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Abstract While satellites are a proven resource for detecting and tracking volcanic ash and dust clouds,
existing algorithms for automatically detecting volcanic ash and dust either exhibit poor overall skill or can
only be applied to a limited number of sensors and/or geographic regions. As such, existing techniques are
not optimized for use in real-time applications like volcanic eruption alerting and data assimilation. In an
effort to significantly improve upon existing capabilities, the Spectrally Enhanced Cloud Objects (SECO)
algorithm was developed. The SECO algorithm utilizes a combination of radiative transfer theory, a statistical
model, and image processing techniques to identify volcanic ash and dust clouds in satellite imagery with a
very low false alarm rate. This fully automated technique is globally applicable (day and night) and can be
adapted to a wide range of low earth orbit and geostationary satellite sensors or even combinations of satellite
sensors. The SECO algorithm consists of four primary components: conversion of satellite measurements into
robust spectral metrics, application of a Bayesian method to estimate the probability that a given satellite
pixel contains volcanic ash and/or dust, construction of cloud objects, and the selection of cloud objects
deemed to have the physical attributes consistent with volcanic ash and/or dust clouds. The first two
components of the SECO algorithm are described in this paper, while the final two components are
described in a companion paper.

1. Introduction

It is well known that volcanic ash clouds are a major aviation hazard [e.g., Casadevall, 1994; Miller and
Casadevall, 2000; ICAO, 2007; Guffanti et al., 2010] and dust clouds play an important, yet not fully
understood, role in weather- and climate-scale physical processes in the atmosphere and ocean [e.g.,
Dunion and Velden, 2004; Evan et al., 2011; Prospero and Lamb, 2003; Jickells et al., 2005; Wang et al., 2012].
While satellites are a proven resource for detecting and tracking volcanic ash and dust clouds [e.g., Prata,
1989a, 1989b; Wen and Rose, 1994; Ackerman, 1997; Schneider et al., 1999; Prata and Grant, 2001; Rose et al.,
2000; Legrand et al., 2001; Darmenov and Sokolik, 2005; Pavolonis et al., 2006; Evan et al., 2006; DeSouza-
Machado et al., 2010; Corradini et al., 2010; Prata and Prata, 2012; Francis et al., 2012; Pavolonis et al., 2013;
Clarisse et al., 2013], existing methods, while all valuable, have several important limitations that served as
the motivation to develop a new approach. In particular, existing satellite-based methodologies have one
or more of the following limitations.

1. The end results are qualitative and hence require manual interpretation and, as such, cannot be used in
quantitative applications [e.g., Hillger and Clark, 2002a, 2002b; Ellrod et al., 2003; Miller, 2003; Lensky and
Rosenfeld, 2008].

2. The results depend strongly on solar zenith angle, and/or the technique is only applicable over a subset of
solar zenith angles [e.g., Legrand et al., 2001; de Graaf et al., 2005; Pavolonis et al., 2006; Evan et al., 2006;
Scollo et al., 2012].

3. The technique can only be applied to a specific instrument or a small subset of instruments [e.g., Liu et al.,
2008; Clarisse et al., 2010; DeSouza-Machado et al., 2010; Gangale et al., 2010; Winker et al., 2012; Clarisse
et al., 2013] and hence does not provide frequent (<60min) global coverage.

4. Finally, no published technique capable of providing frequent global coverage has been shown to be
consistently skillful (very high probability of detection and very low false alarm rate) over a large range
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of cloud properties (cloud height/temperature/pressure, geometric thickness, composition, particle size,
and cloud optical depth) and background states (surface emissivity, surface temperature, atmospheric
temperature, and atmospheric composition).

Given the above limitations, existing satellite-based ash/dust detection techniques are not optimized for
many important practical (operational) and research applications. For instance, Volcanic Ash Advisory
Centers, which are responsible for operationally issuing volcanic ash advisories to the aviation
community, currently heavily rely on manual analysis of satellite imagery to track volcanic ash clouds. It
is not feasible to routinely manually examine every satellite image for volcanic ash clouds, so some
volcanic ash clouds go undetected for several hours [e.g., Pavolonis et al., 2006]. Thus, a reliable, fully
automated, satellite-based volcanic ash detection system is needed to help improve the timeliness of
volcanic ash advisories. The retrieval of important volcanic ash cloud properties such as cloud height,
mass loading, and effective radius requires a priori knowledge of the horizontal location of ash to
constrain the inversion problem and prevent false alarms (pixels with valid retrieval results that are
outside of the ash cloud(s)) without significantly decreasing the probability of detection [e.g., Prata and
Prata, 2012; Francis et al., 2012; Pavolonis et al., 2013]. Operational forecasters generally rely on
manually initiated model simulations that utilize eruption source parameters that are prone to large
errors, especially outside of the coverage of cloud or precipitation radars [Arason et al., 2011; Schneider
and Hoblitt, 2013].

While many satellite-based dust detection algorithms exist [e.g., Peyridieu et al., 2013; Ashpole and
Washington, 2012; Hsu et al., 2013; Remer et al., 2013; Tanre et al., 2011; Clarisse et al., 2013; Diner et al.,
2001; Hong, 2009; Evan et al., 2006], a generalized approach, analogous to the generalized approach
developed for hyperspectral infrared data by Clarisse et al. [2013], that can be applied to nearly any
narrow or broadband geostationary or low earth orbit sensor, day or night, over land or over water, does
not exist. Such an approach can complement existing dust detection approaches for practical and
research applications.

In an effort to address all of the aforementioned limitations of previously published volcanic ash and
dust detection methods, the Spectrally Enhanced Cloud Objects (SECO) technique has been developed. The
SECO algorithm utilizes a combination of radiative transfer theory, a statistical model, and image processing
techniques to identify volcanic ash and dust clouds in satellite imagery with skill comparable to that of a
human expert. The fully automated SECO technique is globally applicable and can be adapted to a wide
range of low earth orbit and geostationary satellite sensors. Combinations of satellite sensors can even be
used to further increase the skill. The SECO algorithm is designed to take full advantage of each sensor’s
volcanic ash/dust-relevant capabilities. The SECO algorithm is described in a two-part paper series. Part I (this
paper) will describe how the SECO algorithm utilizes advanced multispectral metrics to identify satellite pixels
that potentially contain volcanic ash and/or dust with improved skill relative to the most utilized existing
method. In Part 2 [Pavolonis et al., 2015], the cloud object-based techniques that are applied to the results
of the multispectral analysis, described in this paper, will be discussed. In addition, Pavolonis et al. [2015]
demonstrate that the end results of the complete SECO algorithm are comparable to manual analysis
performed by human experts. The SECO technique is the first fully automated algorithm, applicable to nearly
any satellite sensor with infrared capabilities, which can be used in advanced real-time applications such as
ash cloud alerting and ash/dust cloud dispersion forecasting. The SECO technique can also serve as a
valuable research tool.

2. Satellite Measurements

The SECOmethod is designed such that it can be applied to nearly any low earth orbit or geostationary (GEO)
imaging sensor, such that frequent global results can be obtained. The method can also be applied to
sounding instruments, including hyperspectral infrared sounders, but this paper will focus on the higher
spatial resolution (and higher temporal resolution in the case of GEO) measurements offered by imaging
instruments. Spectral measurements centered near 0.65 (daytime only), 3.9, 7.3, 8.5, 11, and 12μm can be
used by the SECO algorithm. The rationale for selecting these channels will be described in a later section.
More specifically, the SECO algorithm can utilize any of the channel combinations shown in Table 1. For
each channel combination, some of the relevant sensors are also listed (Table 2 defines the sensor
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Table 1. Possible Spectral Channel Combinations That can be Used in the Ash/Dust Detection Algorithm are Shown as a
Function of Satellite Imaging Sensor Spectral Capabilities (Relevant to Ash and Dust Detection)a

Approximate Central Wavelength Sensor Channel Numbers Conditions Required for Useb

Tier I Sensors: MODIS, MSG SEVIRI, GOES-R ABI, Himawari-8/9 AHI, MTG FCI

0.65, 3.9, 7.3, 8.5, 11, 12 μm 1, 20, 28, 29, 31, 32 Solar zenith angle< 85° and
no sun glint1, 4, 6, 7, 9, 10

2, 7, 10, 11, 14, 15
3, 7, 10, 11, 14, 15
3, 9, 11, 12, 14, 15

3.9, 7.3, 8.5, 11, 12 μm 20, 28, 29, 31, 32 Solar zenith angle> 90° and no
detectable stray light4, 6, 7, 9, 10

7, 10, 11, 14, 15
7, 10, 11, 14, 15
9, 11, 12, 14, 15

7.3, 8.5, 11, 12 μm 28, 29, 31, 32 Only used if previous two channel
combinations are not possible6, 7, 9, 10

10, 11, 14, 15
10, 11, 14, 15
11, 12, 14, 15

8.5, 11, 12 μm 29, 31, 32 Only used if previous three channel
combinations are not possible7, 9, 10

11, 14, 15
11, 14, 15
12, 14, 15

11, 12 μm 31, 32 Only used if previous four channel
combinations are not possible9, 10

14, 15
14, 15
14, 15

Tier II Sensors: VIIRS

0.65, 3.9, 8.5, 11, 12 μm M5, M12, M14, M15, M16 Solar zenith angle< 85° and no sun glint

3.9, 8.5, 11, 12 μm M12, M14, M15, M16 Solar zenith angle> 90° and no
detectable stray light

8.5, 11, 12 μm M14, M15, M16 Only used if previous two channel
combinations are not possible

11, 12 μm M15, M16 Only used if previous three channel
combinations are not possible

Tier III Sensors: AVHRR, COMS-MI, GOES Imager,c MTSAT Imager

0.65, 3.9, 11, 12 μm 1, 3b, 4, 5 Solar zenith angle< 85° and no sun glint
1, 2, 4, 5
1, 2, 4, 5
1, 5, 2, 3

3.9, 11, 12 μm 3b, 4, 5 Solar zenith angle> 90° and no
detectable stray light2, 4, 5

2, 4, 5
5, 2, 3

11, 12 μm 4, 5 Only used if previous two channel
combinations are not possible4, 5

4, 5
2, 3

aTier I sensors offer the most channels of relevance to the ash/dust detection algorithm presented in this paper, and
Tier III sensors offer the least. Sun glint is assumed to be present over water surfaces if the glint angle is less than 40°.
Stray light is assumed to be present if the solar zenith angle exceeds 90° and themeasured 0.65 μm count is greater than
a sensor-dependent threshold. Please see Table 2 for a list of sensor acronyms.

bEach channel in a given spectral combination must also pass quality control. If one or more channels in a combination
does not pass quality control, the next best channel combination is attempted.

cThe 12 μm channel is only available on the GOES 8–11 spacecraft.
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acronyms). The algorithm is designed to utilize the greatest number of spectral channels possible for a given
sensor, taking into account the quality of each spectral measurement on a pixel-by-pixel basis. While
measurements that directly depend on solar zenith angle are utilized when possible, the SECO approach
does not require sunlight to be present. The algorithm can operate solely with measurements that are not
influenced by reflected sunlight. This approach can be applied to hyperspectral infrared data by selecting
micro windows [e.g., Turner, 2005] that sample the same spectral regions listed in Table 1 or, perhaps,
through the use of absorption optical depth spectra that can be used to compute slopes in cloud optical
depth as a function of wavenumber [see Pavolonis, 2010, Figure 2].

