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ABSTRACT

The Geostationary Operational Environmental Satellite (GOES)-R convective initiation (CI) algorithm

predicts CI in real time over the next 0–60min. While GOES-R CI has been very successful in tracking

nascent clouds and obtaining cloud-top growth and height characteristics relevant to CI in an object-tracking

framework, its performance has been hindered by elevated false-alarm rates, and it has not optimally com-

bined satellite observations with other valuable data sources. Presented here are two statistical learning

approaches that incorporate numerical weather prediction (NWP) input within the established GOES-R CI

framework to produce probabilistic forecasts: logistic regression (LR) and an artificial-intelligence approach

known as random forest (RF). Both of these techniques are used to build models that are based on an ex-

tensive database of CI events and nonevents and are evaluated via cross validation and on independent case

studies.With the proper choice of probability thresholds, both the LR andRF techniques incorporating NWP

data produce substantially fewer false alarms than when only GOES data are used. The NWP information

identifies environmental conditions (as favorable or unfavorable) for the development of convective storms

and improves the skill of the CI nowcasts that operate on GOES-based cloud objects, as compared with when

the satellite IR fields are used alone. The LR procedure performs slightly better overall when 14 skill mea-

sures are used to quantify the results and notably better on independent case study days.

1. Introduction

Considerable effort has been spent on obtaining highly

accurate convective initiation (CI) nowcasts, or 0–1-h

forecasts, in light of the impacts convective storms have

on infrastructure, travel, and society (Fritsch et al. 1998;

Curran et al. 2000; Weckwerth et al. 2004; Weckwerth

and Parsons 2006; Brooks and Dotzek 2007). Given the

high cost of convectiveweather to various forms of travel,
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particularly aviation-related disruptions (Evans and

Ducot 2006; Wolfson and Clark 2006; Iskenderian et al.

2010, 2012), and the cost of storm-related hazards (hail,

high winds, flooding, tornadoes; Brooks et al. 2003;

Brooks andDotzek 2007; Dixon et al. 2011),more precise

and timely thunderstorm forecasts are needed. It is also

important to further our understanding of the physical

processes that drive CI (Wilson et al. 1998; Ziegler et al.

2007; Lima and Wilson 2008; Wakimoto and Murphey

2009) given the correspondence between correct CI

nowcasts and subsequent forecast skill (e.g., Brooks et al.

1992), which then allows us to use radar, satellite, and

other observations in more intelligent ways within now-

casting systems.

A number of 0–2-h, mostly extrapolation-based sys-

tems that emphasize the use of radar observations have

been developed to predict where CI is likely to occur

and where existing convective storms are likely to

propagate. These systems include the AutoNowcaster

(Mueller et al. 1993, 2003; Wilson et al. 2010; Roberts

et al. 2012) for CI and storm propagation; the Thun-

derstorm Identification, Tracking, Analysis and Now-

casting (TITAN; Dixon and Wiener 1993); the Warning

Decision Support System–Integrated Information

(Lakshmanan et al. 2007); the Canadian Radar De-

tection System (CARDS; Joe et al. 2003); the Thun-

derstorm Strike Probability Nowcasting Algorithm

(THESPA; Dance et al. 2010); and the Collaborative

Adaptive Sensing of the Atmosphere (CASA) Distrib-

uted Collaborative Adaptive Sensing network

(Ruzanski et al. 2011) for storm cell evolution and

tracking. Other nowcast systems like the Global/

Regional Assimilation and Prediction System–Severe

Weather Forecast Tool (GRAPES–SWIFT; Hu et al.

2007), with an overview provided inWilson et al. (2010),

and the Corridor Integrated Weather System (CIWS;

Wolfson and Clark 2006), also include fields from nu-

merical weather prediction (NWP)models as a means of

forming high-quality analyses and modeled initial con-

ditions (Feng et al. 2007) for storm-tracking purposes.

Returning to CI, an ideal platform for providing an

early detection capability for the potential initiation of

thunderstorms is geostationary satellite data (Purdom

1976, 1982; Roberts and Rutledge 2003; Mecikalski and

Bedka 2006; Rosenfeld et al. 2008; Mecikalski et al.

2010a,b). Geostationary satellites like the Geosta-

tionary Operational Environmental Satellite (GOES)

over North and South America, Meteosat over Europe,

the Fengyun series over China, the Multifunctional

Transport Satellite (MTSAT), and the Himawari-8/-9

series over Japan and surrounding oceanic regions, offer

500-m- to 4-km-resolution views in visible, near-infrared

(NIR), and infrared (IR) channels at 5–15-min temporal

resolution (with 2.5-min rapid scan modes). Methods

developed by Roberts and Rutledge (2003), Mecikalski

and Bedka (2006), Lensky and Rosenfeld (2006),

Rosenfeld et al. (2008), Harris et al. (2010), Mecikalski

et al. (2010a,b), Sieglaff et al. (2011), Walker et al.

