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ABSTRACT

A set of observing system simulation experiments (OSSEs) demonstrates the potential benefit from en-

semble Kalman filter (EnKF) assimilation of total lightning flash mapping data. Synthetic lightning data were

generated to mimic the Geostationary Lightning Mapper (GLM) instrument that is planned for the Geo-

stationary Operational Environmental Satellite-R series (GOES-R) platform. The truth simulation was

conducted using multimoment bulk microphysics, explicit electrification mechanisms, and a branched light-

ning parameterization to produce 2-min-averaged synthetic pseudo-GLM observations at 8-km GLM reso-

lution and at a hypothetical 1-km resolution.

The OSSEs use either perfect (two-moment bulk) or imperfect (single-moment, graupel only) micro-

physics. OneOSSEwith perfect microphysics included the same electrification physics as the truth simulation

to generate lightning flash rates and flash-extent densities (FED). The other OSSEs used linear relationships

between flash rate and graupel echo volume as the observation operator. The assimilation of FED at 8-km

horizontal resolution can effectively modulate the convection simulated at 1-km horizontal resolution by

sharpening the location of reflectivity echoes and the spatial location probability of convective updrafts. Tests

with zero flash rates show that the lightning assimilation can help to limit spurious deep convection, as well.

Pseudo-GLM observations at 1 km further sharpen the analyses of location (updraft and reflectivity) of the

relatively simple storm structure.

1. Introduction

The presence of lightning is an unambiguous indicator

of deep electrified convection. Total lightning flash rate

[cloud-to-ground (CG) plus intracloud (IC)] has been

recognized as being correlated to cycles of deep con-

vection (e.g., Goodman et al. 1988; MacGorman et al.

1989), and in particular to the total graupel contained in

a storm cell (Carey andRutledge 1996;Wiens et al. 2005;

Petersen et al. 2005). Numerical simulations of storm

electrification have also found a high correlation between

total flash rate and graupel echo volume (e.g., Kuhlman

et al. 2006; Cohen 2008; Mansell and Ziegler 2013). The

CG lightning fraction alone, on the other hand, shows

muchweaker correlations (MacGorman et al. 1989;Wiens

et al. 2005). Therefore, total lightning is a much more at-

tractive observation from a data assimilation perspective

for forecast models at sufficient resolution to explicitly

predict convective elements without a convection pa-

rameterization scheme (i.e., convection-allowing resolu-

tion with horizontal grid spacing &4 km).

Total lightning detection is currently available over

land for local or extended regions from various time-of-

arrival systems such asLightningMappingArrays (LMAs;

Rison et al. 1999), the Lightning Detection Network in

Europe (LINET) system (Betz et al. 2009), the Earth

Networks Total Lightning Network (e.g., used by Fierro

et al. 2012), and the upgraded U.S. National Lightning

Detection Network (Nag et al. 2014). The detection ef-

ficiency of ground-based total lightning systems drops

off rapidly outside the network, however, so they are

unable to cover large oceanic regions. Long-range sys-

tems, such as the Met Office ATDnet system and the

WorldWide Lightning LocationNetwork (WWLLN; Lay

et al. 2004), only detect the most strongly radiating light-

ning discharges, which are primarily CG return strokes.

The upcoming Geostationary Operational Environ-

mental Satellite-R series (GOES-R; Gurka et al. 2006;

Goodmanet al. 2012) is planned to carry theGeostationary
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Lightning Mapper (GLM) instrument (Goodman et al.

2013), which will detect total lightning optically in

a manner similar to the Lightning Imaging Sensor (LIS;

Christian et al. 1992; Mach et al. 2007). The GLM

promises fairly high resolution (8–12 km) and high de-

tection efficiency of total lightning (.70% for day and

night) over both continents and oceans. This makes it

a rich potential data source for convection-permitting

model forecasts that extend over oceans or any area

without weather radar coverage (e.g., tropical mesoscale

convective systems and cyclones).

Lightning has been assimilated into mesoscale models

($10-km grid spacing) via various single forecast nudging

techniques, for example by modifying the latent heating

rates from the convection parameterization scheme (CPS;

e.g., Alexander et al. 1999; Chang et al. 2001; Pessi and

Businger 2009), forcing the CPS directly (Mansell et al.