The Moderate Resolution Imaging Spectroradiometer (MODIS), which has all the spectral channels (with a
1 km resolution at nadir) required to test each possible channel combination, is the primary instrument for
developing and demonstrating the SECO approach. In Part 2 of this paper [Pavolonis et al., 2015], results
from other sensors will also be briefly highlighted to help illustrate that the SECO approach is generic and
robust enough to be applied to virtually any sensor (past, current, and future sensors included). The
operational meteorological imaging sensor (as of early 2014) excluded from Tables 1 and 2 is the
Geostationary Operational Environmental Satellite (GOES) Imager on GOES 12–15 [Schmit et al., 2001].
The 12μm channel on GOES 12–15 was replaced by a 13.3μm channel, which, due to CO2 absorption, is
more challenging to use for detecting volcanic ash and dust [Ellrod, 2004]. We have developed the ability
to utilize the 13.3μm channel in lieu of the 12μm channel, but this will not be discussed in this paper in
order to focus on the more common case of the 12μm channel being available.

3. Definition of Volcanic Ash and Dust Clouds

Prior to describing the SECO algorithm, wemust first explain howwedefine volcanic ash and dust clouds. In this
paper, volcanic ash and dust clouds are defined as a collection of satellite pixels that can be manually identified
as ash or dust in well-scaled multispectral (visible, near-infrared, and infrared) passive satellite imagery by a
human expert. Such a definition is quite reasonable given that automated algorithms can only detect
volcanic ash or dust if a spatially and temporally (if applicable) coherent signature is present in the calibrated
radiances for a given satellite sensor (e.g., the ash or dust cloud contributes to the measured spectral
radiances more than noise). Thus, there are two general scenarios in which airborne ash or dust, if actually
present, cannot be qualitatively (and hence quantitatively) detected using passive satellite data: (1)
overlapping cloud layers obscure the ash or dust cloud, (2) the mass loading of the ash is below detection
limits for a given set of observing conditions and instrument capabilities. Prata and Prata [2012], Francis et al.
[2012], and Pavolonis et al. [2013] showed that volcanic ash can generally be identified in passive satellite
observations if it is the highest cloud layer and has a concentration with an order of magnitude of 10�2 g/m2

or greater. Multispectral false color imagery sometimes referred to as red-green-blue or RGB imagery is a
proven tool used by human analysts, including operational forecasters, to manually identify volcanic ash and
dust [Lensky and Rosenfeld, 2008; Millington et al., 2012]. Volcanic ash- and dust-relevant false color imagery
is designed to maximize the color contrast (subject to color vision limitations and differences) between

Table 2. The Satellite Imaging Radiometers of Greatest Relevance to the Ash/Dust Detection Algorithm Described in This
Paper Are Listed Belowa

Sensor Acronym Acronym Meaning

AVHRR Advanced Very High Resolution Radiometer
COMS-MI Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI)
GOES Imager Geostationary Operational Environmental Satellite (GOES) Imager
GOES-R ABIb Next Generation Geostationary Operational Environmental Satellite (GOES-R)

Advanced Baseline Imager (ABI)
Himawari-8/9 AHIb Himawari-8/9 Advanced Himawari Imager (AHI)
MODIS Moderate Resolution Imaging Spectroradiometer
MTSAT Imager Multifunctional Transport Satellites (MTSAT) Imager
MSG SEVIRI Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager
MTG FCIb Meteosat Third Generation (MTG) Flexible Combined Imager (FCI)
VIIRS Visible Infrared Imaging Radiometer Suite

aEach sensor may be present on multiple spacecraft with different orbital parameters.
bCapability will be launched and deployed in 2014 or later.
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volcanic ash and dust and all other observable features (other cloud types and clear-sky features) by exploiting
the unique spectral variability of absorption and reflection exhibited by volcanic ash and dust relative to other
cloud types and most surface features. More specifically, well-known absorption and reflection properties
at wavelengths centered near 3.9, 8.5, 11, and 12 μm are exploited [Prata and Grant, 2001; Pavolonis et al.,
2006; Lensky and Rosenfeld, 2008; Pavolonis, 2010; Francis et al., 2012; Pavolonis et al., 2013]. Examples
of false color imagery with a volcanic ash cloud are shown in Figures 1 and 2, and the corresponding
11–12μm “split-window” brightness temperature difference (BTD) is shown in Figure 3. A detailed description
of the RGB imagery utilized in this paper is given by Pavolonis [2014].

4. SECO Algorithm—Multispectral Analysis

The SECO algorithm is comprised of four primary components. First, calibrated and navigated spectral
measurements are converted to more robust spectral parameters when possible (e.g., increased sensitivity to
cloud composition and decreased sensitivity to background conditions). Next, the spectrally robust
multispectral metrics and a naïve Bayesian approach are used to estimate the probability that a given
satellite pixel is part of an ash or dust cloud. In the third component of the SECO algorithm, spatially
connected satellite pixels that exceed an ash/dust probability threshold are grouped into cloud objects and
various statistical properties are computed for each cloud object. Finally, the cloud object statistics are used
to determine which objects are most likely ash/dust clouds. All pixels associated with objects determined to
be volcanic ash or dust are classified as ash/dust and all other pixels are classified as a nonash/nondust
feature. The first two components of the SECO algorithm (derivation of advanced multispectral metrics and
estimation of ash/dust probability) are described in the following sections of this paper, while the cloud
object components are described in Part 2 [Pavolonis et al., 2015].

4.1. Description of Spectral Metrics

Most of the infrared-based spectral metrics are based on Pavolonis [2010] and Pavolonis et al. [2013]. In lieu
of infrared brightness temperatures and brightness temperature differences, which are very sensitive to

Figure 1. A false color Terra MODIS image centered on the Aleutian Islands (Alaska) on 19 February 2001 at 23:10 UTC is
shown. The 12–11 μm brightness temperature difference (BTD) is displayed on the red color gun, the 11–3.75 μm BTD is
displayed on the green color gun, and the 11 μm brightness temperature is displayed on the blue color gun. The white
annotations are used to highlight some important features. The volcanic ash cloud was produced by an eruption of Mount
Cleveland, Alaska. In the annotations, “meteo cloud” refers to liquid water or ice clouds generated by typical meteorological
processes. This MODIS image was taken from the sunlit portion of the orbit.
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background conditions (surface temperature, surface emissivity, atmospheric moisture, and temperature),
cloud emissivity and radiative parameters known as β ratios are utilized. As demonstrated by Heidinger and
Pavolonis [2009], Pavolonis [2010], and Pavolonis et al. [2013], the effective cloud emissivity at a given
infrared wavelength is computed as given in equations (1) and (2).

εeff λð Þ ¼ Robs λð Þ � Rclr λð Þ
Rcld λð Þ � Rclr λð Þ (1)

Rcld λð Þ ¼ B λ; Teffð Þtac λð Þ þ Rac λð Þ (2)

In equation (1), which is derived by Pavolonis [2010] in Appendix A, λ is the wavelength, Robs is the observed
radiance, Rclr is the clear-sky radiance, and Rcld is the blackbody emission from the cloud that is transmitted to
the top of the atmosphere. The effective cloud emissivity [Cox, 1976] is denoted by εeff. The effects of cloud
scattering are implicitly captured by the effective cloud emissivity [see Cox, 1976]. In equation (2), Rac and tac
are the above-cloud upwelling atmospheric radiance and transmittance, respectively. B is the Planck function,
and Teff is the effective cloud temperature. The effective cloud temperature is most often different from the
thermodynamic cloud top temperature since the emission of radiation originates from a layer in the cloud.
The depth of this layer depends on the cloud extinction profile, which is generally unknown. The clear-sky
transmittance and radiance terms are determined using surface temperature, atmospheric temperature,
water vapor, and ozone profiles from the Global Forecast Model (GFS) [Hamill et al., 2006], surface emissivity
from the SeeBor database [Seemann et al., 2008], the satellite zenith angle, and a regression-based clear-sky
radiative transfer model [Hannon et al., 1996]. The procedure for determining the clear-sky radiance and
transmittance is the same as described by Heidinger and Pavolonis [2009], Heidinger et al. [2010], and
Pavolonis [2010]. In addition, a discussion on the impacts of errors in the GFS fields is discussed in section 4.2
and in Part 2 of this manuscript [Pavolonis et al., 2015].