(2012), Merk and Zinner (2013), and Nisi et al. (2014)

demonstrate an ability to nowcast CI using geosta-

tionary satellites, and help identify locally strong, newly

forming convective storms. For this present study, a

legacy radar-based CI definition is used, namely the first

occurrence of a $35-dBZ echo at the 2108C level

within a cumulus cloud (Browning and Atlas 1965;

Wilson and Schreiber 1986; Wilson et al. 1992; Wilson

and Mueller 1993; Mueller et al. 2003).

Until recently, most satellite-based approaches to CI

nowcasting have emphasized use of critical thresholds in

one (Roberts and Rutledge 2003; Sieglaff et al. 2011) or

more (Mecikalski and Bedka 2006; Rosenfeld et al. 2008;

Mecikalski et al. 2008, 2010a,b) IR ‘‘interest fields’’ derived

from the satellite imagery to predict which cumulus clouds

will develop into cumulonimbus clouds over an ;60-min

time frame. Table 1 shows interest fields forGOES (the top

nine fields) that have been used successfully to nowcast CI

occurrence using IR data, while other studies focus on the

use of visible data (Setvák et al. 2003; Mecikalski et al.

2010b; Merino et al. 2014). Static thresholds are useful yet

scoring a convective object (i.e., an individual cumulus

cloud) typically only provides a ‘‘yes’’ or ‘‘no’’ CI nowcast

of a pending new storm. Such binary, deterministic now-

casts are somewhat less useful to forecasters of imminent

convective weather (Siewert and Kuhlman 2011), whereas

probabilistic forecasts (i.e., 0%–100%) are found to be

easier to interpret (Terborg and Gravelle 2012). Probabi-

listic forecasts also provide useful information on the un-

certainty of the event (Dance et al. 2010; Steiner et al.

2010). The AMS Council (2008) stated, ‘‘surveys have

consistently indicated that users desire information about

uncertainty or confidence of weather forecasts. [And that

information] is likely to yield substantial economic and

social benefits, because users can make decisions that ex-

plicitly account for this uncertainty.’’ This statement sup-

ports the need for an evolution toward combining data

from many sources to address challenging forecast prob-

lems (in this case CI), while presenting the data in a

meaningful way for end users (e.g., probabilistically).

Although satellites ‘‘see’’ cumulus clouds growing

well in advance of a radar echo, incorporation of non-

satellite fields becomes valuable when forecasting CI for

several reasons, including being able to constrain the

forecast problem, and by providing information that

otherwise is not contained in satellite fields. Examples of

the former include predicting CI only where convective

instability is positive [e.g., where the convective
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available potential energy (CAPE) is positive], in-

dicating the potential for CI. For the latter, NWP

soundings of moisture and wind shear complement

cloud-top temperature and inferred in-cloud dynamics

offered by geostationary satellite fields by identifying

conducive environmental conditions.

The CI nowcast problem is well suited for statistical

learning methods that permit fusion of a variety of data.

This is true for two reasons: 1) CI is very much regulated

by local conditions, such that a combination of satellite-

derived predictors that produces a forecast with high

skill in one situation may fail in another, despite con-

ditions appearing similar in the predictor variables (IR

fields in this case); and 2) it is difficult to know where

most of the ‘‘importance’’ lies within a set of predictors,

which again can be a function of relatively local phe-

nomena (e.g., meso-g scale, 2–25 km, with respect to

developing thunderstorms). The motivation for the

present study is to demonstrate procedures that make

use of both satellite and nonsatellite predictors to pro-

vide probabilistic CI nowcasts. This study diverges from

previous efforts in that nonsatellite NWP datasets are

considered for use in combination with IR datasets as a

means of increasing the value that geostationary satellite

brightness temperature (TB) fields bring to the problem.

The outcomes from this study demonstrate the value of

combining NWP data and satellite observations in a

manner that meets the needs of short-term weather

forecasters. The paper proceeds as follows: Section 2

provides a more in-depth background on the algorithms

related to this study, while section 3 presents the meth-

odology and datasets as well as the analysis techniques

employed herein. Section 4 shows the results, and sec-

tion 5 discusses the main findings and concludes

the paper.

2. Background

The GOES-R CI [also known as Satellite Convection

Analysis and Tracking (SATCAST)] algorithm as pre-

sented in Walker et al. (2012) was developed as a geo-

stationary satellite-based, deterministic style CI nowcast

methodology, with an emphasis on ‘‘cloud object

tracking.’’ The Walker et al. (2012) approach used the

same geostationary satellite IR interest fields as prior

binary yes/no algorithms (Mecikalski and Bedka 2006;

Mecikalski et al. 2008), yet possessed a more robust

cloud object-tracking framework to accumulate in-

formation on cloud-top heights, growth rates, glaciation,

and updraft widths when making a determination of CI;

the GOES IR field values are then used to score a cloud

object as either a yes or no CI forecast.

