVAR

package assimilates traditional observations as well as

remote sensing data (though not lightning data at pres-

ent), including three-dimensional radar reflectivity and

radial velocity fields from the NationalWeather Service’s

(NWS) operational Weather Surveillance Radar-1988

Doppler (WSR-88D) network. For completeness, a sum-

mary of the current state of the knowledge in recent

lightning assimilationworks is first presented, followed by

advances made by the community using various 3DVAR

techniques with a focus on the ARPS 3DVAR package

utilized herein. The chief rationale to test both lightning

nudging and radar variational assimilationmethods lies in

the comparatively simple, computationally efficient rep-

resentation of bulk storm intensity via lightning as-

similation versus the much greater detail and physical

robustness of radar assimilation.

Relative to the evaluation of the assimilation of ob-

servations into NWP models using variational tech-

niques such as 3DVAR or ensemble techniques such as

the ensemble Kalman filter (EnKF, e.g., Evensen 1994,

2003; Houtekamer andMitchell 1998; Zhang 2005, 2009;

Aksoy et al. 2009; Godinez et al. 2012), comparatively

fewer studies have focused their attention on the as-

similation of lightning data. Alexander et al. (1999) and

Chang et al. (2001) were the first to demonstrate the

utility of assimilating lightning data into a mesoscale

model. Their work converted lightning data, from either

satellite- or ground-based instruments, into a convective

rainfall rate via an empirical relationship. They showed

that the 12–24-h rainfall forecasts for two extratropical

cyclone cases were significantly improved. Similar results

were obtained a few years later by Benjamin et al. (2004)

via a similar lightning assimilation procedure. Using light-

ning data from two ground-based networks, Mansell et al.

(2007) devised a technique whereby the lightning data

were allowed to control the ‘‘trigger’’ function within

the Kain and Fritsch (1993) or ‘‘KF’’ convective pa-

rameterization scheme in amesoscalemodel. Similar to

Alexander et al. (1999), Pessi and Businger (2009) con-

verted lightning data from the Pacific Lightning Detection

Network (PacNet/LLNN) using a lightning–rainfall re-

lationship (Jones and Macpherson 1997a,b; Alexander

et al. 1999), which was then used to adjust the latent

heating profile simulated by the KF scheme for a Pa-

cific storm case. Using real-time flash-rate data from

a long-range lightning detection network, Papadopoulos

et al. (2005) nudged the simulated humidity profiles to

empirical profiles from observed soundings during

thunderstorm days to force deep moist convection into

a regional mesoscale model. Following an initial idea put

forth in Fierro and Reisner (2011), Fierro et al. (2012)

developed a computationally inexpensive lightning as-

similation technique at cloud-resolving scales whereby

the model water vapor mixing ratio within the graupel-

rich mixed-phase region (layer between the 08 and

2208C isotherms) is nudged as a function of the gridded

total flash-rate density, the simulated graupel mixing ra-

tio, and the ambient relative humidity. Similar to the

aforementioned studies, they showed that using lightning

information could significantly improve the representa-

tion of the convection at analysis time and during sub-

sequent short-term forecasts. They noted, however, that

despite their low computational cost and relative sim-

plicity, none of the aforementioned lightning assimilation

techniques account for inherent errors arising from in-

accurate initial and boundary conditions in the model.

While placing convection at the correct location at the

initial time using lightning is relatively simple, elimina-

tion of spurious convection resulting from errors in the

initial conditions of the model in a balanced manner is

a far more complex issue.

Despite their relatively higher computational costs,

variational methods have the chief advantage of attempt-

ing to address spurious convection. More precisely,

3DVAR produce a physically consistent three-dimensional

high-resolution analysis of the model kinematic and mi-

crophysical state variables utilizing multiple data sources

including observations from WSR-88Ds and the back-

ground information from the model forecast fields at

a fixed time. Several 3DVAR methods have been pro-

posed in recent years with varying degrees of application,

including resolving finescale structure within severe deep

convective storms (e.g., Hu et al. 2006a,b; Schenkman

et al. 2011; Potvin et al. 2012), tropical cyclone pre-

diction (e.g., Zhang et al. 2012; Hsiao et al. 2012; Li et al.

2012), heavy rainfall forecasting (e.g., Xiao et al. 2005),

synoptic-scale and mesoscale applications (Barker et al.

2004), and severe weather detections andwarnings (Gao

et al. 2013). Several ‘‘hybrid’’ ensemble–3DVAR codes

were also developed in recent years to alleviate the need

to minimize a cost function and also make use of a non-

isotropic flow-dependent background error covariance

matrix (e.g., Etherton and Bishop 2004; Wang et al.

2007, 2008;Wang 2011). Other works have also evaluated

the respective performance of 3DVAR with ensem-

ble methods (e.g., Meng and Zhang 2008a,b) or four-

dimensional variational codes (e.g., Gauthier et al.

2007). The ensemble-related data assimilation methods,
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however, remain very expensive when employed within

convective-scale NWP. One attractive feature of the

ARPS 3DVAR package used herein is the use of

multiple analysis passes with varying spatial influence

scales to account for the short time-scale fluctuations of

convective storms (e.g., Hu et al. 2006a,b; Gao et al.

2013). This multipass technique is reminiscent of locali-

zation approaches within EnKF codes (e.g., Zhang et al.

2009). The quality control withinARPS3DVAR includes

buddy checking, velocity dealiasing, and the removal of

anomalous propagation returns. New developments for

this technique include an empirical hydrometeor classifi-

cation method in its observation operator for direct as-

similation of radar reflectivity (Gao and Stensrud 2012),

which is based on the background temperature field from

the forecast of an NWP model.