The spectral variation of the effective cloud emissivity is directly related to cloud microphysical information
(e.g., particle size, shape, composition, etc.). Effective optical depth ratios, otherwise known as β ratios, have been
previously used to extract cloudmicrophysical information from infraredmeasurements [Inoue, 1985, 1987; Parol
et al., 1991; Giraud et al., 1997; Heidinger and Pavolonis, 2009; Pavolonis, 2010; Pavolonis et al., 2013]. For a given

Figure 2. Same as Figure 1 except that the 12–11μmbrightness temperature difference (BTD) is displayed on the red color gun,
the 11–8.5μmBTD is displayed on the green color gun, and the 11μmbrightness temperature is displayed on the blue color gun.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022968

PAVOLONIS ET AL. ASH/DUST DETECTION, PART 1 7818



spectral pair of effective emissivity (εeff(λ1) and εeff(λ2)) or effective absorption optical depth (τabs,eff(λ1) and
τabs,eff(λ2)), the effective absorption optical depth ratio, β(λ1, λ2), can be computed using equation (3).

β λ1; λ2ð Þ ¼ ln 1� εeff λ1ð Þ½ �
ln 1� εeff λ2ð Þ½ � ¼

τabs;eff λ1ð Þ
τabs;eff λ2ð Þ (3)

In order to compute β(λ1, λ2) for a given spectral pair, the location of the radiative center of the cloud, in the
vertical, must be specified (see equations (1) and (2)) but is unknown since pixels that likely contain ash or
dust must be identified prior to retrieving cloud properties such as Teff [Pavolonis et al., 2013]. Thus, the
“top of troposphere” and “opaque cloud” assumptions, described in detail by Pavolonis [2010], are utilized.
The “top of troposphere” β ratio, βtot(λ1, λ2), is computed by assuming that the cloud radiative center is
located at the top of the troposphere. The “opaque cloud” β ratio, βopaque(λ1, λ2), is computed by assuming
that the cloud radiative center is located at the highest level of the troposphere that results in εeff(λ1) or
εeff(λ2) being equal to 0.98 (using equation (1)). As described by Pavolonis [2010], the “top of troposphere”
assumption is very effective for determining the composition of semitransparent clouds, while the
“opaque cloud” assumption provides some additional skill, particularly when classifying optically thick
clouds. βtot(λ1, λ2) and βopaque(λ1, λ2), while very useful, do not account for underlying cloud layers.
Semitransparent ash and dust clouds will often reside above one or more meteorological cloud layers. In
an attempt to roughly account for the influence of an underlying liquid water or ice cloud layer, a second
set and a third set of “top of troposphere” β ratios are computed (only for 11 and 12μm spectral pairing)
by replacing Rclr(λ) in equation (1) with the top of atmosphere radiance produced by a blackbody emitter
located at the 0.8 and 0.7 sigma levels (a terrain following vertical coordinate), respectively. The pressure
level (P) associated with a given sigma (σ) value is computed using equation (4).

P ¼ Psurfaceð Þσ (4)

The 0.8 sigma level is used to approximate a low-level (relative to the surface) underlying cloud layer, and
σ = 0.7 is used to approximate a midlevel underlying cloud layer. The second set of β ratios is denoted by
βtot_σ8(λ1, λ2), and the third set is denoted by βtot_σ7(λ1, λ2).

Figure 3. Same as Figure 1 except the 11–12 μm “split-window” brightness temperature difference is shown.
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The choice of spectral channel pairings (λ1, λ2) used to construct β ratios is designed to take advantage of
absorption/scattering features that are generally unique to volcanic ash and/or dust clouds. As shown by
Pavolonis [2010] and Pavolonis et al. [2013], the combination of β(12μm, 11μm) and β(8.5μm, 11μm) is
extremely useful for discriminating between volcanic ash/dust clouds and other cloud features. In the
absence of large amounts of SO2, β(8.5μm, 11μm) and, to a lesser extent, β(12μm, 11μm) can individually
take on similar values as meteorological clouds. The combination of β(12μm, 11μm) and β(8.5μm, 11μm),
however, is less likely to spectrally overlap with meteorological clouds [see Pavolonis et al., 2013, Figure 4].
When larger amounts (>5 Dobson units) of SO2 are present, as is common in clouds produced by volcanic
eruptions, β(8.5μm, 11μm) takes on large values that are generally outside of the normal range for
meteorological clouds, while β(12μm, 11μm) is not impacted by SO2. Thus, even if SO2 is present in or
above the ash cloud, the combination β(12μm, 11μm) and β(8.5μm, 11μm) still exhibits behavior that is
generally unique to volcanic ash clouds.

Figures 4 and 5 show the βtot(12μm, 11μm), βopaque(12μm, 11μm), βtot_σ8(12μm, 11μm), βtot_σ7(12μm,
11μm), βtot(8.5μm, 11μm), and βopaque(8.5μm, 11μm) parameters computed for the scenes introduced in
section 3. When ε(λ1) and/or ε(λ2) is less than zero, the 11μm brightness temperature is imaged in Figures 4
and 5. Note how βtot(8.5 μm, 11 μm) (Figures 4f and 5f) and βopaque(8.5 μm, 11 μm) (Figures 4g and 5g)
are much larger in regions with ash plus significant SO2 compared to ash regions that are not coupled
with a significant SO2 spectral signature. The spatial variability of βtot(12 μm, 11 μm) (Figures 4b and 5b),
βopaque(12 μm, 11 μm) (Figures 4c and 5c), βtot_σ8(12 μm, 11 μm) (Figures 4d and 5d), and βtot_σ7(12 μm,
11 μm) (Figures 4e and 5e) within the volcanic cloud can be generally attributed to varying cloud
microphysical properties, especially the effective particle radius [Pavolonis et al., 2013]. The majority of the
volcanic ash in Figures 4 and 5 does not overlap lower cloud layers, so βtot_σ8(12 μm, 11 μm) (Figures 4d
and 5d) and βtot_σ7(12 μm, 11 μm) (Figures 4e and 5e) most often do not have valid values. In regions
where a valid multilayer version of β(12 μm, 11 μm) cannot be computed, the 11 μm brightness
temperature is displayed, revealing that the majority of the ash cloud in both scenes is optically thin (very
weak presentation in 11 μm image as inferred by relatively high brightness temperatures compared to
other portions of the ash cloud).

The combination of β(12μm, 11μm) and β(7.3μm, 11μm) is also exploited as it aids in the detection of high-
level volcanic ash and dust (dust, in large quantities, is less likely to be present at high levels than volcanic
ash). The 7.3μm channel is centered on a fairly strong water vapor absorption feature, so the clear-sky
weighting function peaks in the middle troposphere in all but the driest of atmospheres. Thus, β(7.3μm,
11μm) is only useful when midlevel to high-level clouds is present. In the absence of SO2 (strong SO2

absorption features are captured by the 7.3μm channel), the increase in cloud absorption as a function of
increasing wavelength between 7.3 and 11μm is much greater for volcanic ash and dust than liquid water
or ice clouds, resulting in midlevel and high-level ash and dust clouds generally taking on smaller values of
β(7.3μm, 11μm) compared to meteorological clouds [see Pavolonis, 2010, Figure 1]. When midlevel to
high-level SO2 is present, β(7.3μm, 11μm) will be very large such that it is out of the normal range that
encompasses meteorological clouds, making it particularly useful for volcanic ash detection.

It is important to note that SO2 absorption at 11 and 12μm is negligible, so a β(12μm, 11μm) signal consistent
with ash must always be present regardless of the influence of SO2 absorption, since β(7.3μm, 11μm) and
β(8.5μm, 11μm) are always used in tandem with β(12μm, 11μm). The βtot(7.3μm, 11μm) parameter is
shown in Figures 4h and 5h. The SO2 sensitivity is clearly discernable by the large βtot(7.3μm, 11μm) values
in regions where a strong SO2 spectral signature is present. The 12–11, 11–8.5, and 11μm false color image
from 19 February 2001 (23:10 UTC) (Figures 2 and 4) indicates that the region of ash near Cleveland volcano
does not have a strong SO2 spectral signature like many other portions of the ash cloud at this time. The
lack of an obvious SO2 spectral signature in the 12–11, 11–8.5, 11μm false color image is supported by
collocated βtot(7.3μm, 11μm) values that are small, as would be expected for volcanic ash in the absence of
significant SO2. As shown by Watson et al. [2004], H2SO4 aerosol absorbs and scatters radiation across the
spectrum from 7 to 13μm. The spectral variability of the total attenuation (numerical range of the
transmittance) is small relative to that of ash and, especially, SO2. Thus, β(7.3μm, 11μm) is far more sensitive
to SO2 than H2SO4. As shown by Prata [1989a] and Watson et al. [2004], H2SO4 can produce a signal in
the 11–12μm window that is similar to ash. As a result, our approach is susceptible to overestimating the
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ash/dust probability in situations where H2SO4 is present. The ash/dust probability can be overestimated further
if significant amounts of SO2 are also present.