While a great deal of information about growing

clouds can be provided by satellite data alone (e.g.,

Rosenfeld et al. 2008; Zinner et al. 2008; Bedka et al.

2010; Mecikalski et al. 2010a; Wang et al. 2010; Setvák
et al. 2013), there is no directly available knowledge

provided about the atmospheric environment in which

clouds will grow. Numerous studies have shown the

fundamental importance of vertical (0–6 km) wind

shear, CAPE, convective inhibition (CIN), and low-

level moisture (to name a few) to the occurrence and

organization of convective storms (e.g., Brooks et al.

1994). For example, if a newly developed cumulus cloud

shows very strong signals of vertical development as

observed in satellite observations, the GOES-R CI al-

gorithm is designed to output a yes that CI will occur.

However, this output could be very misleading if the

rapid vertical cloud growth is occurring beneath a strong

midlevel capping inversion, where in reality the chances

of continued development and CI are very low.With the

TABLE 1. The satellite andNWPmodel predictors used for 0–1-h

CI nowcasts. Each variable was collected for cloud objects repre-

senting potential CI events, and the dataset was used to train and

evaluate the statistical learning approaches used within this study,

logistic regression and random forest. Here, the dominant cloud

type is obtained from the Berendes et al. (2008) cloud classification

method. The object size is obtained from the Walker et al. (2012)

CI algorithm, as GOES satellite pixels are grouped into cloud

objects and tracked from an initial time 1 to a time 2, which is

nominally 15 min later than time 1. All NWP fields were retrieved

from the RAP model as described in the text. Here and in later

tables, ‘‘temp’’ indicates temperature.

Satellite and NWP predictors

1) 10.7-mm TB (cloud-top temp) (K)

2) 13.3–10.7-mm TB diff (K)

3) 6.5–10.7-mm TB diff (K)

4) 15-min 10.7-mm cloud-top cooling rate (K)

5) 15-min time change of 13.3–10.7-mm TB diff (K)

6) Dominant cloud type at time 2

7) Dominant cloud type at time 1

8) Object size at time 1 (composed of 1-km pixels)

9) Object size at time 2 (composed of 1-km pixels)

10) Surface-based CIN (J kg21)

11) LCL height (m)

12) Most-unstable CIN (J kg21)

13) LFC height (m)

14) Most-unstable CAPE (MUCAPE) (J kg21)

15) Nearness to convective temp (K)

16) Surface-based CAPE (J kg21)

17) Convective temp (K)

18) Surface lifted index (K)

19) CCL height (m)

20) Freezing-level height (m)

21) Surface–500-hPa wind shear (s21)

22) Surface–700-hPa wind shear (s21)

23) Best lifted index (K)

24) 700–500-hPa wind shear (s21)

25) Land/sea flag (0 or 1)
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inclusion of NWP data for environmental characteriza-

tion used in tandem with satellite-derived information

about individual clouds, a more accurate set of nowcasts

can be produced. This additional NWP information

would act to appropriately reduce the CI nowcast like-

lihood in situations like the one mentioned above, de-

spite strong satellite-retrieved cloud growth signals, and

to increase the CI nowcast likelihood when both the

satellite-based cloud growth signals and the environ-

ment are more conducive to mature convective

development.

When moving from deterministic methods toward

development of probabilistic approaches, a valuable

exercise to perform is to test more than one algorithm.

This study provides a comparison between logistic re-

gression (LR) and random forest (RF) using the same

training database, determining if there is a tendency for

one method to perform better overall, or in certain

convective environments or situations. A necessary

component when developing a statistically based fore-

cast method is a sizeable database, in this case of IR

satellite and NWP field indicators for CI and non-CI

events, that establishes truth data that is used to both

train and test predictive models. Such a database was

assembled as described in the following section.

As of 2013–14, the GOES-R CI nowcasting method-

ology is used by forecasters in the Federal Aviation

Administration (Iskenderian et al. 2012), National

Weather Service (NWS) Forecast Offices, the Aviation

Weather Center Testbed (AWT; Terborg and Gravelle

2012), and the National Oceanic and Atmospheric

Administration Hazardous Weather Testbed (HWT;

Terborg et al. 2013). An outcome of this study will be an

improved algorithm incorporating NWP data that can

be transitioned to these entities. The evolution to a

probabilistic approach is motivated by forecaster feed-

back when using the GOES-R CI algorithm (see

Terborg and Gravelle 2012; Terborg et al. 2013), and

also for reasons given in Dance et al. (2010) and Steiner

et al. (2010) on the value of probabilistic versus de-

terministic forecasts.

3. Methodology

a. Enhanced CI nowcasting framework

The present study utilizes in part the Walker et al.