It is relevant to highlight some noteworthy differences

between lightning data (from either ground-based sour-

ces or satellites) and WSR-88D observations. At an ele-

vation ranging between 3 and 6km, WSR-88Ds provide

an excellent degree of coverage of the contiguous United

Stated (CONUS), while below 3km the data usually do

not overlap, resulting in an overall poor level of areal

coverage (Zhang et al. 2011; Gao et al. 2013). Moreover,

in contrast to lightning, radar-derived data remain scarce

in oceanic region and mountainous areas. Despite this

limitation, a multiradar approach utilizing this 3DVAR

method during the Hazardous Weather Testbed (Clark

et al. 2012) showed the overall improvement of the

analysis and subsequent short-term forecasts of severe

weather events (Gao et al. 2013). The chief limitation of

lightning data, for its part, lies in that most current

ground-based networks do not detect and locate lower-

amplitude sferics from intracloud (IC) flashes, which ac-

count for the vast majority of the total flashes [2:1;

Boccippio et al. (2001)], particularly within severe deep

convective storms with an intracloud to cloud-to-

ground (IC:CG) ratio nearing 10:1 (e.g., MacGorman

et al. 1989). Unlike ground flashes, IC flashes have been

shown to correlate better with convective strength and

updraft development (e.g.,MacGorman et al. 1989;Wiens

et al. 2005; Fierro et al. 2006; Deierling and Petersen

2008), thus serving as a better proxy for thunderstorm

evolution. Several recent studies have demonstrated

the utility of assimilating total lightning data toward

improving the analysis and short-term forecast of high-

impactweather ranging from themesoscale (e.g.,Mansell

et al. 2007) to the cell scale (Fierro et al. 2012). Further

motivating a more systematic use of the assimilation of

total lightning data is the upcoming first launch of the

Geostationary Operational Environmental Satellite-R

series (GOES-R;Gurka et al. 2006; Goodman et al. 2013)

in 2015, which will be equipped with the Geostationary

LightningMapper (GLM;Goodman et al. 2013), which is

capable of mapping total lightning (CG 1 IC) day and

night, year round, with a nearly uniform resolution

over the Americas ranging between 8 and 12 km

(Gurka et al. 2006).

2. Synoptic- and mesoscale setup of the 29 June
2012 derecho event

An exceptional, progressive derecho event (Johns and

Hirt 1987, Johns and Doswell 1992) characterized by an

intense bow-echo MCS produced widespread severe

wind damage from the upper Midwest and Ohio River

valley to themid-Atlantic states during the afternoon and

evening of 29–30 June 2012 (e.g., Vescio et al. 2013).

Classical synoptic- and mesoscale ingredients supported

this event (Fig. 1), including the presence of large con-

vective instability (Fig. 1a), extreme heat and high

moisture content (Figs. 1b and 1c), and strong lower-

tropospheric wind shear over the area (cf. Figs. 1a and

1b, 1c). The Rapid Refresh (RAP) analysis at 1600

UTC reveals a large area of mixed-layer convective

available potential energy (MLCAPE), with values ex-

ceeding 5000 J kg21, coupled with very marginal mixed-

layer convective inhibition (MLCIN; ,10 J kg21) over

this region (Fig. 1a).

The RAP analysis and surface observations also show

a quasi-stationary frontal boundary running from the

upper Midwest and Ohio Valley into Pennsylvania that

separated very warm and humid air to the south from

relatively cooler and drier air to the north (Figs. 1b and

1c). Surface dewpoints south of this boundary (Fig. 1c)

commonly reached 208C (688F) with maximum surface

temperatures ranging between 358 and 388C (958–1008F)
over a large area (Fig. 1b). Last and perhaps most im-

portantly, this thermalmesoscale boundarywas straddled

by an upper-level northwesterly mid- and upper-level

jet streak with wind speeds of about 20m s21 (40 kt)

from 500 hPa (Fig. 1a) through 250 hPa (not shown).

This jet streak owed its existence to the combined ef-

fects of thermal wind shear associated with the frontal

zone and a high pressure circulation pattern to the

south of the boundary and a low pressure system to the

north centered over Ontario, Canada. Numerous high

wind reports across Indiana, Ohio, West Virginia,

Virginia andMaryland (including the greaterWashington,

D.C., metropolitan area), Pennsylvania, Delaware, and

New Jersey, as well as two tornado reports in Ohio, ver-

ified the forecasted slight to moderate severe convective

risk via the validated StormPredictionCenter (SPC)Day

1 Convective Outlook (Fig. 1d).

Given these rather favorable dynamic and thermo-

dynamic ingredients (Johns and Hirt 1987; Johns and
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Doswell 1992; Coniglio et al. 2004), any small-scale con-

vective system forming near this mesoscale boundary

would have a considerable probability of growing upscale

into a severe MCS (and possibly a derecho). Embryonic

convection that subsequently evolved into the derecho

began around 1400 UTC on 29 June as a relatively small,

disorganized cluster of storm cells in eastern Iowa. Near

1600 UTC (Fig. 2), the small storm cluster began rapidly

organizing into a well-defined MCS that passed over

Chicago, Illinois. The MCS subsequently grew upscale

into an asymmetric bow echo over Indiana while moving

rapidly southeastward at about 60mi h21 (;25ms21)

slightly to the north of the frontal boundary. As the MCS

crossed Indiana and entered Ohio, it further intensified

from a bow-echo MCS into a derecho MCS (Fig. 2). The

MCS subsequently continued its destructive swath until

reaching the Atlantic coast of Virginia and Maryland

around 0600 UTC on 30 June (not shown). The Storm

Prediction Center (SPC) estimated a damaging wind

swath of about 1000 km in length, with over 800 wind

damage reports alone during the 10-h lifetime of the

event (e.g., Figs. 1d and 2). Severe wind gust reports

ranging between 60 and 70 mi h21 (;25–33m s21) were

widespread with peak gusts in excess of 90mi h21

(40m s21) reported over eastern Indiana and western

Ohio (Fig. 2). At least 22 fatalities and loss of power to

over 5 million customers were attributed to this event.

According to the National Climatic Data Center, the

preliminary damage cost estimate of this derecho ex-

ceeded several hundred million to a billion U.S. dollars

FIG. 1. (a)–(c) RAP analysis output at 1600UTC 29 Jun 2012 and (d) the SPC validatedDay 1ConvectiveOutlook for

29–30 Jun 2012. Color-filledMLCAPE (Jkg21), contouredMLCIN (Jkg21), and 500hPa winds (ms21) are shown in (a).

