
Remote Sensing of Environment 164 (2015) 103–113

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
An integrated method to improve the GOES Imager visible radiometric
calibration accuracy
Fangfang Yu a,⁎, Xiangqian Wu b,1

a Earth Resources Technology, Inc., Laurel, MD, USA
b NOAA/NESDIS/STAR, College Park, MD, USA
⁎ Corresponding author. Tel.:+ 1 301 683 3553.
E-mail addresses: Fangfang.Yu@noaa.gov (F. Yu), Xian

1 Tel.: +1 301 683 3603.

http://dx.doi.org/10.1016/j.rse.2015.04.003
0034-4257/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 20 July 2014
Received in revised form 6 March 2015
Accepted 1 April 2015
Available online xxxx

Keywords:
GOES Imager visible channel
GOES-R ABI
Vicarious calibration
DCC
Desert
Ray-matching
Integrated calibration
Recursive filtering
Calibration accuracy
A variety of vicarious calibration methods over different reference targets have been studied at National Oceanic
and Atmospheric Admission (NOAA)/National Environmental Satellite, Data, and Information Service (NESDIS)
to provide sensor degradation information for the GOES Imager visible channels which do not have any on-
board calibration devices. Tomeet the increasing demand formore accurate satellite measurements, an integrated
method is developed mainly to improve the relative calibration accuracy by combining the results from different
vicarious methods. In this study, three commonly used vicarious calibration methods, the desert, Deep Convective
Cloud (DCC) and ray-matching methods, are applied to the GOES-12 Imager visible data to describe the integrated
method. The integrated method first combines the normalized observations of each individual method by anchor-
ing the results on the first day of satellite operation, and then removes the deviated combined observations using a
recursive filteringmethod. This integration is based on the fact that the GOES sensor trending functions fromdiffer-
ent methods are very similar within 1% difference over the 7-year study period. The trending uncertainty of the
integrated method is less than that of each individual one. The absolute calibration of the integrated method can
be achieved by generating the calibration coefficients using the reflectance of reference targetswhich arewell char-
acterized with the Aqua MODIS Collection 6 (C6) data. It is found that there is less than 1% difference between the
calibration coefficients derivedwith the DCC and desert reference targets. It is expected that this integratedmethod
will be a useful tool to validate the GOES-R ABI on-board radiometric calibration accuracy for the solar reflective
channels.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The Geostationary Operational Environmental Satellites (GOES) are a
series of geostationary (GEO) satellites operated by the National Oceanic
and Atmospheric Administration (NOAA)/National Environmental
Satellite, Data and Information Service (NESDIS) for weather nowcasting
and meteorology and climate researches of the Western Hemisphere.
The GOES Imager is a multiple channel imaging radiometer designed to
sense radiant and solar-reflected energy from the environs of the
United States and its neighbors. Each Imager instrument has one visible
and four infrared channels. The solar-reflected channel provides high spa-
tial resolution daytime cloud imageries which are critical for the land and
sea surface temperature products (Hayden,Wade,& Schmit, 1996;Maturi
et al., 2008;Wu,Menzel, &Wade, 1999). They are also widely used in the
generations of many other GOES Imager geophysical products such as
snow mapping (Romanov, Gutman, & Csiszar, 2000), GOES aerosol and
smoke (Knapp, 2002), wildfire burning biomass and biomass burning
emissions (Prins, 1996; Zhang, Kondragunta, Ram, Schmidt, & Huang,
gqian.Wu@noaa.gov (X. Wu).
2012), icing enhanced cloud top altitude (Ellord & Bailey, 2007), cloud
properties (Chepfer, Minnis, Young, Nguyen, & Arduini, 2002), and top-
of-atmosphere radiation budget (Pinker et al., 2003).

High quality of calibrated satellite radiance is fundamental to accu-
rate retrieval of the geophysical products. Unfortunately, designed for
weather imaging applications, no on-board calibration device is avail-
able for the current GOES visible channels. Vicarious calibration,
which uses not-in-orbit stable object as the calibration reference target,
is employed to examine the sensor in-orbit degradation patterns or pro-
vide the post-launch calibration coefficients. The calibration reference
targets include invariant sites on the Earth such as deserts and snow/
ice sites (Cosnefroy, Leroy, & Briottet, 1996; Six, Fily, Alvain, Henry, &
Benoist, 2004), deep conductive cloud (DCC) (Doelling, Nguyen, &
Minnis, 2004a), and Rayleigh scattering and sun-glint over clear ocean
surface (Fougnie, Henry, Morel, Antoine, & Montagner, 2002; Hagolle,
Nicolas, Fougnie, Cabot, & Henry, 2002), collocated measurements
with well-calibrated Low-Earth-Orbit (LEO) instruments (Doelling,
Minnis, & Nguyen, 2004b), and extraterrestrial targets (Bremer,
Baucom, Vu, Weinreb, & Pinkine, 1998; Kieffer & Stone, 2005). It as-
sumes that the time-series of the observations of the stable reference
targets, either the direct satellite measurements or the ratios of satellite
measurements to modeled simulations of the reference, should be
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scattered along a trending that can be used to describe the instrument
degradation pattern. The performance of the reference targets should
be well understood and characterized to estimate and understand the
calibration uncertainty. The short-term variations of the reference
targets, when well understood and characterized, can be removed or
simulated to improve the calibration accuracy (Wu, Stone, Yu, & Han,
2006). To reduce the risk of erroneous degradation trending, multiple
calibration methods are often used to cross-check the results. In fact, a
variety of vicarious calibration methods using different stable targets
have been studied for the GOES Imager visible channels, including the
Sonoran desert (Rao, 2001; Yu, Wu, Grotenhuis, & Qian, 2014), DCC
(Yu & Wu, 2013), the Moon (Wu et al., 2006), stars (Bremer et al.,
1998; Chang et al., 2012), and cloud pixels collocated with MODIS Reso-
lution Imaging Spectroradiometer (MODIS) (Wu & Sun, 2005).