(2012; see their Fig. 2) 0–1-h CI object-tracking

framework, with per-cloud object assessments of CI

potential. The Walker et al. (2012) method is ex-

panded by incorporating NWP fields and enhanced

statistical methods to form probabilistic 0–1-h

CI predictions. The cloud-object-tracking methods

involve use of the Berendes et al. (2008) convective

cloud classification scheme and so-called mesoscale

atmospheric motion vectors (Bedka and Mecikalski

2005) to identify and advect convective clouds, re-

spectively. All GOES IR and NWP fields are mapped

to the cloud objects.

Two well-established statistical, probabilistic methods

are well suited to the CI nowcasting challenge: LR

(Hosmer and Lemeshow 1989) and RF (Breiman 2001).

LR measures the relationship between a categorical

dependent variable and one or more independent vari-

ables, which are usually continuous, applying a sigmoid

(logistic) function to the result to constrain the output to

between 0 and 1, as the predicted values of the de-

pendent variable. LR has been successfully used to

forecast maintenance of mesoscale convective systems

(Coniglio et al. 2007) and to identify conditions condu-

cive to contrail formation (Duda and Minnis 2009), as

well as many other environmental science problems, and

has the advantage of providing a relatively simple

mathematical model that can be executed quickly.

However, the training procedure can fail to converge if

the ratio of predictor variables to training instances is

high, or if predictor variables are highly correlated. RFs

are collections of decision trees, each of which is formed

using a random subset of the training dataset and with a

random subset of the predictor variables considered for

constructing each decision node. This randomized

training procedure ensures that the decision trees are

distinct from one another; therefore, they can serve as an

ensemble of experts that ‘‘vote’’ on the classification of a

new data instance. The resulting RF vote counts can be

calibrated into reliable probability forecasts using an

independent calibration dataset. RFs have been widely

used in the biomedical field (e.g., Díaz-Uriarte and de

Andrés 2006), in satellite remote sensing (Pal 2005), in a

number of atmospheric science applications including

convective nowcasting (e.g., Williams et al. 2008), and in

diagnosing atmospheric turbulence for aviation users

(Williams 2014). RF models are capable of representing

quite complex predictive functions; however, they are

generally more complex and slower to build and execute

than LR models. For this study, more than one LR and

RF models were developed, using portions of the

training dataset (i.e., when cross validation was per-

formed), toward identifying the most accurate statistical

model of each type. The LR and RF methods are de-

scribed in greater detail below.

b. Logistic regression

LR is a regression technique used for modeling di-

chotomous dependent variables from a set of several

independent, or predictor, variables. More simply, it is a
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means of estimating a probability of an event in which

only two outcomes are possible (a yes/no event, e.g., CI

or no CI, represented by the values 1 or 0), based on the

values of several other ‘‘predictor’’ variables. The lo-

gistic model is given by the formula

E(Y)5
1

11 exp

"
2

 
bo 1 �

k

j51

bjXj

!# , (1)

in which the expectation value E of the dependent var-

iable Y lies in the interval [0, 1] and the values of the

predictor variables are represented by fX1, . . . , Xkg.
The parameters fb0, . . . , bkg are linear coefficients or

‘‘weights’’ for the predictor variables and k is the number

of predictor variables. Because the output of the LR

model lies between 0 and 1, the output can be thought

of as a probabilistic prediction of whether the event will

occur given the values of the predictor variables.

For this study, the Excel statistical analysis package

(XLSTAT)was used to build LRmodels. XLSTAT is an

add-in capability of the widely used Microsoft Excel

program. Linear and LR methods belong to the same

family of models, called generalized linear models,

where an event (in this case CI) is linked to a linear

combination of explanatory or predictor variables (e.g.,

those listed in Table 1). For LR, the dependent variable

or response variable follows a Bernoulli distribution for

parameter P, where P is the mean probability that an

event will occur (if an experiment is done once), or a

binomial (n, P) distribution (if the experiment is re-

peated n times). HereP is the logistic function of a linear

combination of the predictor variables. Specifically, the

so-called Logit model within XLSTATwas used to form

E(Y) as described by Eq. (1). The Logit model of the

XLSTAT LR is a transformation; basically, instead of

assessing the likelihood, or ‘‘odds’’ that an event will

occur, the algorithm assesses mathematically the natural

log odds that an event will occur. XLSTAT applies

maximum likelihood estimation (using the Newton–

Raphson method), and the predictors can potentially

be both categorical and continuous (e.g., a land/sea flag

vs CAPE). The choice was made to use the Logit model

with the maximum likelihood estimation to account for

both types of predictor variables.