Unfortunately, many satellite sensors do not have 7.3 and 8.5μm channels, but nearly every sensor allows the
various forms of β(12μm, 11μm) to be paired with near-infrared (day and night) and visible (daytime only)
wavelength-based spectral metrics. In the presence of sunlight (when the solar zenith angle is <85° and the
measurements are not influenced by sun glint over water), the ratio of the 3.9μm reflectance and the 0.65μm
reflectance [ρ(3.9μm, 0.65μm)= r[3.9μm]/r[0.65μm]] can be combined with “split-window” (11 and 12μm)
measurements to distinguish ash and dust clouds from other cloud types [Pavolonis et al., 2006]. Unlike
meteorological clouds, the ρ(3.9μm, 0.65μm) of volcanic ash and dust clouds tends to increase with
decreasing β(12μm, 11μm) for a given visible cloud optical depth and set of background conditions. The

Figure 4. Images of the multispectral classifiers, used during typical sunlit conditions, by the Bayes approach that estimates the probability that a given satellite pixel
contains volcanic ash and/or dust are shown. The multispectral parameters were computed for a Terra MODIS image from 19 February 2001 at 23:10 UTC. The
approximate bounds of an ash cloud produced by an eruption of Mount Cleveland (Alaska) are overlain on each image in white. (a) Multispectral false color image.
(b) βtot(12 μm, 11 μm) overlaid on an 11 μmbrightness temperature (BT) image. (c) βopaque(12 μm, 11 μm) overlaid on an 11 μm BT image. (d) βtot_σ8(12 μm, 11 μm)
overlaid on an 11 μm BT image. (e) βtot_σ7(12 μm, 11 μm) overlaid on an 11 μm BT image. (f) βtot(8.5 μm, 11 μm) overlaid on an 11 μm BT image. (g) βopaque(8.5 μm,
11 μm) overlaid on an 11 μm BT image. (h) βtot(7.3 μm, 11 μm) overlaid on an 11 μm BT image. (i) ρ(3.9 μm, 0.65 μm). Only Figures 4b–4i are used as a classifier.
Figure 4a is included to aid in scene interpretation. See text and Table 3 for additional details.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022968

PAVOLONIS ET AL. ASH/DUST DETECTION, PART 1 7821



ρ(3.9μm, 0.65μm) of volcanic ash and dust tends to be>0.5 when the visible cloud optical depth exceeds ~0.10
[Pavolonis et al., 2006]. Meteorological clouds generally have a ρ(3.9μm, 0.65μm)< 0.5. The method for
computing ρ(3.9μm, 0.65μm) along with a more complete description of its utility for ash and dust detection
is given by Pavolonis et al. [2006]. Figure 4i shows that ρ(3.9μm, 0.65μm) within sections of the core of the
ash cloud exceeds 0.50, while the ρ(3.9μm, 0.65μm) of optically thick meteorological clouds (liquid or ice) is
much smaller. However, the edge of meteorological clouds will also have large values of ρ(3.9μm, 0.65μm),
but this effect is mitigated by pairing ρ(3.9μm, 0.65μm) with β(12μm, 11μm) in its various forms.

At solar zenith angles greater than 90° and in the absence of stray light influences (significant sunlight
impinging on the sensor when the solar zenith angle exceeds 90°), the 3.9μm pseudoemissivity [εp(3.9μm)]
is used in conjunction with β(12 μm, 11 μm) to help identify ash and dust clouds. The εp(3.9 μm)

Figure 5. Images of the multispectral classifiers, used at night, by the Bayes approach that estimates the probability that a given satellite pixel contains volcanic ash
and/or dust are shown. The multispectral parameters were computed for a TerraMODIS image from 20 February 2001 at 08:45 UTC. The approximate bounds of an
ash cloud produced by an eruption of Mount Cleveland (Alaska) are overlain on each image in white. (a) Multispectral false color image. (b) βtot(12 μm, 11 μm)
overlaid on an 11 μm brightness temperature (BT) image. (c) βopaque(12 μm, 11 μm) overlaid on an 11 μm BT image. (d) βtot_σ8(12 μm, 11 μm) overlaid on an 11 μm
BT image. (e) βtot_σ7(12 μm, 11 μm) overlaid on an 11 μm BT image. (f) βtot(8.5 μm, 11 μm) overlaid on an 11 μm BT image. (g) βopaque(8.5 μm, 11 μm) overlaid on an
11 μm BT image. (h) βtot(7.3 μm, 11 μm) overlaid on an 11 μm BT image. (i) εp(3.9 μm). Only Figures 5b–5i are used as a classifier. Figure 5a is included to aid in scene
interpretation. See text and Table 3 for additional details.
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parameter is simply defined as the ratio of the measured 3.9μm radiance to the estimated 3.9μm blackbody
radiance [εp(3.9 μm) = R[3.9 μm]/Rbb[3.9 μm]]. As in Heidinger et al. [2012], the 3.9 μm blackbody radiance
(Rbb[3.9 μm]) is estimated by applying the Planck function to the 3.9 μm channel for a given sensor
using the measured 11 μm brightness temperature as the blackbody temperature. The εp(3.9 μm)
parameter is very useful in discriminating between semitransparent clouds and low opaque clouds
[Heidinger et al., 2012]. Typical behavior of the β(12 μm, 11 μm) and εp(3.9 μm) pairing is as follows.

Volcanic ash and dust clouds: β(12 μm, 11 μm)< 1 and εp(3.9 μm)> 1
Semitransparent liquid water: β(12μm, 11μm)> 1 and εp(3.9μm)> 1
Most ice clouds: β(12μm, 11μm)> 1 and εp(3.9μm)> 1
Optically thick liquid water clouds: β(12μm, 11μm)< 1 and εp(3.9μm)< 1

Figure 5i shows that εp(3.9μm) of volcanic ash tends to be greater than the εp(3.9μm) of clear sky or opaque
low-level and midlevel clouds. While in this particular case, the εp(3.9μm) of semitransparent ice clouds is large
compared to volcanic ash, there are instanceswhere the εp(3.9μm) volcanic ash (or dust) and semitransparent ice
clouds can be comparable. On sensors that lack the 7.3 and 8.5μmchannels, β(12μm, 11μm) is not coupledwith
any other multispectral parameters in the day/night terminator region (solar zenith angle between 85 and 90°).

Each multispectral radiative parameter pairing is best used in conjunction with an indicator of how much
the observed radiance deviates from the estimated clear-sky radiance. As in Heidinger et al. [2012], the
11μm emissivity value a cloud would have if it were located at the top of the thermodynamically defined
troposphere [εtot(11μm)] is used to quantify the confidence that a given multispectral signature is
associated with a cloud and not a clear-sky feature (e.g., the surface). As will be described in a later section,
additional spatial analysis techniques are utilized to mitigate the impacts of errors in the clear-sky radiance
calculations. Clear-sky radiance errors can be large [Heidinger and Pavolonis, 2009], particularly over land
where the uncertainty in surface temperature and emissivity is significant.

4.2. Naïve Bayesian Approach

While the various multispectral metrics described in the previous section are useful for detecting volcanic ash
and dust, the relationship between each spectral metric is quite complicated. In an effort to sufficiently
capture the complicated multispectral relationships over a wide range of conditions and reduce the many
pieces of spectral information into a single objective metric, a Bayesian approach is utilized. Bayesian
approaches have been successfully applied to several satellite-based classification problems [Uddstrom
et al., 1999; Merchant et al., 2005; Heidinger et al., 2012; Kossin and Sitkowski, 2009; Cintineo et al., 2014;
Mackie and Watson, 2014]. As discussed by Kossin and Sitkowski [2009] and Heidinger et al. [2012], the
classical Bayesian approach is not practical when more than just a few features are used, as the size of the
class conditional probability density functions can easily grow to an unmanageable size and become very
difficult to sufficiently populate. Thus, in lieu of the classical implementation of the Bayesian approach
[Uddstrom et al., 1999; Merchant et al., 2005], a Naïve Bayesian approach [Heidinger et al., 2012; Kossin and
Sitkowski, 2009; Cintineo et al., 2014] is used. The naïve Bayesian model is formulated by assuming that
features (F) are independent within each class. The naïve Bayes classifier has been shown to perform quite
well even when the features are clearly not independent [Domingos and Pazzani, 1997; Hand and Yu, 2001;
Kossin and Sitkowski, 2009; Heidinger et al., 2012; Cintineo et al., 2014]. Using the naïve Bayes formulation,
the probability of ash or dust given an observed set of independent features (P(Cyes|F) is calculated using
equation (5) (the term, P(Cyes|F), is also commonly referred to as the posterior probability).

P CyesjF
� � ¼ P Cyes

� �
∏ N

i¼1P Fi jCyes
� �

P Fð Þ (5)

In equation (5), P(Cyes) is the prior probability that a given satellite pixel contains volcanic ash or dust without
knowledge of F, P(Fi|Cyes) is the estimated probability of observing a given feature (Fi) when ash or dust are
present (a total of N features are used), and P(F) is the probability of a given set of features being observed
and is computed using equation (6).

P Fð Þ ¼ P Cyes
� �

∏ N
i¼1P FijCyes

� �þ P Cnoð Þ∏ N
i¼1P Fi CnoÞjð (6)
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In equation (6), P(Cno) is the prior probability that a given satellite pixel does not contain volcanic ash or dust
[e.g., P(Cno) = 1� P(Cyes)] and P(Fi|Cno) is the estimated probability of observing a given feature (Fi) when ash
or dust is not present.

The prior probability of ash/dust [P(Cyes)] is assumed to be 0.1%, which, while arbitrary and crude, roughly
captures the fact that the global fractional coverage of ash or dust that is detectable using passive satellite
measurements is generally small relative to all other observable cloud and surface features. In addition, the
ash/dust conditional probability is often many orders of magnitude greater than the nonash/nondust
conditional probability, rendering the impact of the prior probabilities minimal. Further, in our application,
the posterior probability is largely used to determine cloud object membership (e.g., whether or not a
given pixel should be used when constructing cloud objects) [Pavolonis et al., 2015] and the use of
constant prior probabilities ensures that it is purely the multispectral signature at a given time that
influences cloud object membership for a given probability threshold, not the prior probabilities. Thus, we
avoided using prior probabilities that depend on time and geographic location but acknowledge that the
climatological probability of ash/dust is likely several orders of magnitude greater near source regions than
locations far removed from dust source regions or volcanoes that frequently produce ash clouds (e.g.,
Sakurajima, Japan).

The class conditional probability density functions (PDFs), the dimensions of which are subsequently
described, are empirically constructed for each classifier (Fi) from a large training data set. The “yes” class
training data set consists of 344 5min MODIS granules (see Table S1, supporting information) with ash
and/or dust clouds, the horizontal bounds of which were manually analyzed by a human expert using the
same type of false color images described earlier and region of interest (ROI) software applications. Only
situations where ash/dust clearly was the highest cloud layer were classified as ash/dust during the
manual analysis process. In addition, cloud edges were drawn with an emphasis on avoiding false alarms
(cross-contamination) at the expense of excluding a small number of ash/dust pixels. The 344 ash/dust
cases (305 ash scenes and 39 dust scenes) were selected so that a large number of background (surface
and atmosphere) and ash/dust cloud states were sampled. For instance, low-, middle-, and high-latitude
eruptions of varying intensity (and varying SO2 emissions) were selected and an effort was made to ensure
that a diverse set of underlying surfaces and clouds was sampled. MODIS scenes composed of resuspended
ash [e.g., Hadley et al., 2004] were also included. North American, African, Asian, and Australian dust clouds
were sampled.