2007), or by adjusting the humidity profile and thereby

encouraging the CPS to activate (Papadopoulos et al.

2005). These studies all utilized CG lightning data, and

Mansell et al. (2007) also showed an additional benefit

of including total lightning data. Hakim et al. (2008)

first used the ensemble Kalman filter (EnKF) method

(Evensen 1994; Houtekamer andMitchell 1998; Whitaker

and Hamill 2002) to assimilate long-range lightning

data (primarily CG), which were first converted to

convective rainfall rates. At convection-allowing scales,

on the other hand, little work has utilized lightning data.

Fierro and Reisner (2011) and Fierro et al. (2012)

forced simulated convection at observed lightning lo-

cations by adding water vapor to maintain a minimum

humidity within a confined layer in the column, which

adds buoyancy and promotes updrafts and cloud for-

mation. Fierro et al. (2012) used total lightning stroke

data (with .50% IC detection efficiency), and the hu-

midity forcing was proportional to the lightning flash

rate. Their nudging method was effective for initiating

convection where lightning was detected, but did not

attempt to suppress spurious convection or otherwise

modulate the convection.

Ground-based lightning detection networks that

cover large areas typically provide only time, latitude,

and longitude of lightning impulses with the highest-

power radiation, but give no information on the spatial

extent of discharges. Mapping systems can provide de-

tailed horizontal and vertical extents (e.g., LMA) or

varying resolutions of horizontal extent (e.g., LIS, GLM,

and 2D interferometers). Mapping allows for the con-

struction of flash-extent density (FED), which counts

the rate of lightning flashes extending over each cell or

pixel in a horizontal 2D grid. Thomas et al. (2000) found

a good comparison in horizontal area coverage between

LMA and LIS, particularly for flashes within the upper

half of the storm. The lower resolutions of LIS andGLM

(4 and 8 km) compared to LMA (tens of meters) leads to

coarsening and a high bias in coverage, at least in terms

of minimum area.

The current work demonstrates assimilation of pseudo-

GLMtotal lightning FEDdata using theEnKFmethod in

an observing system simulation experiment (OSSE) at

convection-resolving scale. (In this paper, ‘‘flash rate’’

generally refers to the storm cell as a whole, whereas

FED refers to a pixel-level flash rate.) OSSEs are fre-

quently used to estimate the impact of data from in-

struments that are not yet operational. Here, simulated

pseudo-GLM lightning flash rates are generated from

a thunderstorm simulation that includes physical pa-

rameterizations of electrification and lightning (Mansell

et al. 2002). The synthetic observations are then assimi-

lated into ensembles with perfect or imperfect physics

and with or without electrification.

2. OSSE setup

The OSSE begins with a ‘‘truth’’ or ‘‘nature’’ simula-

tion of an electrified convective storm. This study used

the Collaborative Model for Multiscale Atmospheric

Simulation (COMMAS) within an EnKF framework

(Dowell and Wicker 2009). The truth simulation em-

ployed a full two-moment bulk microphysics parame-

terization that predicts mass mixing ratio and particle

number concentration for six hydrometeor classes (cloud

droplets, rain, cloud ice, snow, graupel, and hail) as well

as the average bulk particle densities of graupel and hail

(Mansell et al. 2010). Electrification parameterizations

followed Mansell et al. (2005), including noninductive

charge transfer between graupel particles and ice–snow

particles, inductive charging between graupel and small

droplets, and small ion processes (e.g., generation by

cosmic rays, recombination, attachment to hydrometeors,

drift, and corona point discharge at the ground). For this

study, noninductive graupel-ice charging was based on the

laboratory results of Saunders and Peck (1998) combined

with Brooks et al. (1997) as in Mansell et al. (2010).

The environment was specified using the analytical

sounding of Weisman and Klemp (1982) with a surface

temperature of 300K and a boundary layer vapormixing

ratio of 14 g kg21, yielding a convective available po-

tential energy (CAPE) of 2050 J kg21 and convective

inhibition (CIN) of 21.6 J kg21 for a mixed-layer parcel.