Color-filled temperature (8C) at 2mAGL, contoured column precipitable water (kgm22), and surface winds (ms21) are

shown in (b). Color-filled dewpoint temperature at 2 m and surface winds are shown in (c). The following mesoscale

features are shown in (a)–(c): (i) positions of the surface warm front (black scalloped curve), (ii) the surface cold front

(blue large-triangled curve), (iii) the color-filled areas of composite reflectivity greater than 20 and 40dBZ at 4kmAGL

and 1600 UTC, and (iv) the surface cold-pool boundary (closed, blue small-triangled curve). The vector velocity length

scale (ms21) is indicated in the bottom-left corner of (a)–(c). Composite reflectivity fields are provided by the NSSL

CONUSNMQ. The NWS operational sounding site at Wilmington, Ohio (ILN), is marked by a white-filled black circle.
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(http://www.ncdc.noaa.gov/billions/events). Local news-

papers in Ohio (including the Columbus Dispatch) re-

ported insured losses reaching almost $1 billion, making

it the third-most expensive natural disaster in Ohio in

38 years. In Virginia, power outages (;1 million) were

the third largest ever after Hurricanes Isabel (2003)

and Irene (2011).

3. Simulation setup

The model used in this study is the three-dimensional

compressible nonhydrostatic Weather Research and

Forecasting Model (WRF version 3.3.1) with the Ad-

vanced Research WRF (ARW) dynamic solver (WRF-

ARW; Skamarock and Klemp 2007). The overall model

setup has been designed to mimic routine experimental

real-time forecasts conducted with the National Severe

Storms Laboratory (NSSL) 4–km WRF-ARW test bed

over CONUS (Kain et al. 2010).

a. Model grid and physics configuration

The simulation domain (D01; Fig. 3) has a uniform

horizontal grid spacing of 3km and horizontal dimensions

in grid points of 10013 501. The stretched vertical grid has

35 levels with its model top set at 50hPa (;20km). The

initial and time-dependent lateral boundary conditions

employ the 3-hourly, 12-km North American Mesoscale

Model (NAM) operational analysis data (1200 UTC

29 June 2012 run) for a 18-h period starting at 1200 UTC

on 29 June 2012. The computational time step is set to 15 s.

The simulations employ the WRF single-moment,

6-class bulk microphysical scheme of Hong and Lim

(2006;WSM6). The six bulk species are rain, cloud water,

cloud ice, snow, graupel, and hail. The boundary layer is

parameterized following the Eta implementation of the

1.5-order closure Mellor–Yamada scheme (Mellor and

Yamada 1982) and the turbulence kinetic energy scheme

adapted by Janji�c (1994) with Monin–Obukhov–Janji�c

similarity theory for the subgrid-scale turbulence pro-

cesses (Chen et al. 1997). Lower boundary conditions for

turbulent fluxes are provided by the unified Noah land

surface model (Chen and Dudhia 2001; Ek et al. 2003).

The longwave and shortwave radiation are both param-

eterized following the Goddard scheme [adapted from

Mlawer et al. (1997)].

b. Data assimilation procedures

The lightning data used in this work are provided by

the Earth Networks Total Lightning Network (ENTLN),

which consists of over 150 sensors deployed overCONUS

and is able to detect both IC and CG flashes with a

national-average detection efficiency exceeding 95% for

FIG. 2. Hourly evolution of composite radar reflectivity (dBZ) at 4 km AGL of the derecho-

producing MCS during the period 1600 UTC 29 Jun–0000 UTC 30 Jun 2012. The colored

dashed curves denote the hourly positions of the leading edge of the cold-pool boundary near

the surface as inferred from clear-air NSSLmosaic reflectivity fields. Preliminary observed wind

gusts (mi h21) are at approximate locations during the hour previous to the indicated times

(G. Carbin, SPC, 2013, personal communication). Outflow boundaries, wind gusts (if any), and

their time labels are all colored consistently to discriminate evolution. The NWS operational

sounding site at Wilmington, Ohio (ILN), is shown by a white-filled black circle.
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typical CG return strokes and about 50% for typical IC

flashes (see Fig. 6 in Fierro et al. 2012). The ENTLN

location accuracy varies from tens of meters in dense

areas of the network to about 500melsewhere. The cloud-

scale lightning assimilation technique follows Fierro

et al. (2012), whereby incremental increases in water

vapor mixing ratio in the graupel-rich layer between

08 and2208C are applied at observed lightning locations.

The nudging-induced increase in water vapor mass at a

grid point is proportional to the observed gridded flash-

rate density (per 3-km grid cell herein) and inversely

proportional to the simulated graupel mixing ratio at

that grid point (threshold for zero nudging also set to

3 g kg21). The nudging from lightning data is only applied

at lightning locations with relative humidity values

below 80% in themodel. Lightningwas assimilated during

a 2-h period between 1400 and 1600 UTC on 29 June,

which covers the development of the embryonic thun-

derstorm clusters in eastern Iowa and northern Illinois

(e.g., Figs. 4a–c), just prior to the start of the upscale

growth of the system (Fig. 2). Similar toFierro et al. (2012),

the lightning data (hourly rates shown in Figs. 4d–f) are

binned into 10-min intervals to reasonably resolve storm

motion while the nudging of water vapor is maintained

throughout the 10-min interval at each computational

time step until switching to the next 10-min interval.

The ARPS 3DVAR system, especially designed for

storm-scale data assimilation, uses a recursive filter

(Purser et al. 2003a,b) with a mass continuity equation

and other constraints that are incorporated into a cost

function, yielding three-dimensional analyses of the wind

components and other model variables. Multiple analysis

passes are used that have different spatial influence scales

to accurately represent intermittent convective storms,

and the quality control steps within the ARPS 3DVAR

scheme also are critical for the radial velocity and re-

flectivity data. The 3DVAR analysis step is followed by

a cloud analysis package that uses radar reflectivity and

other cloud observations. The package was initially based

on the Local Analysis and Prediction System (LAPS;

Albers et al. 1996) and subsequently modified for the

ARPS system (Zhang et al. 1998; Brewster 2002; Hu et al.

2006a). The mixing ratio of precipitation (including

rainwater, snow, and hail) and potential temperature

are adjusted within the cloud analysis based on re-

flectivity measurements. No adjustments are made to

the other hydrometeor variables to avoid potential neg-

ative impacts of these adjustments on the balance of

model equations during the analysis cycle. By using ob-

servations from two or more WSR-88Ds scanning the

same atmospheric volume simultaneously (particularly

where radars overlap between 3 and 6km AGL), it is

possible to analyze a full three-dimensional wind field

from the radial velocity data alone.