The training database for the “yes” class consists of about 6.5 million volcanic ash pixels and 3.7 million
desert dust pixels, after applying several quality control measures and simple filters. The quality control
measures and filters are described shortly. Even though the number of dust cloud pixels in the training
data set is less than the number of ash cloud pixels, the method performs well when applied to dust
clouds because ash and dust have similar spectral signatures in the broadband to narrowband spectral
channels that the SECO method utilizes, and the range of dust cloud property states is likely smaller
than the range of ash cloud property states because ash clouds are the result of complex, and highly
variable, volcanological processes interacting with a wide range of complex and highly variable
atmospheric processes.

A total of about 2.5 billion nonvolcanic ash/dust pixels (after quality control and filtering), drawn from 2401
different 5min MODIS granules, were used to construct the training database for the “no” class. To avoid
cross-contamination, the nonash/nondust training pixels were taken from MODIS granules that were
independent of those used to construct the ash/dust component of the training. In fact, each of the 2401
5min MODIS granules used to build the “no” class training was deemed to be totally free of detectable ash
or dust clouds through manual inspection of false color imagery. Global or near-global coverage was
achieved for one day per month from November 2009 to October 2010 using both the Terra (midmorning
sun synchronous orbit) and Aqua (midafternoon sun synchronous orbit) satellites.

Despite the large size of the training data set, some portions of the various PDFs were not sampled. The
unsampled regions were consistent with physical expectations. Conditional probabilities cannot be equal
to zero, so the observational count in every PDF bin was increased by a constant noninteger factor such
that unsampled PDF bins produce ash/dust and nonash/nondust conditional probabilities that are
identical (the noninteger factor has no impact on the ratio between the “yes” and “no” class conditional
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probabilities in the bins that already
contained observations). This simple
step is needed to prevent arithmetic
overflow and gracefully default to the
prior probability in the rare event that
the unsampled portions of the PDF
are observed when applied to satellite
data not included in the training data
set. In the future, additional training
cases can also be added should there
be a need.

The nonvolcanic ash/dust component
of the training data will consist of clear
and cloudy pixels, as no cloud mask
was applied. The ash/dust training data
may also contain a very small fraction
of clear pixels due to smoothing of

cloud edges as an unavoidable consequence of the manual analysis process. A cloud mask algorithm was
not used to filter out clear pixels because all available algorithms classify volcanic ash and dust pixels as
“clear” to varying degrees. All pixels, however, were required to have a εtot(11μm)≥ 0.02, which ensures that
pixels that have an observed 11μm radiance that deviates very little from the estimated 11μm clear-sky radi-
ance do not negatively influence the classifier training or the implementation of the SECO algorithm. This step
eliminates many of the clear pixels without having to apply a separate cloud mask algorithm.

There are instances, however, where the εtot(11μm) of ash or dust clouds, which are identifiable in
multispectral imagery, is less than 0.02 or even negative (the observed radiance is greater than the
calculated clear-sky radiance) due to errors in the clear-sky radiance calculation or temperature inversion
effects, especially over land surfaces. Errors in the numerical weather prediction supplied surface
temperature can be quite large [Heidinger and Pavolonis, 2009] over land surfaces. When the surface
temperature is underestimated, the clear-sky radiance for a given surface-viewing channel (e.g., 11 and
12μm) will also be underestimated, sometimes causing the observed radiance to be greater than the
clear-sky radiance, even under cloudy conditions. Errors in the surface temperature impact the calculation
of the clear-sky radiance at 11 and 12μm similarly enough that the bias (calculated� observed) in the
calculated clear-sky 11–12μm BTD under observed clear-sky conditions is much less than the clear-sky
brightness temperature bias in either channel alone. As such, the calculated clear sky minus the observed
11–12μm BTD (hereafter referred to as BTD_Bias) can be empirically related to βtot(12μm, 11μm) for
ash/dust clouds that have an observed 11μm radiance that does not strongly deviate from the clear-sky
radiance or in situations where the clear-sky radiance is less than the observed radiance due to errors in
the clear-sky calculation and/or temperature inversion effects. The linear regression relationship shown in
Figure 6 is used to “restore” potential volcanic ash and dust pixels that have a εtot(11μm)< 0.02, a
BTD_Bias> 0.5 K, and an observed 11–12μm BTD< 0 K. Francis et al. [2012] and Pavolonis et al. [2013] also
utilized the BTD_Bias to aid in ash detection. A subset of the over-land volcanic ash/dust training data with
0.02< εtot(11μm)< 0.08 was used to construct the relationship shown in Figure 6. The εtot(11μm)< 0.02
screening rule and the empirical conversion of BTD_Bias to βtot(12μm, 11μm) are also utilized during the
practical implementation of the SECO algorithm.

Four simple multispectral filters are also applied to eliminate pixels from the “yes” and “no” training data that
have a “split-window” signature that is strongly inconsistent with ash/dust and is likely the result of the
human expert’s inability to exactly define the edge of ash and dust clouds in multispectral imagery during
the manual analysis process. The following filters are also applied during the practical implementation of
the SECO algorithm.

1. All pixels with a βtot(12μm, 11μm) value of>1.05, which is slightly greater than the upper theoretical limit
for volcanic ash and dust [Pavolonis, 2010; Pavolonis et al., 2013], are excluded from the “yes” and “no”
training data.

Figure 6. The empirical relationship used to estimate the top of troposphere
referenced 12/11 μm effective absorption optical depth ratio [βtot(12μm,
11μm)] from the clear minus observed 11–12μm brightness temperature
difference (BTD) is shown.
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2. All pixels must also have a 11–12μm BTD that is less than the BTD_MAX (see equation (7)), which
corresponds to the 99th percentile value from the ash/dust training data set as a function of εtot(11 )m).
This filter function is designed to mitigate the impacts of possible errors associated with manually
defining the edge of ash and dust clouds when εtot(11μm) ≥ 0.5.

BTDMAX ¼ �1:19εtot 11 μmð Þ þ 1:14;

1000:0;

0:5 ≤ εtot 11 μmð Þ ≤ 1:0

εtot 11 μmð Þ < 0:5

(
(7)

3. All pixels must also have a BTD_Bias that is greater than BTD_BIAS_MIN (see equation (8)), which corresponds
to the 1st percentile value from the ash/dust training data set as a function of εtot(11μm). This filter function is
designed to mitigate the impacts of possible errors associated with manually defining the edge of ash and
dust clouds when εtot(11μm)< 0.5.

BTDBIASMIN ¼ �0:70εtot 11 μmð Þ þ 0:03;

� 1000:0;

0:0 ≤ εtot 11 μmð Þ < 0:5

εtot 11 μmð Þ ≥ 0:5

(
(8)

4. All pixels with an observed 11–12μm BTD> 0 K must also have a βopaque(12μm, 11μm) value of <1.36,
which is the 99th percentile value from the ash/dust training data set.

The 11–12μm BTD (“split-window”) attributes of the quality-controlled and filtered training data were
analyzed to help quantify the limitations of traditional “split-window” ash/dust detection approaches and
to help illustrate that the training data are representative of a wide range of conditions. The relative and
absolute distributions of the 11–12μm BTD for the ash/dust (“yes”) and nonash/nondust (“no”) classes are
shown in Figure 7. The distributions clearly indicate that there is significant overlap between the two
classes such that even 11–12μm BTD values of �1 K are not totally unique to ash and dust clouds. In
addition, many volcanic ash/dust pixels do not exhibit a negative “split-window” signature likely due to
influences from background water vapor and/or cloud microphysical effects. While traditional threshold-
based “split-window” ash/dust detection algorithms are very simple to implement and may work well for a
single case with a limited geographic extent, Figure 7c shows that the when applied to a global, multiseason
data set, the detection skill (quantified using the critical success index) of those algorithms is extremely
limited. The critical success index (CSI) is defined as the number of hits divided by the sum of hits, false
alarms, and misses. The CSI does not take correct negatives into account, so it is an effective metric when
the event of interest is observed far less often than the nonevents and the tolerance for false alarms is low
(volcanic ash false alarms are particularly undesirable). The maximum CSI of a threshold-based “split-window”
algorithm applied to our extensive training data set is about 0.20 when a threshold of �1.25K is used. The
probability of detection (POD) for a threshold of�1.25K is only about 0.30 with a false alarm rate (FAR) of 0.002.

The features or classifiers (Fi) used in our Bayes implementation are listed in Table 3 as a function of satellite
sensor. Even though the naïve Bayes formulation allows us to assume that each feature or classifier is
independent, we utilize multivariate classifiers. The two- and three-dimensional classifiers are very effective
at capturing the most robust spectral indicators of ash and dust (see earlier discussion) without requiring
large PDFs. Our methodology still takes advantage of the independence assumption, as we utilize far more
than two or three predictors, which would not be practical without the naïve Bayes formulation. The
conditional probabilities for each class are estimated from histograms of the training data set. The histogram
bins are defined in Table 3.