The u component of wind increases linearly from 0ms21

at the surface to 10m s21 over the lowest 5000m. For

the truth simulation, random thermal perturbations

(;0.1K) were introduced into the boundary layer, and

convection was initiated through a vertical acceleration

term in a spheroidal region (center value of 0.03m s22)
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for 20min (Mansell et al. 2010). The truth simulation

was run for 90min, by which time the storm had sub-

stantially decayed. Convection in the ensembles was

initiated with four warm bubbles (maximum positive

temperature perturbation of 1K) whose centers were

randomly placed within a 12 km 3 12 km region around

the initial area of forcing for the truth simulation, often

resulting in two separate storm cells in any given mem-

ber. The computational grid for all simulations used an

80 km 3 80 km 3 18 km domain with 1-km horizontal

grid spacing and 40 vertical levels with variable spacing

(200m for the lowest level, stretching up to 700m aloft).

The synthetic GLM observations were calculated by

processing the lightning channel paths from the truth

simulation to the 8- and 1-km grids at a 2-min time

resolution. Detection efficiency of 100% was assumed,

which certainly is an overestimate and ignores any di-

urnal effects on optical detection. The ensemble with

electrification stored 8-km native FED, which were

incremented for each simulated lightning flash. A com-

parison of 1- and 8-km FED from the truth simulation is

shown in Fig. 1. The FED counts the number of flashes

that extend over a given horizontal area, thus the 8-km

FED could have higher counts than the maximum 1-km

FED value within the same area because multiple

flashes could enter an 8-km pixel without overlapping

each other on the 1-km grid. The 8-km resolution ap-

proximately corresponds to the expected resolution at

nadir of the planned GLM instrument on the GOES-R

series satellites.

Initial tests found that brief excursions in flash rate

caused unreasonable changes in the storm (e.g., graupel

mass), so the synthetic FED data were smoothed in time

with a centered 6-min simple averaging. For example,

Fig. 2b shows 1-min storm flash rates, 6-min smoothed

flash rates, and the graupel volume. The graupel volume

changes smoothly in time, corresponding better to the

smoothed flash rates. The smoothed truth FEDs were

assimilated every 2min for the entire 90-min simula-

tions. At 8 km, this amounts to 100 observations per

assimilation (6400 observations for 1-km pixels). The

truth stormmoved across the domain during the course

of the simulation, which allowed it to cross multiple

8-km pseudo-GLM pixels. The pseudo-GLM obser-

vations had no added bias or random error, and the

assimilation assumes an observation uncertainty of

2 flashes per pixel per minute.

Data assimilation used the ensemble square root filter

(EnSRF) of Whitaker and Hamill (2002) as imple-

mented in Dowell and Wicker (2009). Because obser-

vation operator values may be generated by the model

physics, the Anderson and Collins (2007) parallel algo-

rithm was employed (see the appendix for details). The

usual serial EnSRF algorithm requires the observation

operator to be calculated from the model state as each

new observation is assimilated. This can be a problem

when an observation operator is an integrated quantity,

such as surface rain accumulation, or, in this case, a flash

rate that is produced by the model physics. The parallel

algorithm treats the values returned by observation

operators in a similar manner as state variables, and

these ‘‘operator variables’’ are then directly adjusted by

the filter in a similar manner to the state variable up-

dates. In the other cases where a flash rate is estimated

FIG. 1. Example of 2-min flash-extent densities (38–40min) from the truth simulation at (a) 1-km and at (b) 8-km grid

spacing. Contours show composite reflectivity at 30 and 45 dBZ.
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from the model state, the parallel algorithm was not

required but was still used to maintain consistency.

All experiments, with or without data assimilation,

used ensembles having 36 members. Qualitatively sim-

ilar results were also obtained using 20 members or 72

members. All members used the same environment as

the truth simulation, and the initial thermal perturba-

tions provided sufficient variability in the members such

that methods like covariance inflation or additive noise

were not needed. The Kalman gain was modulated by

a horizontal localization factor that monotonically rolls

off from 1 to 0 at a radiusR5 15 kmusing the function of

Gaspari and Cohn (1999). (The localization radius was

4 km for the 1-km FED experiment.) Note that the lo-

calization factor drops to 0.5 at about R/3 and to 0.2 at

R/2, so the effective localization radius is roughly 7.5 km.