The vicarious methods based on these reference targets can provide
either relative or absolute calibration correction coefficients. The Sonoran
desert, one of the largest deserts inNorth Americawhich can be observed
by both GOES-East and GOES-West satellites is long-term stable and thus
can be used to serve as a reference target for the development of
long-termGOES visible climate data with calibration accuracy traceable
to Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)
Collection 6 (C6) data at about 3–4% (Yu et al., 2014). However, due
to the impacts of strong bidirectional reflectance distribution function
(BRDF) effect and occasional climate variations such as El Nino South-
ern Oscillation (ENSO) events, it is not an appropriate reference target
for operational or near real-time data calibration. The DCC, with its
high reflectance and relatively flat spectra in the visible wavelength,
can be used as a stable reference target to provide absolute calibration
accuracy of less than 3% for the GEO visible channels (Doelling,
Morstd, Bhatt, & Scarino, 2011). Available to all the earth observation
satellites, DCC is selected by the Global Satellite Inter-Calibration Sys-
tem (GSICS) community, an international collaboration to enhance cal-
ibration and validation of satellite observations, as a common reference
to inter-calibrate the visible channels at different satellite instruments.
The United States Geological Survey (USGS) lunar irradiance model
based on the Robotic Lunar Observatory (ROLO) measurements can pro-
vide the time-series of lunar irradiance with high relative calibration ac-
curacy (b1%) at certain moon phase angle ranges (Kieffer & Stone,
2005). However, there is relatively large uncertainty in the absolute cali-
bration accuracy. Using theUSGSmodeled irradiance as the reference, the
uncertainty of the GOES visible sensor degradation trending is about 2–
3% (Wu et al., 2006), most likely due to the uncertainties in the modeled
irradiance at different lunar phase angles and the GOES lunar irradiance
measurements (Eplee et al., 2011; Lacherade, 2013; Yu, Wu, Stone, &
Sindic-Ranic, 2013). Recent development of star radiometric calibration
shows that star observations,which are originally used for theGOES nav-
igation calibration, can provide uncertainty of sensor degradation
trending comparable to the other vicarious methods (Bremer et al.,
1998; Chang et al., 2012). No absolute calibration data is currently
available for the star observations yet. The collocated GEO–LEO
scenes identified with the ray-matching method can provide direct
inter-comparison between GOES and well-calibrated LEO instrument
like MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS).
However, the lack of coincident hyperspectral measurements to correct
the spectral response difference between the GEO and LEO instruments
can result in large calibration uncertainty (Wu, Qian, & Yu, 2011). To
reduce the uncertainty caused by the different spectra over the same
collocated scenes, current GOES Imager visible operational calibration
algorithm used the GOES and Terra MODIS collocated cloud pixels
which have relatively flat spectra to generate the operational cali-
bration coefficients (Wu & Sun, 2005). The calibration uncertainty of
this method is about 3% traceable to the reference standard of Terra
MODIS (Yu et al., 2014). The Rayleigh and sun-glint methods have been
used to provide absolute radiometric calibration accuracy at 2–4% for
the LEO solar reflective channels (Fougnie et al., 2002; Hagolle et al.,
2002). Yet the lack of near-infrared channels at GOES Imager prevents
the direct applications of these two absolute calibration methods to the
GOES visible data.

With recent development of numerical weather prediction models
and global climate studies, there is an increasing demand from the
user community for more accurate satellite measurements. The main
objective of this study is to develop an integratedmethod that is capable
of combining multiple vicarious calibration methods, either relative or
absolute ones, to improve the radiometric calibration accuracy of the
solar reflective channels. Three vicarious calibration methods (desert,
DCC, and ray-matching methods) are applied to GOES-12 (located at
75°W above the Equator) to describe this method. These threemethods
are selected because they are applicable to most GEO solar reflective
channels. As recommended by the GSICS community, Aqua MODIS C6
data is used as the community best-practice standard for the inter-
calibration of solar reflective channels. Thus, the absolute calibration is
achieved by providing post-launch calibration coefficients traceable to
the AquaMODIS C6 Band 1 (0.65 μm) standard. The 1 km spatial resolu-
tion of GOES and Aqua MODIS C6 data are used for this study. The
MODIS data were downloaded from MODIS Level 1 and Atmosphere
Archive and Distribution System (LAADS Web) at http://ladsweb.
nascom.nasa.gov, while the GOES Imager data were downloaded from
NOAA's Comprehensive Large Array-data Stewardship (CLASS) at
http://www.class.ncdc.noaa.gov.