The 3DVAR assimilation procedure (Gao et al. 2013)

makes use of the WSR-88D level II data that have been

obtained from the National Climatic Data Center (http://

www.ncdc.noaa.gov/oa/radar/radardata.html). For this

study, radar reflectivity and radial velocity data from six

radar sites have been employed (Fig. 3). The rationale

behind the choice of these particular radar sites is to

reasonably capture the development of the embryonic

thunderstorm clusters in eastern Iowa and northern

Illinois between 1400 and 1600 UTC (Fig. 4). Other

experiments using two additional radar sites in the pre-

derecho environment [namely, Indianapolis (KIND) in

central Indiana and Wilmington (KILN) in west-central

Ohio] have been conducted (not shown), and have

demonstrated very similar results to those obtained with

the base set of six radars in Fig. 3. For consistency, the

FIG. 3. Sketch of the simulation domain, D01 (3-km grid spacing) with the black dots denoting

the locations of the WSR-88D sites used and tested in the ARPS 3DVAR code herein.
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3DVAR assimilation is performed during the same 2-h

period as the ENTLN lightning assimilation. Owing to

the computational expense dictated by the relatively

large model grid used herein (;1.75 3 107 grid cells),

the frequency of the 3DVAR cycles is set to 30min. An

additional 3DVAR sensitivity experiment was carried

out using a 10-min assimilation cycle frequency (not

shown) that confirmed qualitatively similar behavior to

that with a 30-min cycle. Unless otherwise specified, all

3DVAR runs make use of the cloud analysis package

(Hu et al. 2006a,b) during the assimilation of the radar

reflectivity data.Observed reflectivities below a threshold

of 15dBZ are not included in the 3DVAR to reduce any

unwanted influence of weak radar returns or ground

clutter. The effective influence radius of a radar site is

set to 230 km with each data point having an influence

radius set at 21 km.

Though the 3DVAR package was developed for the

ARPSmodel, it has been adapted for use byWRF via an

interface between the two models according to the fol-

lowing procedure. The first step linearly interpolates

WRF output onto the ARPS model grid. The obtained

product serves as a background field for the 3DVAR

analysis. Radar data are then quality controlled (e.g.,

dealiasing radial velocity, removing ground clutter) and

interpolated onto the ARPS grid in the second step. The

third step implements the 3DVAR analysis by using

background and radial velocity data to update the three

Cartesian wind field components. The potential tempera-

ture (u), water vapor mixing ratio (qy), the atmospheric

pressure, and the hydrometeor variables (i.e., cloud water

and cloud ice, rain, snow, and graupel/hailmixing ratios) are

all updated by the cloud analysis following the 3DVAR

analysis. The fourth step interpolates the analysis results

from the ARPS grid onto the WRF grid. In the final step,

WRF is integrated for 30min to complete one 3DVAR

data assimilation cycle. The above procedure is repeated

5 times (given 30-min cycles) from 1400 to 1600 UTC.

The WRF-forecasted radar reflectivity fields are eval-

uated against the NSSL’s three-dimensional National

Mosaic and Multisensor Quantitative Precipitation Esti-

mation (QPE) or 3D NMQ product (Zhang et al. 2011).

The 1-km NMQ composite reflectivity is spatially inter-

polated onto the 3-km model grid, as previously de-

scribed by Fierro et al. (2012).

Additional preliminary model tests have demonstrated

that starting the assimilation (3DVAR and/or lightning)

at 1200 UTC instead of 1400 UTC has negligible effects

on the forecast and on the representation (location and

intensity) of the convection at analysis time. The probable

FIG. 4. Radar reflectivity (dBZ) and lightning observations between 1400 and 1600 UTC 29 Jun 2012, which spans the early stage of the

formation of the derecho MCS (see also Fig. 2) and the period selected for assimilation. Horizontal cross section of radar reflectivity at

4 km AGL from the 1-km resolution, 3D NMQ product interpolated onto the local 3-km D01 domain at (a) 1400, (b) 1500, and (c) 1600

UTC on 29 Jun 2012. (d)–(f) As in (a)–(c), but for the hourly lightning flash densities on D01 (flash per hour per 3 km3 3 km grid cell) up

to the time shown on the figure. Legends for colors and shadings are shown at the bottom of each row.
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reason for the latter lack of sensitivity is that prior to

1400 UTC all of the convective cells that developed in

western and central Iowa decayed rapidly and were

not associated with the storm cluster in eastern Iowa

that quickly intensified and grew upscale to form the

derecho MCS.

4. Results

a. Base runs

In this section, the performance of the lightning data

assimilation scheme (LIGHT) andARPS 3DVARusing

all six radar sites (ALL; Fig. 3) are first evaluated against

observations and a control run (CTRL), whereby the

model is advanced unconstrained without assimilating

any data. For the sake of brevity, this analysis solely

focuses on the main derecho event and does not con-

sider remote convection present in the observations.

The acronyms representing the simulations are listed

in Table 1.

When neither lightning nor radar data are assimi-

lated (CTRL), the model fails to initiate convection at

1600 UTC in eastern Iowa and northern Illinois (cf.

Figs. 5a and 5d). Instead, CTRLdevelops a thunderstorm

cluster near the observed location of the embryonicMCS

derecho 3h later in the simulation (cf. Figs. 5b and 5e)

that moves east-southeastward with other, later storms

that develop ahead of its leading edge in southern Ohio

(cf. Figs. 5c and 5f). Both LIGHT (cf. Figs. 5a–c and 5g–i)

and ALL (cf. Figs. 5a–c and 5j–l) clearly outperformed

CTRL. At analysis time (1600 UTC), ALL generates a

reflectivity structure of the embryonicMCS that is forced

toward the observations yet displaced slightly to the south

(cf. Figs. 5a and 5j), while the LIGHT-generated MCS

lacks weaker reflectivities and appears to be rather more

convective in nature than suggested by the observed re-

flectivities (cf. Figs. 5a and 5g). The formation of the

spurious convection ahead of the parent MCS in ALL

at the 3-h forecast further exacerbates the southward

displacement error of the leading edge of theMCS. In the

3- and 6-h forecasts, the MCS produced by LIGHT

(Figs. 5h and 5i) is in better agreement with the ob-

servations (Figs. 5b and 5c) than the ALL-generated

MCS (Figs. 5k and 5l). The ALL-generated MCS in the

6-h forecast appears more convective than LIGHTwith

a comparatively smaller areal coverage of reflectivity

values below 40 dBZ (cf. Figs. 5i and 5l). A spurious

cluster of thunderstorms is produced by ALL ahead of

the intensifying parent MCS beginning around 1700–

1800 UTC (i.e., 1–2 h into the forecast), as evidenced by

unobserved convection over southeastern Indiana (cf.