To achieve a probabilistic CI nowcast, the LR equa-

tion for the probability of CI was developed from the

sample containing 9015 observations (CI and non-CI

events) of tracked objects. Five GOES satellite, La-

grangian predictor variables were taken directly from

Walker et al. (2012) as based originally on Mecikalski

and Bedka (2006): 10.7-mm TB, ›T(10.7mm)/›t, instan-

taneous 6.5–10.7mm, instantaneous 13.3–10.7mm, and

›T(13.3–10.7mm)/›t (first five fields listed in Table 1). A

sixth GOES-R CI interest field, ›T(6.5–10.7mm)/›t, was

observed to possess multiple colinearity with other

fields, and hence this field was removed from the sample

dataset before a final regression was performed.

The coefficients in Eq. (1) were determined from the

training database (see section 3d) using XLSTAT, and

to display a probability the E(Y) was scaled from 0 to

100 and associated with a standard color bar in which

warmer colors represent higher CI probabilities, that

is, a greater likelihood that the specific tracked object

will become a mature convective storm. The tracked

cloud objects for which the CI nowcasts were made were

overlaid with contemporaneous GOES visible satellite

imagery to assist interpretation by the end user. This

model is labeled LR-Sat in the results and case study

sections to indicate that only GOES data were used as

inputs. A second model with an expanded set of pre-

dictor variables (Table 1), including 14 variables derived

from the 13-km Rapid Update (RAP; Benjamin et al.

2009) NWP model plus a land/sea flag, was created

similarly; this second model is referred to as LR-

SatNWP. Similarly, as described below, a satellite-only

RF was formed, called RF-Sat, with a second model

using satellite1NWP model predictor data referred to

as RF-SatNWP.

c. Random forest

In contrast to LR, the RF method (Breiman 2001) is a

nonparametric procedure based on the consensus of a

collection of decision trees (Dattatreya 2009). Each tree

is formed with a degree of randomness in both the se-

lection of instances used for training and the choice of

candidate variables for splitting at each decision node.

The training set for each tree is drawn randomly with

replacement from the original set ofN training instances,

so that some training instances are used more than once

and some are not used at all. For each node, a random

subset of predictor variables are selected, and a thresh-

old for the one that best discriminates positive and

negative instances is selected to split the dataset into two

subsets; this process is repeated recursively until the fi-

nal subsets (leaves) satisfy a homogeneity or minimum

size criterion. Once trained, the decision tree sorts any

new instance into a ‘‘leaf’’ based on the sequence of

splits that it satisfies, and the consensus value of the

training set instances in that leaf determine the ‘‘tree’s’’

output. The rules for building the tree generally ensure

that the set of predictand values in a leaf are relatively

homogeneous. Geometrically, one can think of a de-

cision tree as splitting the predictor variable space X1 3
X2 3 � � � 3 Xk into hypercubes, each of whose bound-

aries are perpendicular to one of the coordinate axes. For
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a dichotomous discrimination problem, the decision tree

assigns each of these hypercubes a value of either 0 (no

CI) or 1 (CI). By aggregating a collection of decision

trees, a finer set of hypercubes is defined, each of which is

associated with a vote count between 0 and the number

of trees in the collection, and the fraction of trees voting

1 may be interpreted as a probability. A large enough

collection of decision trees can represent any probability

function arbitrarily closely, similar to a Riemann sum

approximating an integral, although there is no guaran-

tee that the RF training procedure will necessarily gen-

erate an optimal approximation, particularly for small

training datasets. In practice, RFs have the advantage of

being straightforward to train and use, are relatively

insensitive to parameter settings, and tend not to

‘‘overfit’’ as some other statistical methods do (Breiman

2001). Thus, the RF method is an ideal candidate to

compare with LR for the purpose of fusing multiple

satellite and NWP variables together to nowcast CI.

To create a probabilistic model for CI, an RF was

trained from the same dataset as LR, comprising 9015

labeled instances (section 3d). As for LR, the RF was

applied to five satellite predictors to create the RF-Sat

model. The RF was also applied to the full set of 25

GOES and RAP model predictor variables in Table 1,

including object-based fields, satellite radiance trends,

cloud types, observations, and surface type (land/sea

flag) to produce the RF-SatNWP model. For both LR

and RF models, all predictor variables were the same,

whether all from theGOES satellite, or fromGOES and

the RAP model.

Although the RF has several adjustable parameters

that affect the training of the model, the default pa-

rameters generally provide very good performance.

However, to optimize the equitable threat score, several

different parameter values were tested. Breiman (2001)

noted the primary parameter to which the RF is sensi-

tive is the number of candidate predictor variables

chosen at each node. This was varied between 1 and 4 for

the 5-predictor RF-Sat model, and between 1 and 13 for

the 25-predictor RF-SatNWP model; the RF default is

to use the square root of the total number of predictors.