2. DCC, desert and ray-matching vicarious calibration methods

Fig. 1 shows the GOES and MODIS spectral response functions (SRF),
as well as the spectra of DCC, high-reflectance cloud, and the Sonoran de-
sert measured with different hyperspectral radiometers and the atmo-
spheric transmission simulated with Line-by-Line Radiative Transfer
Model (Clough et al., 2005). The GOES SRF is much wider than that of
MODIS Band 1, covering some strong atmospheric absorptive lines and
the rapid change of surface vegetation spectra near the near-infrared
wavelength. Therefore the sensitivity of GOES visible channel top-of-
atmosphere (TOA) reflectance to the variations of atmospheric absorp-
tion,molecular scattering, and, vegetation coverage can be quite different
from that of MODIS Band 1. The reflectance is very different at the differ-
ent reference targets within the GOES spectral range: 20–35% at the
Sonoran Desert, more than 50% for cloudy pixels as selected in this
paper, and over 90% for DCC pixels. Although the spectra of all the three
reference targets show some variations at the strong atmospheric
absorption lines, the reflectance of the Sonoran desert in general progres-
sively increases with wavelength and the two cloud references are rela-
tively flat.

2.1. Sonoran Desert based calibration

Recent study shows that the Sonoran Desert ([32.05°–32.35°N,
114.4°–114.7°W]) is long-term spectrally, radiometrically and spatially
stable at GOES viewing geometries (Yu et al., 2014). It can be used as
pseudo-invariant calibration site to develop the long-term climate
data. To minimize the calibration uncertainties caused by large solar
zenith angles, the GOES-12 visible data over the Sonoran desert are
archived everyday around the local noontime (~19:19Z, local time at
12:19 pm) during its operational mission period from April 1, 2003 to
April 14, 2010.

According to Yu et al. (2014), the time-series of the pre-launch cali-
brated clear-sky desert reflectance can be described with a quadratic
function to simulate the instrument degradation and two terms of
sine functions to describe the combined effects of desert BRDF, atmo-
spheric component variations and possible surface changes which
have seasonal variations (Eq. 1). In this study, monthly mean clear sky
desert reflectance are used for the trending analysis, in consistent
with the time intervals used in the other two methods, the DCC and
ray-matching methods (Doelling et al., 2004a; Wu & Sun, 2005). Fig. 2
displays the results of the procedures to generate the desert-based
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Fig. 1. SRFs of GOES-12 Imager visible channel and AquaMODIS Band 1, as well as the spectra of DCC (measured withMetop-A/GOME-2 Bands 3 and 4, from 0.392 to 0.798 μm), Sonoran
Desert (Hyperionmeasurements), and cloudy pixels (mean Hyperionmeasurements from a cloud image obtained over a Hurricane event). Plotted also include the clear water (Hyperion
measurements) and vegetation (USGS Spectroscopy Lab measurements, http://speclab.cr.usgs.gov) spectra, and the atmospheric transmissions simulated with Line-by-Line Radiative
Transfer Model using clear tropical ocean atmospheric profile (Clough et al., 2005) (in gray shadow).
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monthly observations. The daily median TOA reflectance of the desert
pixels within the study area is shown in Fig. 2a. Fig. 2b shows the
daily median TOA reflectance after removing of cloud-contaminated
pixels and the consequently generated monthly mean reflectance. The
algorithms to screen the cloud contaminated pixel reflectance are de-
scribed in Yu et al. (2014), using the combination of threshold and re-
cursive filtering methods. The monthly clear-sky desert reflectance in
Fig. 2b is fittedwith Eq. (1). Themonthly desert reflectance after the re-
moval of seasonal variations shown in Fig. 2c is the combination of sen-
sor degradation and the residual of the seasonal fittings andwill be used
for the further analysis in this study. Anomalous low reflectance can be
observed in Fig. 2c in the year of 2005, coincident with the strong ENSO
event in 2005 (Wu, personal communication). Similar large reflectance
deviation in 2005 was also reported in the time-series of MODIS data at
the same area andwas believed relative to the abnormally large rainfall
in early 2005 (Angal, Chander, Xiong, Choi, &Wu, 2011). Deviations due
to the short-term correction residuals with the sine functions can be
also observed in Fig. 2c.

Rpre;t ¼ aþ bt þ ct2 þm1 sin αt þ β1ð Þ þm2 sin 2αt þ β2ð Þ ð1Þ

where Rpre, t is the clear-sky desert reflectance at time t calculated with
pre-launch calibration coefficients; the first term, a+ bt+ ct2, is used to
account for the sensor degradation, while the two sine terms are for the
corrections of seasonal variations; α is the frequency of the annual
variation calculated as 2π/days_in_a_year(days_in_a_year = 365.25);
and β1 and β2 are the phase angles. The parameters of a, b, c, m1, m2,
β1 and β2 are estimated using least-squares fitting, and t is the time
(in day or year) since the satellite became operational. The pre-launch
calibration coefficients can be found at GOES Variable Format (GVAR)
and are also available at the webpage: http://www.star.nesdis.noaa.
gov/smcd/spb/fwu/homepage/GOES_Imager_Vis_PreCal.php.

2.2. Ray-matching method

Ray-matchingmethod is a direct sensor-to-sensor inter-comparison
between GEO and LEO. It uses coincident, co-angled and geographically
collocated pixels to transfer the GEO measurements to the well-
calibrated LEO measurements (Doelling et al., 2004b). The collocations
with similar viewing and solar illumination geometries within a short
time interval can greatly reduce the impacts of dynamic atmosphere
between the surface and the satellites. In this study, the GOES and
Aqua/MODIS data collocations are obtained using the following criteria,
similar to those applied in the current operational method between
GOES and Terra/MODIS (Wu & Sun, 2005): 1) the central locations of
the collocated MODIS and GOES pixels should be less than 1 km;
2) the GEO and LEO over-passing time difference is less than 10 min;
3) to minimize the BRDF impact caused by large viewing zenith angles,
the collocated pixels should occur within ±10° latitude and longitude
from the GOES sub-satellite region; and 4) the viewing zenith angle (θ)

difference, calculated as cos θleoð Þ
cos θgeoð Þ−1
����

����, is less than 1% to minimize the im-

pact of different optical paths through the atmosphere. No azimuthal
anglematch criteria are applied to select the pairs. The GEO–LEO colloca-
tions of GOES-12 occur at every two to five days at the ascending Aqua
orbits.