The vertical localization radius is effectively set to in-

finity, as the pseudo-GLM data have no direct height

information. The filter updated all state variables (e.g.,

temperature, winds, hydrometeor quantities) except

pressure, subgrid turbulent energy, and electric charge.

Perfect microphysics model experiments used the

same double-moment scheme with hail (DMH) as the

truth simulation (Table 1). Imperfect experiments used

the single-moment (SM) version of the same micro-

physics scheme but without the hail category. Single-

moment intercept parameters for rain and graupel were

set to nor 5 8 3 105m24 and nog 5 4 3 105m24, and

graupel bulk density was predicted for both DMH and

SM.Although the hail category was included in the truth

simulation, not much hail was produced, and total hail

mass was generally at least an order of magnitude

smaller than total graupel mass.

The DMHE experiment employed electrification

physics in all members (as in the truth simulation) to

generate flash rates, and all other experiments used one

of two linear relationships between flash rate and grau-

pel echo volume (volume of the storm with graupel

mixing ratio . 0.5 g kg21) as the observation operator.

The first relationship was the linear fit from the truth

simulation (Fig. 2a). The second relationship came from

Cohen (2008) (also shown in Fig. 2a), who fittedmultiple

strong, isolated storms that were simulated with an

earlier version of the two-moment microphysics. The

Cohen fit was included to assess differences arising from

bias errors in the observation operator relationship, as

this fit underestimated the true flash rate by about

FIG. 2. (a) Flash rate relationship with graupel echo volume for

the truth simulation and from Cohen (2008) for isolated storms.

The peak flash rate was 34min21. TheDMHE line shows the linear

correlation derived from the results of that experiment. (b) Time

series from the truth simulation for graupel volume and raw and

smoothed storm flash rates.

TABLE 1. Options for truth simulations and ensemble experiments. The ‘‘perfect’’ microphysics scheme was the double-moment bulk

scheme with hail (DMH), and the ‘‘imperfect’’ was the single moment (SM) with hail deactivated.

Expt Microphysics scheme Electrification physics Flash rate method Lightning assimilation

Truth DMH Yes — —

DMHE DMH Yes Native 8-km FED Yes

DMH-NoDA DMH No — No

DMHC DMH No Cohen fit Yes

DMHT DMH No Truth fit Yes

DMHT-1kmob DMH No Truth Yes

SMC SM No Cohen fit Yes

SMT SM No Truth fit Yes

SM-NoDA SM No — No

SMZ (all zero FED) SM No Truth fit Yes
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a factor of 2. The GLM observation operator was cal-

culated by summing the graupel echo volume in a

12-km-wide square area centered on the pseudo-GLM

pixel location and then applying the linear relation-

ship. Larger and smaller areas were tested, and 12-km

width seemed to be the optimal size for 8-km GLM

pixels to include the influence of lightning originating

just beyond the edges of a pixel. A 4-kmwidth was used

for the 1-km observations experiment along with a lo-

calization radius of 4 km.

3. Results and discussion

a. Overall results

Akey advantage of the EnKF technique over nudging

is the covariances used to update unobserved state var-

iables. The thermal bubble initialization of the ensemble

members resulted in faster development of convection

than in the truth simulation, so some suppression was

needed particularly at the early stage. An example

EnKF analysis update to a member in the premature

storm phase at a time when there was not any lightning

in the truth simulation is shown in Fig. 3. Updraft speeds

and graupel and rain contents are noticeably reduced by

the single update.

The premature growth phase caused the initial spike

in FED root-mean-squared errors (RMSE; Fig. 4a). The

ensembles also developed sufficient initial spread

(Fig. 4b) to weight the Kalman gain toward the obser-

vations and reduce the initial errors. All of the lightning

assimilation experiments had FED RMS errors well

below the no-assimilation control ensembles (DMH-

NoDA and SM-NoDA). At 20min, the experiments

using the truth graupel–lightning relationship showed

higher RMSE than the corresponding Cohen fits, but

this is a result of a biased operator. For a given overshoot

in graupel volume, the Cohen fit yields a lower flash rate

than the truth fit (Fig. 2a) and thus a smaller difference

from a zero flash rate. The errors at later times were

comparable for the DMH and SM experiments without

electrification. The 1-km observations test (DMHT-

1kmob) was better at isolating the convection than the

8-km resolution observations and had mostly lower FED

RMSE but also correspondingly lower spread.