Along with this parameter, three forest sizes were tested

(200, 400, and 800 trees), and the number of votes re-

quired for a positive forecast was also varied. The best

forest size was found to be 400 trees for group 1 and 800

trees for group 2, suggesting that performance asymp-

totes by 400 trees. It was found that allowing selection of

three candidate predictor variables per node was best

for RF-Sat/group 1, and only allowing one predictor was

best for RF-Sat/group 2. One predictor was also best for

RF-SatNWP/group 1 and two predictors were best for

RF-SatNWP/group 2. Other parameters were left

unchanged from the default settings. The event and

nonevent classifications were weighted equally, and any

node that could be split at all was analyzed for splitting.

For the three independent case study days, the RF

vote count was mapped to a probability that ensured the

final distribution of probabilities from the RF matched

the final distribution of probabilities from the LRmodel

to facilitate comparison of the two models. This was

done by converting the RF vote counts and LR proba-

bilities to percentiles and then mapping each vote count

to the LR probability with the same percentile. An al-

ternative calibration would usemultiple cross-validation

experiments to build a relationship between votes and

observed event frequencies, as described in Williams

(2014).

d. Training datasets and model evaluation

Given the need for a training database for both LR

and RF models, incipient cloud objects identified in

spring and summer 2010 and 2011 GOES satellite im-

agery over the continental United States and nearshore

locations along theGulf ofMexico coast were tracked to

determine whether radar reflectivity at the 2108C iso-

therm eventually exceeded 35dBZ, representing a case

of CI, or whether the cloud dissipated (a nonevent). The

multiradar/multisensor (MRMS; Lakshmanan et al.

2006, 2007) products were used for assessing radar re-

flectivity at the 2108C altitude. A total of 9015 cloud

objects were tracked to form this database. Of these,

manual analysis found that 3270, or 36.3%, eventually

met the CI criteria of the GOES-R algorithm as shown

in Table 1 from Walker et al. (2012). The remaining

tracked objects did not. Antecedent predictor data as-

sociated with all 9015 objects were collected, including

RAP model fields (fields 10–24 in Table 1). Instead of

using a strictly routine nearest-neighbor technique in

mapping the RAP data to the objects, a 3 3 3 box of

RAP pixels was used. For example, an average of the

three highest CAPE values from the 33 3 box would be

used, instead of the CAPE in the RAP pixel closest to a

cloud object. This approach helped reduce possible er-

rors associated with misplacement of features by the

NWPmodel and reduced sensitivity to pixel-sized noise.

Table 1 shows the GOES satellite fields that were re-

corded into the database (for the LR-Sat and RF-Sat

models). For both LR-SatNWP and RF-SatNWP

models, four additional satellite fields were added per-

taining to the dominant cloud type and size of an object

at the two times used to measure cloud evolution

(Walker et al. 2012).

For evaluation purposes, the 9015-object database

was divided into separate sets of training and testing

cases. Cases from a particular date were either placed in
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group 1 (10 days) or group 2 (11 days) as shown in Table 2.

To help ensure independence of the training and test-

ing sets, cases from the same day were not split between

groups. An effort was made to objectively split the data

into two groups with adequate diversity in each group to

ensure similar results from each group. The number of

cases from each day varied: two days accounted for al-

most half (46%) of the CI cases and were assigned to

different groups. Both the LR and RF methods were

trained on group 1 and tested on group 2, and then the

reverse was done, to obtain estimates of each method’s

performance and to allow a comparison of the two

methods’ skills. Therefore, two cross-validation per-

formance scores are presented in the results section for

each of a variety of forecast skill metrics. This cross-

validation procedure provides a basis for comparing

the LR and RFmethods. For example, the resolved LR

Eq. (1) with coefficients obtained from group 1 was run

against the group 2 dataset, and each object whose es-

timated probability of CI exceeded 0.5 [P(0.5)] was

considered to be a predicted CI event. Because the

training dataset was selected to have roughly half CI

and half non-CI cases per group, these skill scores

provide estimates of the generalization performance

expected when the CI nowcast methods are used in

practice, and form a solid basis for comparing the

various methods and sets of predictor variables, though

some skill scores dependent on the relative frequencies

of positive and negative instances will vary in other data-

sets. The RF skill scores were obtained similarly, though

with the RF vote threshold chosen to optimize the equi-

table threat score. Last, the performance of LR and RF

nowcast models trained on the entire dataset was evalu-

ated on three independent case study days.

4. Results

The following sections evaluate the predictive per-

formance of both the LR and RF 0–1-h CI nowcast

models. As a means of assessing the overall algorithm

performance, and to demonstrate an evolution of the

GOES-R CI algorithm through this study’s inclusion of

NWP predictor variables, Table 3 (from Walker et al.

2012) lists performance statistics as obtained over four

regions in theUnited States from the previous version of

the GOES-R CI algorithm that used five GOES pre-

dictors in a deterministic (yes/no) CI nowcast model.