Figs. 5k and 5b). The spurious convection over Indiana

subsequently leads to the early demise of the parent

MCS (cf. Figs. 5k and 5b). Eventually, the spurious

thunderstorm cluster forms a new convective system

ahead of the original MCS before intensifying and

moving east-southeastward (cf. Figs. 5l and 5c). This

spurious discrete propagation episode explains why the

ALL-simulated MCS is further displaced to the east

compared to the LIGHT-simulated MCS at the 6-h

forecast time (cf. Figs. 5i and 5l).

As indicated by the inferred location of the leading

edge of the outflow boundary (Fig. 5 and also shown in

Fig. 2), at 3 h (6 h) the LIGHT-simulated MCS forecast

exhibits a noteworthy southward (southeastward) dis-

placement from the observations. One potential factor

for this disparity might be the overestimation of evap-

oration rates in the subcloud layer of the MCS produced

by the WSM6 microphysics scheme, which would force

an overly intense mesoscale cold pool and density cur-

rent propagating too quickly against the ambient south-

westerly surface winds (e.g., Ziegler et al. 2010; Van

Weverberg et al. 2013). The overall lack of a stratiform

region in the simulated MCS is also noted. A possible

cause of this too little stratiform precipitation area is the

inability of single-moment schemes to accurately simu-

late transitions from regions of high concentration of

small particles to relatively low concentrations of larger

particles associated with ice growth via deposition,

TABLE 1. List of the nomenclature/abbreviations for the simulations conducted and described in this study. The right column indicates the

type of data that were assimilated, with dBZ standing for radar reflectivity and Vr for radial velocity.

Simulations Description Data assimilated

CTRL Control run None

LIGHT Lightning assimilation run ENTLN lightning densities

ALL 3DVAR run using all six radar sites in Fig. 3 dBZ and Vr

4RAD 3DVAR run using the four westernmost radar sites of Fig. 3 dBZ and Vr

4RAD1ILX As in 4RAD, but with the addition of the KILX radar dBZ and Vr

4RAD1LOT As in 4RAD, but with the addition of the KLOT radar dBZ and Vr

ILX 3DVAR run only with the KILX radar dBZ and Vr

ILX-DBZ As in ILX, but without Vr data dBZ

ILX-VR As in ILX, but without dBZ data Vr
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aggregation, and riming (e.g., Passarelli 1978, Rogers and

Yau 1989, Bryan and Morrison 2012) or, as mentioned

in Fierro et al. (2012), that neither low-density graupel

nor aggregate are well represented in single-moment

schemes.

A comparison of the 3-hourly sequences of pertur-

bation potential temperature u0 at the lowestmodel level

(referred to as surface level) and 10-m wind speeds

(Figs. 6 and 7, respectively) helps to illustrate the

diverging evolutions of the LIGHT- and ALL-generated

MCSs. The evolution of the simulated MCS is well

represented by the surface u0 and 10-m winds, which

characterize the intensity of the MCS derecho’s cold

pool that in turn forces the regeneration of leading-line

convection. The presence of the spurious thunderstorm

cluster in southeastern Indiana ahead of the main MCS

derecho in ALL is evident in the spurious cold-pool

temperature perturbation (cf. Figs. 6e and 6h) and the

FIG. 5. Observed and modeled reflectivity fields (dBZ) at 4 km AGL. The top row is as in Figs. 4a–c but at (a) 1600, (b) 1900, and

(c) 2200UTC 29 Jun 2012. For clarity and consistency, all subsequent plots are zoomed over a subset ofD01 covering parts of eastern Iowa

and theOhioValley where the derecho formed and grew upscale. (d)–(f) Results fromCTRL. (g)–(i) As in (d)–(f), but for LIGHT. ( j)–(l)

As in (g)–(i), but for the 3DVAR assimilation run ALL. The thick, black-dashed curves denote the positions of the leading edge of the

cold-pool boundary near the surface as inferred from clear-air NSSLmosaic reflectivity fields, as in Fig. 2. Legends for colors and shadings

are shown at the bottom of the figure.
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10-m winds (cf. Figs. 7e and 7h), respectively. The ef-

fects of the development of this spurious storm cluster

on the subsequent intensity of the parent MCS are also

more evident later in the forecast. For example, at

2200 UTC LIGHT exhibits a well-defined cold pool with

u0 values commonly ranging between25 and27.5K (Fig.

6f). In contrast, the cold pool in ALL seldom exhibits

u0 values smaller than 25K (cf. Figs. 6f and 6i). The

smaller area of the 25K contour in the simulated cold

pool in ALL compared to LIGHT is consistent with

(i) a modeled smaller areal coverage of reflectivities

exceeding 30 dBZ at z 5 4 km (cf. Figs. 5i and 5l) and

(ii) the weakening of the parent MCS at 1900 UTC, as

evidenced by smaller reflectivity values within its leading

edge in central Indiana (Fig. 5k). Figure 6 further high-

lights that by 2200 UTC (6-h forecast), the trailing edge

of the cold outflow boundary is located farther south

into central Kentucky in both the LIGHT and ALL

forecasts relative to its inferred location derived from

the observed reflectivity fields and surface observations

(Fig. 6f and 6i).

The simulated 10-m wind speeds in the MCS derecho

are stronger for LIGHT than ALL through all respective

forecast periods (Figs. 7e, 7f, 7h, and 7i), and peak wind

speeds in the LIGHT forecast are most closely consistent

with peak reported surface gusts of up to 36ms21 (Fig. 2).