As shown in Fig. 1, the different GOES and MODIS SRFs can result in
different reflectance values over the collocated scenes, specially for the
vegetation scenes ofwhich theGOES reflectance can be significantly dif-
ferent fromMODIS. The Spectral Band Adjustment Factor (SBAF) which
is used to account for the SRF induced observation difference is needed
for the accurate inter-calibration between GOES and MODIS (Doelling,
Lukashin, Minnis, Scarino, & Morstad, 2012; Teillet et al., 2001). Due to
the lack of co-incident hyper-spectral measurement of each paired
pixel, it is challenging to derive the accurate scene-dependent SBAF
value for the absolute calibration of GOES measurements using the
ray-matchingmethod. However, as shown in Fig. 1, the high reflectance
cloud has relatively little spectra variation, suggesting that the impact of
SRF difference on the observations can be greatly reduced at these cloud
pairs. The direct reflectance ratio of the cloud pairs can be used for the
relative calibration of the GOES Imager visible channel. In this study,
the collocations with MODIS reflectance larger than 50% are identified
as cloud pixels and used to reduce the SRF-induced reflectance differ-
ence. To reduce the possible mis-matches caused by the moving of the
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Fig. 2. Time-series of the daily median reflectance of the Sonoran desert (a); time-series of daily median reflectance after contaminated pixel filtering (in gray plus), monthly mean of the
daily clear-sky reflectance (in solid dots), and fitting of themonthly mean reflectance (black line) (b), and time-series of reflectance after removal of seasonal variations (c). std stands for
the standard deviation of the fitting residuals of the time-series data.

Fig. 3. Sensitivity of GOES to MODIS reflectance ratio to the number of collocated cloud
pixels. The number of reflectance ratios scattered decreases with the increasing number
of cloud pairs. The distribution of the reflectance ratio is plotted with the primary y-axis,
while the standard deviation of the ratios (black line) for a given collocated pixel number
is plotted with the second y-axis.
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clouds and the different navigation systems used in the two satellites,
two more criteria are also applied to ensure that the two instruments
view the same targets at the collocated pixels: 1) the coefficient of var-
iation values, calculated as the standard deviation of reflectance from
the 3 × 3 window arrays centered at the collocated pixels divided by
their mean value should be less than 3% for both GOES and MODIS
data; and 2) the reflectance of GOES collocated pixels should be greater
than 25% (Wu & Sun, 2005). The two criteria are used to ensure that
even if the GOES and MOIS are not looking at the same real cloud, but
the cloud they are looking should have the same properties. In addition,
the threshold of relative azimuth angle (RAA) (30° b RAA b 150°) is also
applied to avoid the impact of the sun-glint effect.

Fig. 3 illuminates the sensitivity of the GEO–LEO collocated cloud
reflectance ratio to the number of collocations using the data obtained
in June 2003 which has about 20,000 cloud pairs. The Monte-Carlo
method is used to calculate the reflectance ratio values for a set of
cloud pair numbers ranging from 500 to almost 18,000 pairs with an
interval of 100. The standard deviation of the reflectance ratios is also
calculated at each given number of cloud pairs. As shown in Fig. 3,
the standard deviation of the reflectance ratio decreases with the in-
creasing number of collocated cloud pixels. In this study, the number
of 5000 collocated cloud pixels which corresponds to about 0.05 stan-
dard deviation value is somehow randomly selected as the threshold
to derive the reliable monthly reflectance ratio. Since the number of
monthly cloud collocation pixels ranges from 7000 to 220,000 for all
the months between April 2003 and April 2010, the ray-matching
method derived reflectance ratio is available for each month within
the study period.

Fig. 4 shows the time-series of monthly GOES and MODIS cloud re-
flectance ratios (primary y-axis) and the number of cloud collocations
(second y-axis). The time-series of reflectance ratio can be fitted with
a quadratic function to simulate the GOES degradation. There are



Fig. 4. Time-series of the monthly reflectance ratio between GOES and MODIS over the
collocated cloud pixels (black dots with primary y-axis) and number of collocated cloud
pairs (gray line with second y-axis).

Fig. 5. Sensitivity of DCC reflectance to the randomly selected GOES-12 DCC pixels ranging
from 50 to 8000. The standard deviation of the DCC reflectance (black line) is plottedwith
the second y-axis.

Fig. 6. The time-series of GOES-12 DCC reflectance represented as the median values.
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several reasons that may cause the variations in the reflectance ratio.
First, although the cloud pixels have high reflectance, it is possible that
some of the pixels may be partially contaminated with the spectra
beneath the cloud. The strong water vapor absorption in the lower tro-
posphere and surface vegetation reflectance, if collocated over the land,
can affect the GOES cloud reflectance. Secondly, the maximum time dif-
ference between the GOES and MODIS observation is 10 min. It is thus
possible that the cloud in some of the pairs may be different due to
the movement of the cloud masses during the time interval. Both of
these effects can affect the reflectance ratios, especially for the months
with relatively few collocation numbers.