Although theWalker et al. approach did not use LR, the

same input satellite fields were used to determine the

likelihood for CI for a given cloud object, namely fields

1–5 in Table 1. The Table 3 results serve then as a

benchmark for measuring improvements to the

GOES-R CI method, with the aim being to decrease

false CI detections through use of convective environ-

ment information contained in the NWP fields, and to

show an evolution from a deterministic approach to-

ward probabilistic LR and RF models.

Accuracy and performance statistics are presented in

Table 4 for cross evaluation using groups 1 and 2 for the

four combinations of data andmethods described above:

TABLE 2. List of cases used to generate the training database.

Groups 1 and 2 refer to the;50% split in themain training dataset,

as a means of performing cross-validation training and testing to

evaluate the logistic regression and random forest methods’ skills.

See the text for further description.

Group 1 (10 days): 2010: 11 Jul, 15 Jul, 2 Aug, 4 Aug, 6 Aug,

8 Aug, 30 Aug

2011: 7 Aug, 20 Aug, 27 Oct

Group 2 (11 days): 2010: 10 Jul, 14 Jul, 16 Jul, 18 Jul, 20 Jul,

1 Aug, 3 Aug, 5 Aug, 7 Aug

2011: 24 May, 21 Aug

TABLE 3. FromWalker et al. (2012). Validation statistics and averaged forecast lead times of CI from the GOES-R CI algorithm over

four regions of the United States that used only five GOES interest fields, and no numerical weather prediction fields, within a de-

terministic yes/no 0–1-h CI forecastingmethodology. These results are broken into the three classes of statistical evaluation for each of the

four study regions. Note that only the POD and accuracy statistics change for the different classes. Class 1 relates to all CI forecasts and

corresponding CI events that were associated only with tracked cloud objects, and class 2 represents all CI events documented in the

validation study, whether they were associated with algorithm output forecasts or not, with the exception of those masked or affected by

cirrus contamination, which were omitted. The definitions of POD, POFD, FAR, and Accuracy are provided, with H, M, F, and C

indicative of hits, misses, false alarms, and correct negatives, respectively.

Melbourne, FL Memphis, TN

Central United

States/Great Plains

Northeastern

United States

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

POD [H/(H 1 M)] 54% 43% 74% 45% 85% 78% 75% 67%

POFD [F/(F 1 C)] 4% 4% 6% 6% 3% 3% 2% 2%

FAR [F/(F 1 H)] 60% 60% 48% 48% 55% 55% 54% 54%

Accuracy [(H 1 C)/(H 1 C 1 M 1 F)] 94% 92% 92% 87% 97% 97% 97% 97%

Lead time (minutes) 23.8 23.8 32.7 32.7 32.9 32.9 27.4 27.4
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1) LR trained and applied to only GOES CI interest

fields (LR-Sat), 2) LR trained and applied to GOES CI

andNWPmodel fields (LR-SatNWP), 3) RF trained and

applied to only GOES CI interest fields (RF-Sat), and

4) RF trained and applied to GOES CI and NWP-

model fields (RF-SatNWP). Last, three case days

showing the relative performances of each approach are

presented. Receiver operating characteristic (ROC)

curves for the case study days are shown in Fig. 1, and

the LR-SatNWP and RF-SatNWP CI nowcasts for the

case studies are shown along with radar reflectivity

(Figs. 2–4).

a. General performance

Table 4 lists the group 1 and 2 cross-validation per-

formance metrics for each method (LR and RF) and

predictor variable set (Sat or SatNWP). One outcome

evident in Table 4 is that the performance skill scores for

the group 1 and group 2 cross evaluations are often

significantly different. This is likely due in part to dif-

ferences in the meteorological scenarios and types of

convection represented in the two groups, which par-

ticularly affect skill scores that depend on the ratio of

positive to negative instances. Another reason for these

differences is that our training dataset is small, and

therefore does not capture the variability across a wide

variety of convective storm environments. One of the

most robust statistics, the area under the ROC curve

(AUC; Mason 1982), is an exception. ROC curves plot

probability of detection (POD) versus probability of

false detection (POFD) as the forecast decision thresh-

old changes, providing a useful summary of the dis-

crimination capability of the predictive model. AnAUC

near 1 represents a nearly perfect forecast. In Table 4,

the AUC statistic shows relatively little difference be-

tween group 1 and group 2. In general, a comparison of

the group 1 and group 2 results is not expected to be

particularly informative, while the more useful com-

parisons are between the results for the two different

methods and the two-predictor variable sets.