The highest 10-m wind speeds in both the LIGHT and

ALL forecasts are contained within a series of surge lines

(Figs. 7e, 7f, and 7i), whose rather small scale implies the

difficulty of validating their detailed structure due to the

relatively poor spatial resolution of the existing opera-

tional surface network. At the 3-h forecast (1900 UTC),

the spurious storm cluster in ALL leads to the weakening

of the 10-m winds of the parent MCS, which results in

peak values seldom exceeding 20ms21 (Fig. 7h). In con-

trast, the LIGHT storm at 1900UTC exhibits wind speeds

commonly in excess of 25ms21 with the 20–25ms21

contour covering a larger area (and, hence, larger

damaging wind swath; cf. Figs. 7e and 7h). In contrast to

ALL and CTRL, LIGHT produces a prominent feature

of warmer potential temperature anomalies at the 6-h

forecast in the subcloud layer (i.e., u0 values ranging from

FIG. 6. As in Figs. 5d–l, but depicting the perturbation potential temperature (K) at the lowest model level.
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17.5 to110K; at 500 mMSL, not shown) within its cold

pool over southeast Indiana that is collocated with the

simulated MCS’s descending rear-to-front inflow re-

flectivity notch. Additional detailed analysis of vertical

cross sections (not shown) reveal that this warm tongue

arises from the fast descent of air parcels with adiabatic

warming that are transported through a classical de-

scending rear-inflow jet (RIJ), a feature often detected in

radar-observed bow-echo MCSs (e.g., Wakimoto et al.

2006). The tip of this warm tongue at the base of theRIJ is

coincident with local wind speed maxima in excess of

25–30m s21 (Fig. 7f) just behind the leading edge of the

simulated cold pool (Fig. 6f). It is hypothesized that the

stronger mesoscale cold pool in LIGHT may have con-

tributed to the MCS intensifying further compared to

ALL (e.g., Xu et al. 1996; Xue et al. 1997). This latter

result (and thus the hypothesis) holds even when the

spurious MCS is eliminated in one of the subsequent

3DVAR experiments (described later in this section).

Relevant information can be deduced from analyz-

ing the general morphology and evolution of the sim-

ulated convection (Fig. 5). Regardless of whether the

model-generated storm cluster at 3 h is at the observed

location (LIGHT; Fig. 5h) or else is displaced (CTRL,

Fig. 5e; ALL, Fig. 5k), the convective cluster in any

event grows upscale and intensifies into a well-defined,

strong outflow-dominatedMCS (see Figs. 5d–f, 6a–c, and

7a–c for CTRL results). As previously hypothesized in

section 1, the model’s large-scale environment that was

advanced from initial conditions derived from the 12-km

NAM dataset appears to reasonably capture the envi-

ronmental conditions favorable for the occurrence of

a strong MCS-induced derecho wind event. A detailed

hourly analysis of the evolution of the large-scale fields in

the WRF output and RAP analysis data from 1200 UTC

29 June through 0600 UTC 30 June (not shown) reveals

that this was indeed the case. As previously illustrated at

1600 UTC (Fig. 1), the mesoscale prestorm environment

near and ahead of the advancing MCS is characterized

by widespread large MLCAPE values (;5000 J kg21),

high relative humidity (80%–95%), high dewpoints (188–
228C), and a strong midtropospheric zonal jet stream

at upper levels straddling a weak thermal boundary

at low levels in the Ohio River valley. Therefore, the

FIG. 7. As in Figs. 5d–l, but depicting the wind speeds (m s21) interpolated at 10 m AGL.
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introduction of a sufficiently intense small-scale con-

vectively induced cold-pool perturbation (whether real

or spurious) into an environment possessing such strongly

favorable ingredients would likely initiate deep, moist

convection that would grow upscale and significantly alter

the outcome of the forecast (as demonstrated in the

ALL forecast). In other words, viewing this case via the

paradigm of a semichaotic ‘‘decision point’’ within a

mesoscale-environmental ‘‘attractor’’ (e.g., Stensrud and

Bao 1992) suggests that the total forecast error due to the

spurious convection initiation (CI) ahead of the MCS

(i.e., the decision point) may be bounded by the ex-

tremely favorable ambient mesoscale state of the present

derecho-supporting environment.

Prior tests for this convective event have revealed that

simultaneously using the lightning nudging technique

and the 3DVAR scheme have led to aWRF solution that

is very similar to the solution obtained using assimilated

lightning data alone. This result may not be surprising

given that the lightning nudging is applied at every

computational time step to maintain a cell-scale second-

ary circulation at the observed lightning locations (Fierro

et al. 2012), whereas the 3DVAR is conducted every

30min primarily owing to its high computational cost and

also to the frequency of available level II WSR-88D data

(i.e., ;5-min radar volume spacing).

b. Sensitivity to the radar sites used

To examine in more detail what factor(s) might lead

to the formation of a spurious storm cluster ahead of the

parent MCS in ALL, six additional 3DVAR initializa-

tion sensitivity tests were carried out. The first group of

three tests aims at identifying which radar(s) among the

six sites used herein (Fig. 3) leads to a spurious mesoscale

prestorm environmental perturbation leading to CI. To-

ward this goal, the above 3DVARexperiment (ALL)was

rerun with the following restrictions: (i) only the four

westernmost radars [Omaha, Nebraska (KOAX); Des

Moines, Iowa (KDMX); Sioux Falls, South Dakota

(KFSD); and Quad Cities, Iowa (KDVN), in Fig. 3]

were used (run 4RAD); (ii) the same radars were used

as in 4RAD, but with Lincoln, Illinois (KILX) added

(4RAD1ILX); and (iii) as in 4RAD, but with Chicago,

Illinois (KLOT), added (4RAD1LOT). These three ra-

dar site combinations were selected because the radar

locations are consistent with the 3DVAR effective in-

fluence radius selected for this study (i.e., 230km). Rea-

soning that the spurious convective cluster develops near

central Indiana, the most likely radar candidates to pro-

duce spurious CI-forcing perturbations (i.e., those radars

within range of the spurious CI) are KLOT and KILX.

The spurious storm cluster in southeastern Indiana does

not appear in 4RAD, which facilitates an uninterrupted,

progressive intensification and upscale growth of the

parentMCS from central Indiana through southeastern

Ohio (Figs. 8a–c and 9a–c). The simulated surface cold-

pool intensity (Figs. 9a–c) and, hence, surface wind

speeds (not shown) are, however, still weaker than

LIGHT (Figs. 6d–f). When data from the KILX radar

are added (i.e., 4RAD1ILX), the forecast resembles

that of ALL with a spurious storm cluster of similar

intensity developing in southeastern Indiana (as defined

by u0; Figs. 8d–f and 9d–f), leading to a southeastward

displacement of the simulated MCS at 6-h forecast (cf.