2.3. DCC method

The high reflectance of DCC is reported to be very stable with slight
seasonal and spatial variations over the global sub-tropical regions
(Doelling, Morstad, Scarino, Bhatt, & Gopalan, 2013). According to
Doelling et al. (2004a), the criteria for DCC pixel identification include:
1) the DCC pixels should occur within the spatial region of ±20° lati-
tude and longitude from the GOES sub-satellite point; 2) brightness
temperature (Tb) of Channel 10.7 μm should be less than 205 K;
3) the Tb standard deviation for the array of 3 × 3 pixel window cen-
tered at the DCC pixel should be less than 1 K; 4) coefficient of variance
of visible reflectance for the 3 × 3 pixel window is less than 3%; and
5) solar and viewing zenith angles should be less than 40°. Each DCC re-
flectance is corrected with the Hu et al. (2004) model for the BRDF
correction.

The DCC calibration is a statistical method that relies on large
amount of identified DCC pixels. The DCC reflectance is typically repre-
sented with themode value from the histogram of monthly DCC reflec-
tance (Doelling et al., 2004a). For GOES-12, the variation of median DCC
reflectance is slighter smaller than that ofmode value derived fromDCC
reflectance probability distribution function (Yu & Wu, 2014). The me-
dian reflectance value of themonthly DCC pixels is thus used to describe
themonthly DCC reflectance. As the robust DCC reflectance depends on
sufficient DCC pixels, a sensitivity study with GOES-12 DCC pixels
obtained in July 2005 is used to calculate the DCC reflectance from a
large range of number of randomly selected DCC pixels. As shown in
Fig. 5, the variations of median DCC reflectance decrease as the number
of DCC pixels increases. In this study, a minimum of 2000 DCC pixels is
randomly used as the threshold for a reliable monthly DCC reflectance.
The time-series of GOES-12 DCC monthly median reflectance is shown
in Fig. 6. The slightly seasonal variation of the time-series DCC reflec-
tance is probably attributed to the variation of the cloud microphysics
as the DCC spatial locations change seasonally (Doelling et al., 2013).

The reflectance of DCC reference target is calculated with the time-
series ofMODISDCC reflectance derived from the ray-matchingmethod
(Fig. 7). The minimum of 2000 DCC pixel number is also applied for a
reliablemonthlyMODISDCC reflectance. An anomaly of lowDCC reflec-
tance was observed in March 2008. An examination of the MODIS DCC
pixels in this month showed that the DCC pixels in this month were
dominated with the data obtained on 29 March 2008 which had very
low reflectance (60–70%) at Tb range of 204–205 K. The relatively
high Tbvalues and low reflectance suggested that these identified pixels
were unlikely real DCC pixels. Future research is needed to understand
the physics of DCC cloud particles for the better understanding of DCC
performance. No significant trending can be observed from the time-
series of monthly MODIS DCC reflectance. When the outlier of March
2008 data is excluded, themean of themonthlymedianDCC reflectance
is 88.87% (±1.92%), whichwill be used for the absolute calibration later
in this paper.

3. Integration of multiple vicarious calibration methods

3.1. Combination of vicarious calibration results

Three steps are applied to combine the results fromdifferent calibra-
tionmethods. First, a quadratic function is used to fit the time-series ob-
servations of each vicarious calibration (Eq. 2). For the desert method,
the time-series of observations are the monthly pre-launch calibrated
reflectance after the removal of seasonal variations as shown in
Fig. 2c. The observations of the DCC method are the monthly pre-
launch calibrated DCC reflectance (Fig. 6), and the observations of the
ray-matchingmethod are referred to themonthly mean ratios between
the GOES and MODIS collocated cloud reflectance (Fig. 4).

St;i ¼ ai þ bit þ cit
2 ð2Þ



Fig. 7. Time-series of Aqua MODIS C6 DCC reflectance represented with median values.
The DCC reference reflectance is generated from the MODIS ray-matching DCC pixels.
The result of the ftest shows no significant trending in the time-series of MODIS monthly
DCC reflectance, with or without the outlier in March 2008. The dash line is the mean of
the monthly median reflectance without the outlier (88.87%).
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Where St,i are the monthly observation of method i at time t; t is the
time (in day or year) after the satellite became operation; and ai, bi, and
ci are the quadratic fitting coefficients.

The second step is to normalize the monthly observations of each
method to the value estimated on the first day of satellite operation
(Day 1) (Eq. 3). The Day 1 data (Ŝt = 1,i) is estimated from the quadratic
function derived from Eq. (2).

Normalized Observationt ¼
St;i
Ŝt¼1;i

ð3Þ

The last step is to combine the normalized observations of the
three methods. As shown in Fig. 8, the standard deviations of the
fitting residuals are different among the three methods, 0.75% for
the DCC method, 0.78% for the ray-matching method and 1.54% for
the desert method. Yet all the three methods result in very similar
degradation fitting curves over the study period, especially the nor-
malized DCC and ray-matching methods which are both based on
bright clouds. The consistency in the trending distributions of the
three methods indicates that the impact of wavelength dependent
SRF degradation, if any, is very small and negligible on the radiometric
degradation with these methods. A common fitting function thus
should exist among the combined observations for the sensor degrada-
tion trending.
Fig. 8. Combined time-series of reference observations from different vicarious calibration
methods after normalizations to the estimated data at the first day of operation. The
crossed observations are the outliers identified with the recursive filtering method
discussed in Section 3.2.
3.2. Integrated method to improve the relative calibration accuracy

3.2.1. Recursive filtering method
The recursive filtering method is employed to determine the com-

mon fitting function for the combined normalizations. It is assumed
that residuals of the fitting function are of Gaussian distribution and
any deviation of the fitting residual beyond a pre-defined threshold
can be considered as an outlier (Wu, Sullivan, & Heidinger, 2010; Yu
et al., 2014). This fitting and removal procedure is iteratively applied
to the combined data until less than 3%of the observations are identified
as outliers. The threshold in this study is defined as two-sigma value of
the fitting residuals of each iterative loop.