Classifiers that are directly influenced by reflected sunlight were parsed into three different surface-type
categories (open water, snow/ice, and non-snow/ice land surfaces), while classifiers not directly influenced
by reflected sunlight were sorted into two different surface-type categories (open water and solid
surfaces). Daily global snow/ice maps were constructed by combining the 4 km Interactive Multisensor
Snow and Ice Mapping System [Ramsay, 1998], which at the time of this writing only provides coverage of
the Northern Hemisphere, with the 25 km Special Sensor Microwave Imager-Special Sensor Microwave
Imager/Sounder global ice concentration and snow extent data set [Nolin et al., 1998] to fill in the
Southern Hemisphere. The surface types were chosen to broadly account for surface albedo effects on
visible and near-infrared measurements during the day and differences in clear-sky infrared radiative
transfer error characteristics (errors are generally larger over land than open water). In addition, the classifiers
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that depend on ρ(3.9μm, 0.65μm) are
also parsed into two scattering angle
(Θ) categories (Θ< 90° and Θ ≥ 90°) to
roughly account for differences in the
0.65 and 3.9μm scattering phase func-
tions. The scattering angle is defined as

Θ ¼ cos�1
�� cos θsun cos θsat
þsin θsun sin θsat cos∅Þ (9)

where θsun is the solar zenith angle, θsat
is the satellite zenith angle, and∅ is the
relative azimuth angle. Experiments
were conducted using more than two
Θ categories, but the results changed
very little.

The SECO algorithm utilizes five to eight
classifiers, depending on the spectral
channels provided by a given sensor.
Each classifier has εtot(11μm) as the out-
ermost dimension since uncertainties in
the clear-sky radiative transfer calcula-
tions influence the interpretation of
the multispectral parameters [Pavolonis
et al., 2006; Pavolonis, 2010; Pavolonis
et al., 2013]. When the solar zenith angle
is less than 85° and sun glint is not pre-
sent, four different varieties of β(12μm,
11μm) are paired with ρ(3.9μm,
0.65μm) (see Table 3). Sun glint is
deemed to be present if the pixel is
located over open water and the glint
angle (Θglint) is greater than 40°. The
glint angle is defined in equation (10).

Θglint ¼ cos�1
�
cos θsun cos θsat
þsin θsun sin θsat cos∅Þ (10)

It is important to note that the relation-
ship between any two forms of β(λ1, λ2),
produced using the same λ1 and λ2, is
highly nonlinear [Heidinger et al., 2010],
so each form of β(12μm, 11μm) coupled
with ρ(3.9μm, 0.65μm) will produce a
different conditional probability. From
a physical standpoint, each form of
β(12μm, 11μm) describes a different
part of the solution space that defines
which cloud property states are possible

given the measurements (and associated noise) and the clear-sky radiative transfer modeling (and associated
errors). For additional discussion of the cloud property solution space in the infrared, consult Heidinger et al.
[2010] and Pavolonis [2010]. When the solar zenith angle (θsun) is greater than 90°, the same four varieties of
β(12μm, 11μm) are paired with εp(3.9μm). In the day/night terminator region (85°≤ θsun≤ 90°) and in sun
glint, a εtot(11 μm) × β(12 μm, 11 μm) multivariate classifier is used. In addition, the εtot(11 μm) × βtot
(12 μm, 11 μm) × βtot(8.5 μm, 11 μm), εtot(11 μm) × βopaque(12 μm, 11 μm) × βopaque(8.5 μm, 11 μm), and εtot

Figure 7. (a) Normalized distribution of the 11–12 μm brightness tem-
perature difference (BTD) of the data used to derive the ash/dust and
the nonash/nondust class conditional probabilities. (b) Same as Figure 7a,
except the distribution is not normalized and is shown using a log y axis.
(c) Skill statistics of a simple threshold-based 11–12 μm BTD ash/dust
detection approach, applied to the training data set, is plotted as a function
of the chosen threshold (classified as ash/dust if 11–12 μm BTD ≤ threshold
on the x axis). The probability of detection (red), false alarm rate (green),
and critical success index (black) are shown.
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Table 3. The Leftmost Portion of the Table Lists the Individual Radiative Parameters Utilized to Construct SECO Algorithm
Classifiers, Along With the Corresponding Histogram Binning Scheme Used to Estimate the Classifier PDFsa

Parameter [Parameter ID] Number of Histogram Bins Starting Boundaries of Histogram Bins

εtot(11 μm) [1] 6 0.01, 0.03, 0.10, 0.20, 0.50, 0.90
βtot(12 μm, 11 μm) [2] 42 �0.10 to 1.95 in increments of 0.05
βopaque(12 μm, 11 μm) [3] 42 �0.10 to 1.95 in increments of 0.05
βtot_σ8(12 μm, 11 μm) [4] 42 �0.10 to 1.95 in increments of 0.05
βtot_σ7(12 μm, 11 μm) [5] 42 �0.10 to 1.95 in increments of 0.05
βtot(8.5 μm, 11 μm) [6] 21 �0.10 to 1.90 in increments of 0.10
βopaque(8.5 μm, 11 μm) [7] 21 �0.10 to 1.90 in increments of 0.10
βtot(7.3 μm, 11 μm) [8] 21 �0.10 to 1.90 in increments of 0.10
ρ(3.9 μm, 0.65 μm) [9] 13 0.00 to 1.20 in increments of 0.10
εp(3.9 μm) [10] 25 0.80 to 2.00 in increments of 0.05
BTD(11-12 μm) [11] 33 �3.0 to 5.0 in increments of 0.25 K

Multivariate Classifier Arrays Relevant Sensors Conditions

[1] × [2] × [9] AVHRRb Only applied outside of sun glint when
the solar zenith angle is less than 85°.[1] × [3] × [9] COMS-MI

[1] × [4] × [9] GOES-Imagerc

[1] × [5] × [9] GOES-R ABI
[1] × [11] × [9] Himawari-8/9 AHI

MODIS
MTSAT Imager
MSG SEVIRI
MTG FCI
VIIRS

[1] × [2] × [10] AVHRRb Only applied when the solar zenith
angle is greater than 90° and stray light

is not detected.
[1] × [3] × [10] COMS-MI
[1] × [4] × [10] GOES-Imagerc

[1] × [5] × [10] GOES-R ABI
[1] × [11] × [10] Himawari-8/9 AHI

MODIS
MTSAT Imager
MSG SEVIRI
MTG FCI
VIIRS

[1] × [2] × [6] GOES-R ABI Applied at all times.
[1] × [3] × [7] Himawari-8/9 AHI

MODIS
MSG SEVIRI
MTG FCI
VIIRS

[1] × [2] × [8] GOES-R ABI Applied at all times.
Himawari-8/9 AHI

MODIS
MSG SEVIRI
MTG FCI

[1] × [2] AVHRRb Only applied when both ρ(3.9 μm, 0.65 μm)
and εp(3.9 μm) are invalid.[1] × [3] COMS-MI

[1] × [4] GOES-Imagerc

[1] × [5] GOES-R ABI
[1] × [11] Himawari-8/9 AHI

MODIS
MTSAT Imager
MSG SEVIRI
MTG FCI
VIIRS

aThemultivariate classifier arrays (using the radiative parameter IDs shown in the left part of the table) are listed in the
right part of the table as a function of satellite sensor and the conditions required for utilization. Sun glint is assumed to
be present over water surfaces if the glint angle is less than 40°. Stray light is assumed to be present if the solar zenith
angle exceeds 90° and the measured 0.65 μm count is greater than a sensor-dependent threshold. Please see Table 2 for
a list of sensor acronyms.

bThe analogue to the 3.9 μm band on AVHRR (the 3.75 μm band) is currently not available on the MetOp-A and
MetOp-B spacecraft during daytime operations.

cThe 12 μm channel is only available on the GOES 8–11 spacecraft.
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(11 μm) × βtot(12 μm, 11 μm) × βtot(7.3 μm, 11 μm) classifiers are used at all times of the day if the sensor
spectral capabilities allow. While β(12 μm, 11 μm) has been demonstrated to be a more robust metric for
inferring cloud composition than the 11–12 μm BTD [Pavolonis, 2010], multivariate 11–12 μm BTD-based
classifiers are also used as there are occasions when the β(12 μm, 11 μm)-based metrics are less skillful
either due to errors in clear-sky radiative transfer modeling or due to “saturation” issues at large cloud
optical depths. The 11–12μm BTD-based classifiers are only used when the 11–12μm BTD is less than zero and
the BTD data are parsed into five different 11μm clear-sky brightness temperature bins (<255K, 255–260K,
260–265 K, 265–270 K, and >270 K) to account for the increased frequency of occurrence of negative
“split-window” values in environments with cold backgrounds [Pavolonis et al., 2006].

By taking the ratio of the ash/dust conditional probability to the nonash/nondust conditional probability for
each bin in the conditional probability lookup table, regions of the multivariate classifier space that favor
volcanic ash/dust can be easily visualized. Figure 8 shows the conditional probability ratio of all of the
multivariate classifiers used over open water surfaces. In addition, Figures 8a–8d are valid for Θ ≥ 90°. Only
the 0.10–0.20 εtot(11μm) bin is shown for the three-dimensional classifiers (Figures 8a–8). The cyan to red
portion of the color scheme is indicative of histogram bins where the ash/dust conditional probability is
larger than the nonash/nondust conditional probability. Figure 8 indicates that the relationship between a
given pair of multispectral variables is generally complicated and not conducive to using simple threshold
functions to identify ash and dust in a deterministic manner. While βtot(12μm, 11μm) must have a valid
value in order to estimate the ash/dust probability for a given satellite pixel, all other variants of β(λ1, λ2) are
allowed to be invalid (ε(λ1) and/or ε(λ2)< 0.0), as an invalid β(λ1, λ2) is still informative. For instance, an invalid
βtot_σ8(12μm, 11μm) is more likely to be associated with a single-layer cloud than a valid value of βtot_σ8
(12μm, 11μm). All invalid β(λ1, λ2) values are placed in the very first histogram bin for that particular β(λ1,
λ2). It is also worth noting that due to the maximum emissivity being capped at 0.99990 as a means of
preventing arithmetic overflow when computing cloud optical depth (see equation (3)), the minimum valid
value of βopaque(λ1, λ2) is approximately 0.425 (e.g., ε(λ1) = 0.98 per the definition of the opaque cloud
assumption and ε(λ2) = 0.99990 per the maximum allowed value).