Figs. 9f and 9c). Based on these two sensitivity tests, it is

likely that the KILX radar led to the inaccurate forecast

in ALL. Confirming this, when KLOT is added instead

(i.e., 4RAD1LOT), the spurious storm cluster is elimi-

nated, leading to an improved forecast similar to 4RAD

(Figs. 8g–i and 9g–i). In 4RAD1LOT, however, Fig. 9h

reveals a slight southward extension of the 17.5- to

110-K u0 contours in central Indiana surrounding a faint

hint of an arc of lower u0 (;11K). This suggests that the

local environment ahead of the parent MCS in central

Indiana is changed in a similar fashion to 4RAD and

4RAD1ILX, but that it does not quite lead to CI and

upscale growth. This result supports that while the pre-

dictability of the derecho as a whole is large throughout

the suite of simulations conducted, one specific aspect of

its evolution appears to be tied to smaller-scale details

that are more difficult to measure (and thus inherently

decreasing predictability). Albeit weaker than LIGHT,

4RADalso shows evidence of awarm tongue of surface u0

values exceeding15K behind theMCS’s leading edge at

500m MSL (not shown) arising from adiabatic warming

within a descending RIJ.

c. Test with assimilation of selected KILX
observations

This second group of three 3DVAR initialization

sensitivity tests aims at determining whether the spurious

CI may be traced back to assimilated radial velocity, ra-

dar reflectivity, or both. In these experiments, 3DVAR is

used with only one radar at a time when the data assim-

ilation is suspected of introducing spurious CI (either

KILX or KLOT) to further isolate the source of forecast

error. Note that prior to conducting those tests, the

quality-controlled data from the latter two radars were

perused at all levels and revealed no obvious nonphysical

signals (e.g., hypothetically erroneous dealiasing; not

shown).

Informed by the previous set of experiments (e.g.,

Figs. 8 and 9) and performing a 3DVAR test in which

both wind and reflectivity data are assimilated from

KILX only (run ILX), the spurious convection in south-

eastern Indiana is expected to be forecasted by ILX as
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previously for 4RAD1ILX (cf. Figs. 6g–i, 9d–f, and

10a–c). When incorporating only KILX observations and

excluding radial velocity from the 3DVAR assimilation

(run ILX-DBZ), the forecast is somewhat unexpectedly

improved and similar to 4RAD in terms of cold-pool

intensity, areal coverage and location (cf. Figs. 10d–f

and 9a–c), and radar reflectivity structure (not shown).

In contrast, when onlyKILX radial velocity is assimilated

(run ILX-VR), the 3-h forecast only shows spurious

storms developing in southeastern Indiana (Fig. 10h)with

no convection seen within the forecast domain at the

analysis time (Fig. 10g). These tests that vary the KILX-

only data assimilation collectively demonstrate that the

inaccurate forecast in ALL (and, hence, 4RAD1ILX)

arises primarily from assimilating level II radial winds

from the KILX radar. Note that level I data were not

tested because they were deemed too coarse to adequately

resolve the cloud-scale wind field.

To help determine what potential factors in the model

environment may have contributed to the simulation in

developing spurious convection ahead of the MCS path

near 1600UTC, forecast model soundings from theWRF

run ILX (referred to as the ILX-based or model sound-

ing) at the nearest grid point from the Wilmington NWS

sounding site (ILN; Figs. 11a–c) are compared side by

side with the 1800 UTC special ILN sounding (Fig. 11d).

Before pursuing this comparison, it is relevant tomention

that additional 1600–1800 UTC model soundings (not

shown) for CTRL, ILX-VR, and ILX-DBZ at ILN and in

central Indiana away from potential spurious CI exhibit

very similar thermodynamic profiles to the ILX sound-

ings in Figs. 11a–c (MLCINnear 15 J kg21 andMLCAPE

around 4000 J kg21). This similarity indicates that the pre-

MCS mesoscale environment in WRF is fairly homoge-

neous around ILN and that the collective ILX soundings

at ILN in Fig. 11 are representative of the prederecho

environment in the simulations herein.

The ILX-based sounding has comparably smaller

MLCIN and higher MLCAPE values than the RAP

analysis. In particular, the 1800UTCILX-based sounding

MLCIN and MLCAPE values (8 and 4344 J kg21, re-

spectively) are quite different from the observedMLCIN

and MLCAPE results (90 and 3408 J kg21, respectively;

cf. Fig. 11c and 11d). A 10.8-K warm bias of potential

FIG. 8. As in Fig. 5, but for (a)–(c) 4RAD. (d)–(f) As in (a)–(c), but for 4RAD1ILX. (g)–(i) As in (a)–(c), but for 4RAD1LOT.
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temperature and a12.6 g kg21 moist bias of water vapor

mixing ratio in the boundary layer and a significantly

weaker modeled capping inversion all contribute to the

local model sounding parameter errors (e.g., Crook

1996). These model temperature and humidity errors

are broadly comparable to error levels in RAP (for-

merly the Rapid Update Cycle or RUC) analyses re-

ported by Coniglio (2012). The relatively small MLCIN

and large MLCAPE values in the 1800 UTC model

sounding suggest that some combination of errors from

the initializing National Centers for Environmental Pre-

diction (NCEP) NAM analysis (also noted in the RAP

analysis) and the subsequent model forecast locally may

have overdone the destabilization of the boundary layer

by early afternoon in the derecho MCS’s path in Indiana

and Ohio regardless of whether the small-scale triggering

perturbations induced from the assimilation KILX ve-

locity data were real or spurious.

Furthermore, the 1800 UTC model sounding at ILN

contained considerably stronger upper-tropospheric wind

speeds of up to 30ms21 (cf. Figs. 11c and 11d), which in

turn may conceivably also have augmented the tendency

for upper-tropospheric shear-induced overturning to en-

hance deep lifting (e.g., Coniglio et al. 2006) at the leading

edge of the simulated MCS in this case.

d. Test with one 3DVAR cycle

For real-time daily forecasts over large domains (e.g.,

CONUS) at similar convection-allowing scales (i.e.,

#4 km), the use of several 3DVAR cycles is considered

impractical owing to their cumulative large computa-

tional cost. For instance, the Center of Analysis and

Prediction of Storms (CAPS) in Norman, Oklahoma,

routinely makes use of only one 3DVAR cycle at the

analysis time prior to conducting convection-allowing

forecasts over CONUS. This method is by design aimed

at significantly reducing total computational costs and has

been shown to be relatively efficient in improving the

forecasts of high-impact weather events (e.g., Gao et al.