The results of the recursive filtering at each loop applied to the com-
bined threemethod data (M3) are shown in Fig. 9. Fig. 9a is the changes
of outlier percentage, defined as the percentage of the outliers' number
divided by the total number of observations at each loop, as well as the
skewness and one standard deviation values of the fitting residuals. In
this case, the outlier percentage drops below 3% at the fifth loop and be-
comes zero after the tenth loop as nomore newoutlier data is identified.
The skewness is within ±0.1 after the first recursive loop, indicating
generally symmetric distribution of the fitting residual. As expected,
the standard deviation of the fitting residuals progressively decreases
with the continuous removal of outliers and becomes stable at 0.54%
after the 10th loop. The distributions of the fitting functions of all the
loops are very consistent (Fig. 9b), suggesting that the recursivefiltering
method can be used to generate a very robust sensor degradation
trending.

As previously described, a threshold of 3% of the outlier percentage is
used to break the recursive loop. A total of 53 observations out of 252
combined ones are identified as outliers after the fourth loop (Fig. 8).
The majority of the outliers are from the desert data (38) with only
seven from DCC and eight from ray-matching data. After the removal
of the outliers, the standard deviation of the fitting residuals is reduced
to 0.60%, less than that of any individual method. Sensitivity of the
Fig 9. a: Outlier percentage and the skewness and the standard deviation values of the
fitting residual at each loop; b: The 11 fitting functions of the 11 recursive loops in upper
panel.
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outliers to the pre-defined threshold is also testedwith a set of different
sigma values. The coefficients to multiple the sigma value range from
one to three at interval of 0.5 (1.0, 1.5, 2.0, 2.5, and 3.0 times the
sigma of fitting residuals). In this study, the outliers are the same with
53outliers. This resultmay suggest that the trending function is not sen-
sitive to the pre-defined threshold once the sigma coefficient is larger
than a certain value.
3.2.2. Integrated method
The trending function derived after the recursive filtering over the

combined three-method data (M3) is shown in Fig. 10, as well as the
trending from each individual method. All these trending functions
agree well with each other within less than 1% difference. The trending
of the DCC method is the closest to the result of the integrated method
within less than 0.1%. The desert has the largest trending difference
from the integrated method at less than 1%, followed by the ray-
matching method at less than 0.7%.

The impact of the desert data on the integrated method is examined
by applying the integrated method on the combined DCC and ray-
matching data only (M2). Similar to Figs. 8–10, Fig. 11 shows the results
of recursive filtering at each loop (Fig. 11a and b) and trending results
with the defined thresholds (Fig. 11c and d). As shown in Fig. 11a, the
fitting residual is Gaussian-like distribution after the second loop and
no new outlier can be identified since after the eighth loop. The derived
fitting functions at each iterative loop are also very consistent as shown in
Fig. 11b. With the thresholds applied in this study, the recursive filtering
breaks at the fourth loop when the outlier percentage first drops to less
than 3% (Fig. 11a), resulting in a total of 20 outliers out of 166 combined
ones (10 outliers fromeachmethod). The standarddeviation of thefitting
residuals is reduced to 0.52% (Fig. 11c) and the trending function of the
integratedmethod agrees well with that of DCC and ray-matchingmeth-
od. Similar to the result of M3 integrated method, the trending of theM2
integrated method is also much closer to that of DCC with difference less
than 0.2% (Fig. 11d). That bothM2 andM3 trending functions are close to
DCC data may indicate that the trending result of the integrated method
is not sensitive to the relatively large deviated distribution of onemethod
data (e.g., the desert data in this study), although the removal of the de-
sert data can result in reduced standard deviation values (0.60% for M3
vs. 0.52% for M2).

In summary, the integrated method described in this study includes
the following steps: 1) Normalize the monthly observations of each
method to their Day 1 data using the sensor degradation function.
Seasonal variations in the monthly observations, if well characterized
Fig. 10.Distributions of thefitting function over the combineddata after recursive filtering
(in black solid line), the desert data (in red solid line), the ray-matching data (in blue solid
line), and the DCC data (in green solid line). The relative difference between the results of
individual method to the combined one are also shown in dash lines which are referred to
the second y-axis. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
and understood, can be removed before normalization; 2) combine
the normalized data of each method using the Day 1 data as the anchor
date. Using Day 1 as the anchor time to combine the normalized data
can help to distinguish the early deviation of the trending of each indi-
vidual method, especially for the near real-time data analysis; and
3) use the recursive filtering method to select the observations from
the combined data and derive the degradation trending function. Eval-
uation of each individual method can be applied before Step 3 by com-
paring the trending results of each method. This comparison can be
conducted based on our current knowledge about the instrument per-
formance and the characterization of the calibration reference
(Fougnie, 2014). The knowledge-based removal of large noise method
data can further reduce the trending uncertainty. In this study, since
the Sonoran desert data is known for its relatively large short-term re-
flectance variation and the sensitivity to the climate variation events, it
can be removed from the combined data for the recursive filtering and
the standard deviation can be reduced from 0.60% at M3 data to 0.52%
at M2 data.
3.3. Impacts on the near real-time calibration accuracy

Compared to the individual vicarious calibration method, the inte-
gratedmethod can result in reduced random error of the trending func-
tion. The reduced random error or relative calibration accuracy can
provide better quality of calibrated radiance for the instruments with-
out on-board calibration device. It can also be used to detect the calibra-
tion anomaly, if any, at a shorter period for the on-board calibration
instruments (Bhatt et al., 2014). For these reasons, the application of
the integrated method in the near real-time data analysis should be
assessed.