The perfect model experiment DMHE had larger

FEDRMSE values than the non-electrified assimilation

experiments, but also maintained much higher spread

(Fig. 4b). The higher error and spread resulted from

greater variability in the predicted FED than the pa-

rameterized rate based on graupel volume (Fig. 2b),

particularly since the comparison truth is the time-

averaged FED. This flash rate variability arises from

dependence on more variables than the graupel echo

volume as well as the history of charge separation and the

random nature of the discharges themselves. The non-

electrified experiments gradually lost spread because of

the linear relationship used between graupel echo volume

and flash rate and the generally slow variation in graupel

echo volume (Fig. 2b), but they reached aminimumvalue

of about 1.5 by 40min. This minimum spread is likely

maintained by the variability in storm cells that arise from

the randomly located initial thermal perturbations. The

lightning assimilation operates at a sufficiently large scale

that smaller-scale perturbations are maintained and can

grow during assimilation cycles. The drop in spread and

error after about 80min results from the dissipation (or

suppression) of convection in the mean.

FIG. 3. (a) Forecast and (b) analysis of member 15 of experiment DMHT for the assimilation at 20min showing the

reduction of excessive convection. Graupel mass mixing ratio (black contours at 1, 3, 5, 7, and 9 g kg21) and rain

mixing ratio (red at 0.5 and 1.0 g kg21) are overlaid on simulated radar reflectivity and wind vectors.
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b. Graupel volume, hydrometeor mass, and updraft
mass flux

Graupel volume and updraft mass flux were examined

in addition to the RMSE of flash-extent density, because

the observation-space diagnostics only express how

well the ensemblesmatch the synthetic observations. All

of the assimilation experiments succeeded in adjusting

the mean total graupel volume toward the truth simula-

tion (Fig. 5). The experiments that used the true graupel–

lightning relationship (DMHT and SMT) did similarly

well despite the imperfect microphysics in SMT. Given

the high correlation between graupel volume and flash

rate, the impact of 1-km observations (DMHT-1kmob)

on graupel volume was relatively small compared to the

8-km observations. Full suppression (zero flash rates) in

SMZ (Fig. 5b) did fairly well in reducing the graupel

volume down to minimal values but took some time to

do so, suggesting a reasonable ability to reduce spurious

convection.

The explicit lightning case DMHE was nearly as good

as the truth diagnostic observation operator (DMHT

and SMT) for graupel echo volume (Fig. 5a). The Cohen

(2008) operator (DMHC and SMC) exhibited an ex-

pected high bias in graupel volume because the operator

flash rate is lower for a given graupel volume compared

to the truth fit (Fig. 2a). A linear regression line for the

DMHE ensemble is shown in Fig. 2a for comparison

with the true and Cohen (2008) relationships. TheDMHE

line has a flatter slope than the true relation and has

a slightly positive intercept that would predict lightning

with zero graupel volume, but less of a bias than theCohen

operator at lower graupel volumes.

FIG. 4. Ensemble prior (a) RMS error and (b) spread in lightning

flash rates. (Posteriors cannot be calculated for DMHE–DMHE2.)

Forecast statistics for DMH-NoDA are shown for comparison,

using a scale change indicated by the horizontal dashed line. Sta-

tistics are for 4-min bins, such that each bin time includes two as-

similation cycles.

FIG. 5. Time series (1min) of averaged graupel echo volume for

(a) perfect model experiments (DMH) and (b) imperfect model

experiments (SM). The 1-min oscillations are a result of values

being intermediate between analyses and forecasts (i.e., either 1- or

2-min forecasts from the analyses).
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The RMS and mean errors in the precipitation hy-

drometeor mass (sum of rain, graupel, hail, and snow

mixing ratios; Fig. 6) provide a more quantitative eval-

uation of the assimilation. DMHE has the best overall

performance in terms of RMSE, but on average has

similar bias error magnitudes as DHMT. A high bias is

again seen with the Cohen operators (DHHC and SMC)

along with higher RMS error, particularly after 40min.