As might be expected, the three-dimensional classifiers (Figures 8a–8k) can provide greater spectral separation
between ash/dust and all other features in the training data set compared to the two-dimensional (bispectral)
classifiers (Figures 8l–8o). Fortunately, the two-dimensional classifiers are only utilized under a very limited set
of conditions. Figure 8 also reveals that the classifiers that utilize the top of troposphere variant of β(λ1, λ2)
provide the best opportunity to produce an ash/dust conditional probability that is 1000–10,000 times larger
than the nonash/nondust conditional probability. In contrast, the classifiers that utilize an “opaque cloud”
version of β(λ1, λ2) generally provide the best opportunity to produce an ash/dust conditional probability that
is 1000–10,000 times smaller than the nonash/nondust conditional probability. The βtot(12μm, 11μm)× βtot
(8.5μm, 11μm) classifier (Figure 8i) has two distinct regions where the ash/dust conditional probability is at
least 100 times greater than the nonash/nondust conditional probability. The dual-maxima structure is
primarily the result of small amounts of SO2 combining with volcanic ash to create a spectral signature that is
very similar to low-level liquid water clouds. The dual-maxima pattern is most pronounced when εtot
(11μm)< 0.10 (not shown), rendering the β(8.5μm, 11μm)-based classifiers (Figures 8i and 8j) less useful in
the transition region between little to no SO2 influence and strong SO2 influence. Thus, the β(8.5μm, 11μm)-
based classifiers are not used unless εtot(11μm)> 0.10 or βtot(8.5μm, 11μm)≤ 1.05 or βtot(8.5μm, 11μm)≥ 2.0.

Over land surfaces, the classifiers that do not rely on the presence of sunlight exhibit ash/dust conditional
probabilities that are rarely more than 1000 times larger than the corresponding nonash/nondust conditional
probability (not shown). The differences between the land and water conditional probabilities can be largely
attributed to the greater uncertainty in the clear-sky radiance calculations over land. Over snow and ice
surfaces, ρ(3.9μm, 0.65μm) is very small under clear-sky conditions because snow and ice have a very large
albedo at 0.65μm and a very small albedo at 3.9μm, further reducing the ratio between the ash/dust
conditional probability and the nonash/nondust conditional probability. The difference between surface
types (land versus water versus snow) becomes much smaller with increasing εtot(11μm). Finally, the
conditional probability ratios for the 11–12μm BTD-based classifiers are highly negative “split-window”
values. Far less separation between ash/dust and all other features is found when the 11–12μm BTD is about
�0.5 K or larger. Additional details on the conditional probability ratios can be found in Pavolonis [2014].
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Figure 8. The ratio of the ash/dust class conditional probability to the class conditional probability of all other features is shown as a function of various multivariate
spectral classifiers for an open water surface. The cyan through red portion of the color scheme indicates that the class conditional probability of ash/dust is greater
than the class conditional probability of all nonash/nondust features for that histogram bin. (a) βtot(12 μm, 11 μm) versus ρ(3.9 μm, 0.65 μm) (daytime classifier),
(b) βopaque(12 μm, 11 μm) versus ρ(3.9 μm, 0.65 μm) (daytime classifier), (c) βtot_σ8(12 μm, 11 μm) versus ρ(3.9 μm, 0.65 μm) (daytime classifier), (d) βtot_σ7(12 μm,
11 μm) versus ρ(3.9 μm, 0.65 μm) (daytime classifier), (e) βtot(12 μm, 11 μm) versus εp(3.9 μm) (nighttime classifier), (f) βopaque(12 μm, 11 μm) versus εp(3.9 μm)
(nighttime classifier), (g) βtot_σ8(12 μm, 11 μm) versus εp(3.9 μm) (nighttime classifier), (h) βtot_σ7(12 μm, 11 μm) versus εp(3.9 μm) (nighttime classifier), (i) βtot(12 μm,
11 μm) versus βtot(8.5 μm, 11 μm) (day and night classifier), (j) βopaque(12 μm, 11 μm) versus βopaque(8.5 μm, 11 μm) (day and night classifier), (k) βtot(12 μm, 11 μm)
versus βtot(7.3 μm, 11 μm) (day and night classifier), (l) εtot(11 μm) versus βtot(12 μm, 11 μm) (twilight classifier only), (m) εtot(11 μm) versus βopaque(12 μm, 11 μm)
(twilight classifier only), (n) εtot(11 μm) versus βtot_σ8(12 μm, 11 μm) (twilight classifier only), (o) εtot(11 μm) versus βtot_σ7(12 μm, 11 μm) (twilight classifier only).
Figures 8a–8k are valid for 0.10< εtot(11 μm)< 0.20.
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5. Analysis of Volcanic Ash/Dust Probabilities

An initial assessment of the naïve Bayesian method, used to identify which satellite pixels are most likely
to contain volcanic ash/dust, is conducted through the analysis of four ash/dust cases captured by MODIS.
Each of the four cases (two volcanic ash and two dust) is independent of the classifier training data, and the
ash/dust probability is assessed within the context of human expert-estimated horizontal cloud boundaries
and the traditional “split-window” technique for detecting volcanic ash and dust. Ash/dust probability

Figure 9. The results of the Bayesianmethod are shown for a TerraMODIS image from 19 February 2001 at 23:10 UTC. (a) 12–11 μm, 11–8.5 μm, and 11 μm false color
image. (b) 12–11 μm, 11–3.9 μm, and 11 μm false color image. (c) 11 μm image. (d) Ash/dust probability image for 0.65, 3.9, 7.3, 8.5, 11, and 12 μm channel
combination. (e) Histogram of ash/dust probability inside (black) and outside (red) of manually analyzed ash/dust cloud. The outer bounds of the manually defined
ash/dust cloud are overlain on each georeferenced image.
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results are generated using four different
spectral channel combinations that are
commonly available on operational and
research satellite radiometers.

1. 0.65 (daytime only), 3.9, 7.3, 8.5,
11, and 12μm (SC1, SC = spectral
combination)

2. 0.65 (daytime only), 3.9, 8.5, 11, and
12μm (SC2)

3. 0.65 (daytime only), 3.9, 11, and
12μm (SC3)

4. 11 and 12μm (SC4)

The goal of the manual analysis of the
ash/dust cloud boundaries was to
define a region of interest (ROI) that
contains the portion of the ash/dust
cloud that can be manually identified
in multispectral imagery, either directly
or through spatial deduction. All conclu-
sions drawn from the comparison to the
manually determined ROI are derived
from relative relationships. As such,
small perturbations to the ROI do not
impact the results as long as ash or dust
pixels that exhibit a robust spectral sig-
nature (i.e., are obvious in the imagery)
are not left out of the ROI.

5.1. Volcanic Ash From Mount
Cleveland (Daytime)

The ash/dust probabilities are analyzed
using the previously discussed daytime
scene with airborne volcanic ash (and
SO2) from an explosive eruption of
Mount Cleveland, AK, that began on
19 February 2001 at approximately
14:30 UTC [McGimsey et al., 2004]. The
starting date and time of the Terra
MODIS granule is 19 February 2001 at
23:10 UTC. The results, along with refer-
ence imagery, are shown in Figure 9.
The bounds of the manually derived
ROI are overlain on each georeferenced
image in Figures 9a–9d. While the
spatial distribution of the ash optical
depth is unknown, the 11 μm bright-
ness temperature image (Figure 9c)
indicates that much of the cloud is
quite tenuous (has a small optical
depth). The ash/dust probability image

(the transition from red to orange in the color bar indicates a transition to probabilities that are less than
10%) and the normalized histogram of ash/dust probability (inside and outside of the ROI) are shown for
SC1. Recall that probabilities are only computed for pixels that passed the prescreening tests described

Figure 10. Skill statistics of threshold-based ash/dust detection, applied
to several different metrics, are shown as a function of the selected
threshold. The thresholds are relevant to the following metrics: 0.65, 3.9,
7.3, 8.5, 11, and 12 μm-based probability (black), 0.65, 3.9, 8.5, 11, and
12 μm-based probability (red), 0.65, 3.9, 11, and 12 μm-based probability
(blue), 11 and 12 μm-based probability (green), and BTD (11–12 μm). The
statistics are valid for a 5min MODIS granule with a starting time of 19
February 2001 at 23:10 UTC. The bottom x axis is BTD (11–12 μm), and
the top x axis is ash/dust probability. The (a) critical success index (CSI),
(b) probability of detection, and (c) false alarm rate are shown. The circles
denote the threshold where the CSI is a maximum.
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earlier. The 11 μm brightness temperature is shown in the geolocated images wherever the pixel probabil-
ity is not computed. The histograms were created using the entire 5min MODIS granule, not just the sub-
granule region shown in the georeferenced images (for the sake of clarity) within Figure 9. The ash/dust
probability is expressed as a percentage, and log scaling is used in to enhance details at low probabilities.

While only the SC1 results are shown, every channel combination tested demonstrates that the Bayesian
method has good skill, as the amount of overlap between pixels inside and outside the ROI is relatively
small but does increase as the number of spectral channels utilized decreases, as one would expect if the
spectral channels that are removed add value. Additional analysis was conducted to better quantify

Figure 11. Same as Figure 9 except for a TerraMODIS image from 20 February 2001 at 08:45 UTC. Since this is a nighttime scene, the 0.65 μm channel is not utilized.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022968

PAVOLONIS ET AL. ASH/DUST DETECTION, PART 1 7833



theperformance of each spectral channel
combination relative to the traditional
“split-window” BTD. Performance-related
statistics (Figure 10a: CSI, Figure 10b:
POD, and Figure 10c: FAR) are shown in
Figure 10. The statistics are shown as a
function of the threshold used to
create a binary yes/no ash/dust mask
from the probability derived from
each spectral channel combination as
well as the “split-window” BTD. The
simple binarymasks are not the end goal;
it is just used to assess the performance of
the Bayesian method by quantifying
the amount of overlap between the
ash/dust and nonash/nondust classes.
The ash/dust probability threshold is
shown on the top x axis of Figure 10,
and the 11–12 μm BTD threshold is
shown on the bottom x axis. The SC1,
SC2, SC3, SC4, and “split-window” BTD
results are shown in black, red, blue,
green, and magenta, respectively. The
filled colored circles indicate which
threshold, used to create a binary
mask, produces the largest CSI. The
ash/dust probability metric always pro-
duces a significantly larger maximum
CSI than the “split-window” BTD. More
specifically, SC1 produces the greatest
maximum CSI (0.29), followed by SC4
(0.25), SC2 (0.24), SC3 (0.21), and the
“split-window” BTD (0.13). The ranking
of SC4 slightly ahead of SC2 and SC3
indicates that βtot(7.3 μm, 11 μm) is
adding good value in this case, primar-
ily due to the presence of SO2, and the
ρ(3.9 μm, 0.65 μm) signal in certain
portions of the cloud is weak (<0.3) as
shown in Figure 4i. The weak ρ(3.9 μm,
0.65 μm) signals are collocated with
regions where the cloud is hardly
identifiable in 11 μm imagery, indica-
tive of very low optical depths, where

a strong ρ(3.9 μm, 0.65 μm) signal is not expected [Pavolonis et al., 2006]. Finally, even though the same
two spectral channels (11 and 12 μm) are used, SC4 is much more skillful at distinguishing ash/dust from
all other features than the 11–12μmBTD alone, which illustrates the power of using εtot(11μm) and β ratios in lieu
of, or in addition to, BTDs.