The impacts of the integrated method to the near real-time data are
examined with the GOES-12 data with M2 method in this study.
Fig. 12a–c displays the time-series of the coefficients of the quadratic
fitting function since after the fourthmonth of operation time. Nofitting
results are available for the first three months because at least four
months of data are needed to generate the fitting quadratic function
with uncertainty results. For each month since then on, the recursive
filtering method is applied at every month over the combined data ac-
cumulated from the operation time through that month. Fig. 12d is the
time-series of error budget calculated with the near real-time data. The
randomerror (Ur) is calculated as the one standarddeviationof thefitting
residual after the recursive filtering. Using the trending of M2 integrated
method over all the seven-year measurements as the reference, the
systematic error (Us) of eachmonth is calculated as the relative difference
between the near-real time trending and the reference one. The com-
bined error (Uc) is the combination of random and systematic errors,

calculated as Uc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

r þ U2
s

q
.

As shown in Fig. 12, quadratic and linear terms of the trending
functions vary greatly in the about first and half years after the op-
eration and both become stable since afterwards. The constant
term of the fitting function also shows slightly larger variation in
the about first two years, although its variation over whole mission
period is very small within less than 0.5%. The systematic error does
not become stable during the study period and displays the greatest
variations in the first one year, ranging from almost 2% to less than
−1%. This can be explained that that the fitting function is sensitive
to the new measurements, especially when there are few data avail-
able in the early study period. The change of random error is rela-
tively smooth. It increases dramatically in the first one year and
becomes relatively stable after the first two years. As the results, the
combined uncertainty is less than 2% in the first year and less than 1%
afterwards. All these analyses indicate that about two years ofmeasure-
ments after operation should be needed to generate more robust cali-
bration coefficients.



Fig. 11. Similar to Figs. 8–10, except that the input of the recursive filtering is the combined data from DCC and ray-matching (M2). Panel b consists of the 9 fitting functions of the 9 loops
(#1 through #9) in Panel a.

Fig. 12. Time-series of trending coefficients and the error budgets of integrated method for the ‘near real-time’ data. The coefficients are calculated with the fitting functions (Eq. 2) in
which the unit of time t is year after operation. The time on x-axis starts with the GOES-12 operational date on April 1, 2003. No integrated method results are available in the first
three months.
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Fig. 13. Time-series of calibration correction coefficients tracing to AquaMODIS C6 for the
desert and DCC methods.
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4. Transferring relative calibration to absolute calibration

Two steps are needed to convert the relative calibration results from
the integrated method to the absolute ones traceable to Aqua MODIS.
The first step is to reconstruct the pre-launch reflectance from the
selected normalized observations with Eq. (4), and then generate the
absolute calibration correction coefficients using the reflectance of the
calibration reference targets with Eq. (5). The reflectance of the reference
target is pre-defined and characterized with long-term Aqua MODIS C6
data.

Rt;i ¼ R̂t¼1;i � Normalized Observationt;int ð4Þ

Where R̂t¼1;i is the estimated pre-launch reflectance of method i
at the first day of operation (t= 1), calculated with the fitting qua-
dratic function of vicarious calibration method (i) with Eq. (2);
Normalized_Observationt,int is the normalized observations selected by
the recursive filtering method from the combined data (integrated
method) at time t calculated with Eq. (3).

Correction Coefficientt;i ¼
Re f Rt¼1;i

Rt;i
� Ŝt¼1; int

Ŝt¼1;i

ð5Þ

where Ŝi = 1,int and Ŝt = 1,i are the estimated observation at Day t = 1
from the quadratic functions of the integrated method and method i,
respectively. Rt,i is the re-constructed pre-launch calibration at time t
for method i. Ref_Rt = 1,i is the reflectance of reference target estimated
with Aqua MODIS data for the method i at day t= 1.

The Day 1 DCC reference reflectance (Ref_Rt = 1,i = dcc) is calculated
with long-term mean MODIS reflectance of DCC (Eq. 6).

Re f Rt¼1;i¼dcc ¼ Rmodis;dcc � SBAFdcc ð6Þ

Where Rmodis;dcc is the Aqua MODIS reference reflectance. SBAFdcc is
the Spectral Band Adjustment Factor (SBAF) used to correct the GOES
and MODIS spectral response function difference.

Due to the strong seasonal variation in the desert observations, Day
1 desert MODIS reflectance should be calculated with Eq. (7) for t = 1.
About 12 years of clear-sky AquaMODIS reflectance (MODIS_Rt,i = desert)
are used to estimate the MODIS reflectance at GOES viewing geometric
conditions (Yu et al., 2014).

Re f Rt;i¼desert ¼ Rmodis;i¼desert � SBAFdesert þm1 sin αt þ β1ð Þ
þm2 sin 2αt þ β2ð Þ ð7Þ

Where Rmodis;desert (32.59%) is the long-term mean MODIS desert
reflectance at GOES viewing geometries (Yu et al., 2014); m1, m2, α,
β1, and β2 are the fitting coefficients for the seasonal variations of
clear desert GOES-12 reflectance generated from Eq. (1).