The mean errors from the single-moment experiments

(SMT and SMC) show a negative offset from the cor-

responding double-moment schemes, suggesting a bias

toward lower mass in the choice of distribution param-

eters (intercepts for rain and graupel).

Updraft mass flux is an integral quantity that is one of

many possible measures of convection intensity, and it is

less directly correlated to lightning flash rate than graupel

volume in storm simulations (Cohen 2008). Thus, it

serves as a good test of the model covariances. The mass

fluxes in Fig. 7 were taken at the 2208C level, which is

in the heart of the mixed-phase region where electrifica-

tion is most active. All of the assimilation experiments

achieved an initial correction inmass flux around15–30min,

but DMHC and SMC had the least improvement after

30min. Similar to the graupel volume, the DMHE result

was close to DMHT but between DMHT and DMHC.

Here the nonelectrical perfect model DMHTperformed

slightly better in general than the imperfect SMT, par-

ticularly around 50min where SMT allowed the mass

flux to grow. The 1-km observation case (DMHT-1km)

did well other than a large error peak at 30–40min from

a spurious secondary updraft. The suppression test SMZ

succeeded in reducing the mean updraft mass flux well

below the truth value after 30min.

c. Radar reflectivity and updraft location

The various pseudo-GLM lightning assimilation ex-

periments had definite effects on the ensemble mean

reflectivity structure (Fig. 8, at 40min), and acted to

FIG. 6. Domain-averaged (a) RMS errors and (b)mean errors in total precipitationmixing ratio (sum of graupel, hail,

rain, and snow) between the truth simulation and the analysis means.

FIG. 7. As in Fig. 5, but updraft mass flux.
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restrict the reflectivity area compared to the un-

constrained pure forecast ensemble (Fig. 8b). The per-

fect model DMHT experiment (Fig. 8d) yielded mean

reflectivity areas (40–50 dBZ) closest to the truth

simulation (Fig. 8a). By comparison, SMT allowed too

large an area of higher reflectivity. The DMHE (Fig. 8)

again fell somewhere between DMHT and DMHC in

terms of reflectivity area, which is consistent with their

FIG. 8. Simulated radar reflectivity at 5.7 km AGL after 40min of simulation for (a) truth

simulation and (b)–(h) ensemble means. SM-NoDA was very similar to (b) and is not shown.
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relative graupel echo volumes and updraft mass fluxes.

(Note that the ensemble radar reflectivity was calculated

from the mean state variables and not the average of the

individual logarithmic reflectivity values.)

Overall, the assimilation experiments (Figs. 8c–g) al-

lowed a greater circumscribed area of reflectivity

(.20 dBZ) than the truth simulation. This broadening is

not entirely a consequence of the coarse 8-km resolution

of the pseudo-GLM observations, although this can

cause a small cell to appear to be as large as 16 km by

16 km, depending on how many pseudo-GLM pixels its

lightning footprint overlaps. Incomplete suppression of

spurious cells, as in the SMZ result, also contributes to

the broadened reflectivity. The resolution of the cover-

age may be less important, however, for larger storms or

larger organized systems, such as squall lines and trop-

ical cyclones. Also notable is a slight northward bias

caused by the southward offset of the synthetic obser-

vation pixels relative to the true storm, which resulted in

slightly higher synthetic 8-km FED rates on the north

side of the storm (Fig. 1b). DMHE had slightly less

position bias, which alongwith the low bias in reflectivity

suggests that it was less successful at producing a cell in

a common location across the ensemble members.

The case with zero assumed flash rate (SMZ, Fig. 8h),

did a fairly good job of limiting the analysis mean re-

flectivity where little to no lightning might be expected.

Amajority of the SMZmembers, however, still had cells

with reflectivity values exceeding 50 dBZ at 40min (not

shown). The other cases such as DMHT also occasion-

ally had one or more spurious cells. DMHT-1kmob, on

the other hand, suppressed spurious cells better than

DHMT with 8-km observations. The DMHT-1kmob

experiment had a similarly wide area of lower re-

flectivity values (Fig. 9a) that resulted from a similar

incomplete suppression of convection as seen in the

SMZ experiment (Fig. 8h). The enhanced suppression in

DMHT-1kmob appears to result from better definition

of the main cell, perhaps providing more accurate sub-

sidence and cold outflow.