2013). To mimic the CAPS real-time, convection-

allowing analyses and forecasts, an additional simula-

tion was conducted in which 3DVAR was only applied

for consistency at the analysis time herein (1600 UTC).

The 4RAD simulation was selected for this test because

FIG. 9. As in Fig. 6, but for the 3DVAR runs of Fig. 8.

196 MONTHLY WEATHER REV IEW VOLUME 142



it produced the best overall forecast of the 3DVAR

experiments (Figs. 6g–i and 9) and was found to be the

most computationally efficient (as it uses only four ra-

dars). The forecast shows a broadly high degree of simi-

larity to the original 3DVAR run in terms of both radar

reflectivity structure (cf. Figs. 12a–c and 8a–c) and the

intensity and areal coverage of the cold pool (cf. Figs.

12d–f and 9a–c) and 10-m wind speeds (Figs. 12g–i, not

shown for 4RAD), further confirming the hypothesis

that one 3DVAR cycle would be sufficient to initialize

this particular case study forecast. A major difference

seen when using only one instead of multiple 3DVAR

cycles is that the cold pool at analysis time primarily

contains information from the background field, which

in this case is the CTRL model output at 1600 UTC

(cf. Figs. 12d and 6a). The forced storms neverthe-

less quickly generate their own cold pools and sub-

sequently evolve into a mature derecho MCS, as in

4RAD. Owing to the resulting delay in forming a ma-

ture cold pool when using only one 3DVAR cycle, the

simulatedMCS at 1900 and 2200UTC is located farther

west than 4RADby about 100 km and has a better north–

south location in northern Kentucky (cf. Figs. 9b,c and

12e,f).

5. Summary

Using WRF-ARW, a computationally inexpensive

lightning nudging scheme and a three-dimensional

variational technique (or 3DVAR) that assimilated

conventional WSR-88D data were evaluated for the

forecast of the 29–30 June 2012 derecho case. As ex-

pected, the overall radar reflectivity structure of the

embryonic MCS at analysis time was in better agreement

with the observations when 3DVAR was utilized (e.g.,

Gao et al. 2013). The subsequent 3- and 6-h forecasts,

however, showed better agreement with the radar re-

flectivity observations when total lightning data was as-

similated. These results are in line with previous studies

that have demonstrated noticeable improvements in

mesoscale forecast skill within the 0–6-h period using

3DVAR radar-based data assimilation techniques (e.g.,

FIG. 10. As in Fig. 9, but for (a)–(c) the ILX 3DVAR run. (d)–(f) As in (a)–(c), but for ILX-dBZ. (g)–(i) As in (a)–(c), but for ILX-VR.
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Hu et al. 2006a,b; Gao and Stensrud 2012; Ge et al. 2012;

Gao et al. 2013) or lightning data (e.g., Alexander et al.

1999; Mansell et al. 2007; Pessi and Businger 2009). This

improvement may be attributed to a better representa-

tion of the mesoscale and convective-scale cold pools

(e.g., Mansell et al. 2007) or the midtropospheric heating

profiles and associated cell-scale circulations from the

assimilation-induced convection (Fierro et al. 2012; Gao

et al. 2013) at the analysis time.

A suite of sensitivity tests was conducted to identify

the primary factor(s) responsible for the formation of

a spurious cluster of storms ahead of the parent MCS

that led to the degradation of the forecast in the original

3DVAR simulation. These tests revealed that the

assimilation of the radial velocity of the KILX radar was

the chief cause, despite the actual data not exhibiting

obvious nonphysical signals. Although being a single

case study, this work highlights the possible encouraging

role of assimilating total lightning data toward improving

short-term forecasts of mesoscale convective systems,

particularly given its relatively lower computational cost.

The lightning assimilation is conducted at runtime, which

also alleviates the need for conducting cycle forecast run(s)

prior to and at the analysis time.

Additional work is planned to focus on establishing

meaningful statistics of the performance of the lightning

assimilation scheme at the cloud scale (4 km) over

CONUS (Kain et al. 2010; Clark et al. 2012) during the

FIG. 11. SkewT–logp plots depicting hourly evolution ofWRF-forecast soundings on 29 Jun 2012 in the closest grid

column to the ILN NWS radiosonde site at (a) 1600, (b) 1700, and (c) 1800 UTC in comparison with (d) the ILN

special sounding at 1800 UTC. The mixed-layer sounding parameters (MLCAPE, MLCIN) in (c) and (d) are

computed through the lowest 90mb, which characterizes the deepening convective boundary layer. The cyan and

orange curves are the virtual temperature profiles of the environment and the lifted parcel, respectively (i.e., from

which the integrated virtual buoyancy is derived to compute MLCAPE andMLCIN). Wind vectors are plotted with

full barb5 5m s21, half barb5 2.5m s21, and filled triangle5 25m s21. The gray dashed curves in (c) correspond to

the observed sounding in (d), while the gray dashed curves in (d) correspond to the model sounding in (c). The NWS

operational sounding site at ILN is shown by a white-filled black circle in Figs. 1 and 2.
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course of the 2013 spring and early summer seasons. The

distribution of convection during the warm season may

be expected to includemany thunderstorm days and span

various convective regimes including isolated storms,

MCSs, and landfalling mesoscale tropical convective

systems. Some recent preliminary results of convection-

allowing model forecasts initialized at 0000 UTC during

the 2013 warm season suggest that the lightning assimi-

lation technique seems to perform best on days favorable

for the development of nocturnal MCSs. The reasons for

this behavior are threefold: (i) climatologically, nocturnal

MCSs often initiate/form within the 0000–0200 UTC

period when lightning data were assimilated; (ii) the

large-scale environment is usually depicted well by the

reanalysis (including the nocturnal low-level jet); and

(iii) the upscale evolution and placement of MCSs are

strongly dictated by the initial placement and intensity

of convectively induced cold pools. These findings col-

lectively hold the promise of helping to provide improved

operational CONUS-scale human and numerical weather

forecasts, since as noted in the introduction MCSs often

produce damaging winds, copious cloud-to-ground light-

ning, and heavy rainfall over significant areas.
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