The desert SBAF was calculated with Hyperion data (Yu et al., 2014)
and the DCC SBAF was derived with SCIAMACHY data (Doelling et al.,
2011). The corresponding parameters are given in Table 1.

The time-series of the calibration correction coefficients generated
with DCC and desert reference reflectance are shown in Fig. 13. There
Table 1
Parameters used in Eqs. (5)–*(7).

Vicarious calibration
method for G12

R̂t¼1;i

(%)
R ;modis;i

(%)

SBAF Ref _Rt = 1

(%)
Ŝt = 1,int/Ŝt
= 1,i

Desert 28.66 32.59 0.949a 31.10 1.00471
DCC 80.81 88.87 0.991b 87.98 1.00098

a Calculated with Hyperion data (Yu et al., 2014).
b Based on theGOES11 SRF using SCIAMACHY data (Doelling et al., 2011); GOES-11 and

GOES-12 have almost identical Imager visible SRFs (Yu et al., 2014).
is a small but significant difference (0.72%) between the DCC-based
and Desert-based calibration coefficients (p_value =0.00). The bias
between these two absolute calibrations may come from uncertainties
of the two Day 1 reference reflectance values. The uncertainty of Day
1 desert reference reflectancemainly comes from the function to correct
the seasonality of desert reflectance and the BRDF model (Yu et al.,
2014). In the future, long-term MODIS desert observations should be
extended to ensure the reliability of desert reflectance on Day 1. The
DCC reference reflectance in this study is determined with the ray-
matching DCC observations which occur in a relatively smaller spatial
domain, assuming that there is no spatial variation in the DCC reflec-
tance over the GOES-12 DCC selection spatial domain. This assumption
needs to be validated with theMODIS DCC reflectance across the whole
GOES-12 DCC spatial domain in the future. Meanwhile, slight seasonal
variations can be observed in the time-series of GOES-12 DCC reflectance
(Fig. 6). As the result, theremay exist a very slight difference between the
long-term mean DCC reflectance and Day 1 value. In addition, recent
research showed that GOES Imager scanmirror has slight angular depen-
dent reflectivity (Yu et al., 2013). GOES-12 viewed the Sonorandesert at a
fixed scan angle of about 2.5° from the nadir while the mean viewing
angle of DCC pixels is at nadir with scan angle of 0°. This viewing angle
difference may also attribute to the bias between the two sets of calibra-
tion coefficients.
5. Conclusions

An integratedmethod is developed to combine results frommultiple
vicarious calibrationmethods, either relative or absolute calibration ones,
to improve the relative calibration accuracy. Three vicarious calibration
methods, DCC, desert and ray-matching methods, are applied to the
GOES-12 Imager visible data as an example to describe this method.
The time-series ofmonthly results fromeachmethod arefirst normalized
to the values estimated on thefirst day of satellite operation. This normal-
ization provides an anchor to link the results of relative calibrations to
those of the absolute ones and thus allows for the absolute calibration
traceable to a common reference. The normalized observations display
very similar degradation pattern, indicating that the impact of the instru-
ment wavelength dependent SRF degradation, if any, is very small or
negligible on the radiometric calibration results with these vicarious cal-
ibration methods.

A recursive filteringmethod is applied to select the combined obser-
vations. Compared to the individual vicarious calibration method, the
integrated method with the recursive filtering method to remove the
outliers can improve the relative calibration accuracy and reduce the
risk of the sensor degradation trending due to the long-term change of
reference target and/or satellite measurements. As the result, for the in-
strument calibration with on-board calibration device such as GOES-R
Advanced Baseline Imager (ABI), the integrated method can provide
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an earlier calibration anomaly warning, if any. For the near real-time
data analysis, it will take almost two years to derive the stable coeffi-
cients for the trending function.

Statistical analyses show thatminimum thresholds of DCC and collo-
cated high-reflectance cloud pixels are needed to generate reliable DCC
reflectance and GEO–LEO reflectance ratio. Since clouds are more
abundant over the GOES-East satellites' spatial domain than the
GOES-West ones, it is expected that the calibration accuracy of the
integrated methods for the GOES-West satellites may not be as
good as for the GOES-East ones as described in this study. However,
with the inputs of more observations resulted from other vicarious
calibration methods (e.g., star and lunar calibration), the relative
calibration accuracy of integrated cloud be further improved. It is
expected that the integrated method will be a useful tool to validate
the GOES-R ABI on-board radiometric calibration accuracy for the
solar reflective channels.

The absolute calibration of the integrated method can be achieved
with the generation of calibration correction coefficients using the
reflectance of reference targets which are well characterized with the
Aqua MODIS C6 data. There is less than 1.0% difference between the
calibration correction coefficients derived with DCC and desert refer-
ence reflectance. Although the Sonoran desert is long-term stable at
decade scale, the contribution of the desert observations to the trending
function derived with the integrated method is very small. In fact, the
trending functions derived with M2 and M3 integrated methods are
both very close to that of DCCdata at less than 0.2% and 0.1%, respectively.
Thismay indicate that DCCmay bemore stable than the othermethod for
the long-term trending. Yet, large abnormal reflectance was observed at
some identified MODIS DCC pixels which marginally met the DCC
temperature criteria. Since DCC is a selected common reference by the
GSICS community, it is suggested that the microphysics of DCC should
be further studied to provide the better understanding of the reference
target.
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