A test with 1-km observation in the SMZ case still

allowed random cells to persist, suggesting that the

density of observations alone is not sufficient to suppress

all deep convection. Rather, the persistence of cells

within the SMZmembers may be more an issue with the

EnKF requirement for a Gaussian distribution. Specifi-

cally, when only one or two members have storm cells in

a given location andmost other members have none, the

distribution of related state variables (updraft, hydro-

meteor mixing ratios, etc.) is most likely bimodal and

might be improved with a very large ensemble size. A

test with 72 members, however, showed little improve-

ment, which underscores the difficulty of controlling

spurious storms when the environment has substantial

instability but minimal inhibition.

The probabilities of updraft greater than 6m s21

(Fig. 10) illustrate the ability of the assimilation to iso-

late the main updraft compared to the unconstrained

ensemble at 40min. Similar to the mean reflectivity,

updrafts were reasonably suppressed outside the main

cell. The northward bias is again evident for DMHT

(Fig. 10b). DMHE showed no obvious north–south bias,

but had lower probabilities that again indicate less suc-

cess at producing a common cell. DMHT-1kmob did

very well at focusing high probabilities within the area of

the actual updraft (Fig. 9b), but also allowed a spurious

FIG. 9. (a) Ensemble analysis mean simulated radar reflectivity

and (b) ensemble analysis probability of updraft.6m s21 at 40min

for the 1-km observations experiment. The thick black curve in

(b) denotes the 6m s21 contour of the truth simulation.
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secondary area of updraft to the east. The secondary

updrafts contributed to the excessive updraft mass flux

at 30–40min seen in DMHT-1kmob (Fig. 7a).

4. Conclusions

This OSSE study has demonstrated the feasibility of

total lightning FED data assimilation in an EnKF

framework at convection-resolving scales for modulat-

ing the intensity of simulated convection (e.g., in terms

of echo volume or updraft mass flux) and helping to

suppress spurious deep convection. Better isolation of

the storm was still achieved with biased lightning oper-

ators and imperfect physics. Convection suppression is

reasonably effective in themean, although themoderate

instability and low convection inhibition allow random

nonoverlapping cells to persist in individual members

regardless of the data density. Synthetic GLM obser-

vations of flash-extent density were used at the expected

nadir pixel size of 8 km and tested at a hypothetical 1-km

size such as could be derived from existing land-based

lightning mapping networks.

A perfect model ensemble normally has the best per-

formance in an OSSE framework (e.g., Meng and Zhang

2007). In this case, however, the perfect model (DMHE)

performed slightly worse overall than a well-tuned linear

lightning observation operator (DMHT). Typical obser-

vations, such as used by Meng and Zhang (2007), are di-

rectly related to instantaneous state variables (e.g., surface

temperature, winds, and radar reflectivity). Lightning

flash rate, however, is a time-integrated result of particle

interactions and motions, resulting in a much more com-

plex and nonlocal relationship to the state variables. As

seen in Fig. 2b, the flash rate is noisy, and the DMHE

experiment used 2-min flash rates from the ensemble

(without 6-min averaging), which likely hampered to its

ability to isolate a cell in the ensemble. The DMHT en-

semble with perfect physics and the true graupel–flash

rate relationship performed quite well in reproducing the

mean graupel echo volume, and updraft mass flux, and

FIG. 10. Ensemble probabilities of updraft.6m s21 at 6.1-km altitude for (a) DMH-NoDA, (b) DMHT, (c) DMHE,

and (d) SMZ. The thick black curves denote the 6m s21 contour of the truth simulation.
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was generally better than the SMT ensemble with simpler

microphysics.

Results for DMHE might be improved by running the

members past the analysis time to be able to generate

a smoother averaged flash rate, but at a cost of greater

computation. Another clue to the DMHE performance is

the flash rate to graupel volume fit line in Fig. 2a (labeled

DMHE) generated from the entire ensemble for all 1-min

intervals with nonzero graupel volume. The DMHE fit

has a slope similar to the Cohen line, suggesting that the

overly strong initial convection may have skewed the

lightning relationships compared to the truth simulation.