5.2. Volcanic Ash From Mount Cleveland (Nighttime)

In the 9.5 h between Terra MODIS overpasses, volcanic ash and gases from the explosive 19 February 2001
eruption of Cleveland dispersed along a NW/SE axis and were advected northeastward by the atmospheric
winds. Results from the 20 February 2001 08:45 UTC Terra MODIS (nighttime) overpass are shown in
Figure 11. The 11 μm brightness temperature image (Figure 11c) indicates that nearly the entire ash cloud

Figure 12. Same as Figure 10 except the statistics are valid for a 5min Terra
MODIS granule with a starting time of 20 February 2001 at 08:45 UTC.
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is now highly semitransparent to infrared radiation and quite difficult to see in single-channel infrared
imagery, more so than in the 19 February 2001 23:10 UTC Terra MODIS overpass shown earlier, likely due
to dispersion and ash fallout processes. Similar to the 19 February Cleveland volcanic ash example, the
overlap in the ash/dust probability distribution inside and outside of the ROI is rather small but does
increase when less spectral channels are utilized. Performance metrics analogous to Figure 10 are shown
in Figure 12. Once again, the ash/dust probability metric always produces a significantly larger maximum
CSI than the “split-window” BTD maximum value of 0.08. SC1, SC2, and SC3 produce maximum CSI of
about 0.30, while SC4 has a maximum CSI of 0.24. The SC4 maximum CSI of 0.24 is three times greater than

Figure 13. Same as Figure 9 except for an Aqua MODIS image from 29 July 2012 at 17:35 UTC.
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the “split-window” maximum of 0.08,
further illustrating the value of using
εtot(11 μm) and β ratios. Even though
the CSI analysis indicates that addi-
tional spectral channels do not always
have a large impact, it will be shown
in Part 2 of this paper [Pavolonis et al.,
2015] that the extra spectral channels
do have noticeable positive impact
on the final results of the complete
SECO algorithm.

5.3. South American Dust (Daytime)

The Bayesianmethodwas also applied to
a dust case where sediments, primarily
composed of gypsum, calcite, and halite
[Piovano et al., 2002; Varandas da Silva
et al., 2008], from dried up portions of
Laguna Mar Chiquita, a saline lake in
central Argentina, were lofted into the
atmosphere by strong winds on 29
July 2012 (a small portion of the dust
area may be the result of secondary
sources). Not only is this case indepen-
dent of the training data set, the train-
ing data set also did not include any
South American dust cases, let alone a
case with a unique rock type that is
associated with a relatively localized
source. In addition, the dust is primarily
located over land, where uncertainty in
the clear-sky radiance calculations is
greater compared to water surfaces.
Thus, this case is quite useful for demon-
strating the robustness of the Bayesian
method. The starting date and time of
the Aqua MODIS granule used in this
analysis is 29 July 2012 at 17:35 UTC
(daytime). The results are shown in
Figures 13 and 14. Because of its rela-
tively unique composition, the dust
does not take on the typical reddish
color in the 12–11μm, 11–8.5μm, and

11μm false color image (Figure 13a). The manually analyzed bounds of the dust cloud were primarily
determined from the 12–11μm, 11–3.9μm, and 11μm false color image (Figure 13b) where the cloud is
more readily apparent. The dust cloud ROI is also consistent with MODIS true color imagery (https://earth-
data.nasa.gov/labs/worldview/). While the ash/dust probability within the dust cloud is generally quite
large (>80%), a fair number of larger values are also found outside of the ROI compared to the over-water
Cleveland volcanic ash cases. The larger probabilities outside of the ROI are mainly caused by spectral
variability in surface emissivity that resembles ash/dust clouds, coupled with errors in the clear-sky radi-
ance calculations (largely driven by errors in land surface temperature). Nevertheless, the overlap in
ash/dust probability inside and outside of the ROI is quite small and increases when fewer spectral chan-
nels are used, as indicated by the statistics shown in Figure 14. The maximum CSI associated with applying

Figure 14. Same as Figure 10 except the statistics are valid for a 5min
Aqua MODIS granule with a starting time of 29 July 2012 at 17:35 UTC.
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a threshold to the ash/dust probability (0.43, 0.43, 0.41, and 0.46 for SC1, SC2, SC3, and SC4, respectively)
is still nearly twice the maximum CSI that can be achieved by applying a threshold to the “split-window”
BTD (0.22) for this MODIS granule (Figure 14), regardless of the spectral channel combination used in
estimating ash/dust probability. Despite the complexities introduced by a variety of complicated land
surface types, the FAR associated with the maximum ash/dust CSI is comparable to the over-ocean
Cleveland ash scenes, but the probability threshold required to achieve the maximum CSI does vary quite
a bit from scene to scene. This issue is addressed in Part 2 of this paper [Pavolonis et al., 2015].

Figure 15. Same as Figure 9 except for a TerraMODIS image from 24 January 2014 at 03:55 UTC. Since this is a nighttime scene, the 0.65 μm channel is not utilized.
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5.4. South American Dust (Nighttime)

Dust lofted from the western portion of
the Argentinean Pampa (plain) by a noc-
turnal thunderstorm outflow boundary
on 24 January 2014 was also examined.
Feldspars and quartz tend to be the
primary mineral components of dust
that originates from the Argentinean
Pampa [Ramsperger et al., 1998a,
1998b]. The starting date and time of
the TerraMODIS granule used in this ana-
lysis is 24 January 2014 at 03:55 UTC, and
the results are shown in Figures 15 and
16. Similar to the Laguna Mar Chiquita
dust scene, pixels outside of the manu-
ally derived ROI sometimes have a larger
probability due to surface emissivity
effects and errors in the clear-sky radia-
tive transfer (Figure 15). In addition,
unlike the previous three cases, the
SC4-derived ash/dust probabilities are
not particularly skillful in this over-land
nighttime scene, likely as a result of less
contrast between the temperature of
the dust cloud and the background. The
additional spectral information offered
by SC1, SC2, and SC3 adds more value
in the low-temperature contrast situa-
tions commonly encountered at night.
As shown in Figure 16, the maximum
CSI of the SC1- (0.21), SC2- (0.21), and
SC3-derived (0.22) ash/dust probabilities
is more than twice the maximum CSI of
the “split-window” BTD (0.10). The maxi-
mum CSI of SC4 does not improve upon
the “split-window” BTD likely due to low
signal to noise and clear-sky radiative
transfer errors. Overall, the Bayesian
method has been demonstrated to be
skillful in distinguishing ash/dust and
nonash/nondust features, day and
night, over land and over water. Pixel
and cloud object filters that minimize

the impact of clear-sky radiative transfer errors, like those encountered in the two South American dust
scenes, are described by Pavolonis et al. [2015].

6. Conclusions

The SECO volcanic ash and dust detection algorithm, which can be applied to nearly any satellite sensor at all
times of the day, consists of four major components. The first two components, computation of advanced
radiative metrics and estimation of the probability that a given pixel contains volcanic ash and/or dust, were
described in this paper. The remaining two parts, construction of cloud objects and the selection of volcanic
ash/dust cloud objects, are described in a companion paper [Pavolonis et al., 2015]. The methodology for

Figure 16. Same as Figure 10 except the statistics are valid for a 5min
TerraMODIS granule with a starting time of 24 January 2014 at 03:55 UTC.
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computing advanced radiative metrics, such as effective absorption optical depth ratios (β ratios), was
described. Multispectral infrared measurements are expressed as β ratios, as opposed to traditional
brightness temperature differences (BTDs), because β ratios provide increased sensitivity to cloud
microphysical properties, including cloud composition. A naïve Bayesian approach was developed to take
advantage of the volcanic ash/dust-relevant cloud composition information that the β ratios provide. Various
empirically derived multivariate classifiers were constructed by coupling β ratios, computed from the
radiance measured at approximately 11 and 12μm, with visible and near-infrared measurements (0.65
and/or 3.9μm) or β ratios that are computed using other spectral channel pairs (8.5/11μm and 7.3/11μm).
Several case studies showed that the naïve Bayesian approach is quite skillful even when only subsets of the
allowable spectral channels are utilized. The skill of the Bayesian approach was also shown to greatly
exceed the traditional “split-window” method used to detect volcanic ash and dust.

The ultimate objective of the automated SECO approach is to produce a binary volcanic ash/dust mask that is
comparable in skill to a mask that is manually constructed by a human expert. Discrimination of ash and dust
is important and will be the focus of future SECO development efforts. Despite the success of the Bayesian
method, it, alone, is not skillful enough to construct a human expert-like binary mask by simply applying a
probability threshold. As shown by Pavolonis et al. [2015], the Bayesian method must be combined with
advanced spatial analysis techniques to produce such a result.
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