Lightning data can pinpoint mixed-phase deep convec-

tion that can be hard to identify in otherwise data-sparse

regions (e.g., oceans), where its use in data assimilation is

expected to have the greatest impact. Lightning data are

not expected to competewith radar data, which havemuch

higher density and information content. Lightning data

may still add value to radar at small additional expense,

though this has not been tested here. Any diagnostic

lightning FEDoperatorwill likely need tobe tuned for real

data cases, and although Petersen et al. (2005) showed

large scatter in flash rates, their results suggest that the

overall systematic bias could be minimized.
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APPENDIX

Kalman Filter Equations

A brief description is given here concerning the

implementation of the Anderson and Collins (2007)

parallel EAKF (ensemble adjustment filter) algorithm

for the Whitaker and Hamill (2002) square root filter.

The notation from Dowell et al. (2004) and Dowell and

Wicker (2009) is adapted for consistency. The first step is

to produce the initial observation operators H(xfn)
k50
o

for each observation o5 1,K for all ensemble members

n 5 1, N, as well as the mean values H(xf )
k50

o for each

observation, where the superscript k 5 0 indicates the

initial value before any observations have been assimi-

lated (k 5 0, K 2 1). The observation operator can be

a direct function of the instantaneous state vectors x

(e.g., wind speed or radar reflectivity) or a type of in-

tegral quantity (e.g., accumulated rainfall or average

flash-extent density) from the forecast model.

The Kalman gain and beta factor for the oth obser-

vation are the same as Dowell and Wicker (2009), but

with the subscripts o and superscripts k added to the

observation operator values H:

K5

1

N2 1
�
N

n51

(xfn 2 xf )[H(xfn)
k

o 2H(xf )
k

o]

s21
1

N2 1
�
N

n51

[H(xfn)
k

o 2H(xf )
k

o]
2

, (A1)

b5 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s21
1

N2 1
�
N

n51

[H(xfn)
k

o 2H(xf )
k

o]
2

vuuuut

2
666664

3
777775

21

,

(A2)

where s is the uncertainty for the observation. The su-

perscript f indicates the state value before the assimila-

tion of the current observation, which may have been

updated already by previous observations.

The superscript k indicates that the operator value has

been updated by the previous o2 1 observations, so k5
o 2 1, but the separate variables are used for clarity of

meaning. The model state mean values x and state var-

iables x are updated for observation o, where W is the

localization factor (Gaspari and Cohn 1999). The update

to the mean is given by

xa5 xf 1WK[yo 2H(xf )
k

o] (A3)

and the state variable analysis value is

xan 5 xa1 (xfn 2 xf )1WKb[H(xf )
k

o2H(xfn)
k

o]

5 xfn 1WKfyo 2H(xf )
k

o 1b[H(xf )
k

o 2H(xfn)
k

o]g ,
(A4)

where the observation value is yo. The superscript a in-

dicates the state value after the assimilation of the cur-

rent observation.

The extra step for the Anderson and Collins (2007)

parallel algorithm is to update theH values corresponding

to the remaining observations (for all p . o). The beta

factor remains the same as above, and the Kalman gain

KH is simply adapted to update H instead of x:
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KH 5

1

N2 1
�
N

n51

[H(xfn)
k

p 2H(xf )
k

p][H(xfn)
k

o 2H(xf )
k

o]

s21
1

N2 1
�
N

n51

[H(xfn)
k 2H(xf )

k
]2

.

(A5)

The mean and individual values for each observation

operator are updated in the same manner as for x:

H(xf )
k11

p 5H(xf )
k

p 1WKH[yo 2H(xf )
k

o] , (A6)

H(xfn)
k11

p 5H(xf )
k11

p 1 [H(xfn)
k

p 2H(xf )
k

p]1WKHb[H(xf )
k

o 2H(xfn)
k

o]

5H(xfn)
k

p1WKHfyo 2H(xf )
k

o 1b[H(xf )
k

o 2H(xfn)
k

o]g . (A7)

The previous k values are not needed and, therefore in

practice, are simply replaced with the new value k 1 1.
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