As developed in Mecikalski et al. (2008) and Walker

et al. (2012), the GOES IR fields provide considerable

information about the status of cumulus development

over time in terms of physical processes involved in CI

(i.e., in-cloud updraft magnitude and depth, cloud-top

glaciation, cloud growth), but as is often the case, nearly

identical GOES observations can be observed for a CI

event in an unstable environment versus for a growing

cumulus in a suppressed/stable environment that never

produces a $35-dBZ echo. The use of NWP fields,

therefore, should act to constrain the GOES observa-

tions, and should provide increased skill for cases where

the atmosphere surrounding the growing cumulus

clouds is favorable/unfavorable for sustained growth

toward a fully developed convective storm or organized

convective system. The results in Table 4 suggest that

this is indeed the case. For both the LR andRFmethods,

nearly every skill score statistic for the models using the

satellite-plus-NWP variables shows a significant improve-

ment over the same method using only the satellite

TABLE 4. Performancemetrics for LR andRFCI nowcasts. All LR statistics are formed using a CI probability threshold of 0.5, while the

RF thresholdwas chosen to optimize the ETS. Two performancemetrics are listed per column, with the first being for group 1 data and the

second for group 2 data, as described in the main text. The mathematical formula used to generate each skill score is shown in the far right

column. Definitions forH,M, F, and C are as in Table 3, and r5 (total forecasts of the event)3 (total observations of the event)/(sample

size), with sample size being H1F1M1C.

Method LR-Sat LR-SatNWP RF-Sat RF-SatNWP Formula

POD 0.54 0.80 0.68 0.85 0.49 0.74 0.72 0.87 H/(H 1 M)

POFD 0.20 0.51 0.20 0.36 0.21 0.40 0.27 0.40 F/(F 1 C)

FAR 0.32 0.30 0.28 0.22 0.36 0.27 0.33 0.24 F/(F 1 H)

Accuracy/total

performance

0.69 0.67 0.74 0.76 0.66 0.68 0.72 0.76 (H 1 C)/(H 1 F 1 M 1 C)

% correct CI nowcasts 53.7% 79.8% 67.6% 84.6% 49.5% 73.5% 71.9% 87.2% H/(H 1 M)

% correct non-CI nowcasts 80.2% 48.6% 79.6% 64.3% 78.8% 59.5% 72.5% 60.4% C/(F 1 C)

Positive predictive value 67.8% 69.5% 72.1% 77.7% 64.5% 72.8% 67.0% 76.4% H/(H 1 F)

Negative predictive value 69.0% 62.1% 75.9% 73.9% 66.7% 60.5% 76.8% 76.3% C/(C 1 M)

Bias 1.98 0.98 1.81 1.18 1.96 1.13 1.54 1.12 (H 1 F)/(H 1 M)

AUC 0.73 0.71 0.81 0.83 0.69 0.73 0.80 0.82

CSI 0.43 0.59 0.54 0.68 0.39 0.58 0.53 0.69 H/(H 1 F 1 M)

ETS 0.21 0.17 0.31 0.33 0.17 0.20 0.28 0.33 (H 2 r)/(H 1 F 1 M 2 r)

TSS 0.34 0.28 0.47 0.49 0.28 0.33 0.44 0.48 [(H)(C)2 (F)(M)]/(H1M)(F1 C)

Votes/total trees in RF: 318/400 301/800 252/400 278/800

Candidate predictors on which to split data at each RF node: 3 1 1 2
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variables. For example, the AUC improves by an aver-

age of 0.10 (;15%) for both LR-SatNWP over LR-Sat

and for RF-SatNWP over RF-Sat. Similarly, the equi-

table threat score (ETS) improved by an average of

0.13, a relative increase of 68%, between LR-Sat and

LR-SatNWP, and by 0.12 (65%) between RF-Sat and

RF-SatNWP. The same trends are seen for the critical

success index (CSI) and true skill statistic (TSS) mea-

sures, with the skills being higher when NWP data are

included. It is also interesting to note that the difference

in performance between group 1 and group 2 is signifi-

cantly less for the SatNWP predictor variable set than

for the Sat variables alone. For example, the difference

in ‘‘percent correct CI nowcasts’’ is 26% for LR-Sat and

25% for LR-Sat, but only 17% for LR-SatNWP and

15% for RF-SatNWP. Thus, the GOES satellite1NWP

predictor variables appear to provide both LR and RF

methods a better capability for generalizing than do the

satellite fields alone. In summary, it is clear that the

addition of the NWP data provides a notable improve-

ment in the CI nowcasting capability of both statistical

learning methods. Note that the best combination of

forest size, number of candidate predictors at each node,

and vote threshold, computed separately for the RF-Sat

and RF-SatNWPmodels and for group 1 data or group 2

data, is listed in Table 4 beneath the RF-Sat and RF-

SatNWP columns.

With respect to the Walker et al. (2012) study, the

Table 4 LR-Sat and RF-Sat statistics can be compared

with those in Table 3 toward assessing the improvement

to the CI nowcasting algorithm given that the same

GOES-only variables were used, although the method-

ologies differ (simple per-CI object interest field scoring

in Walker et al. vs LR or RF). The satellite-only POD

results provide similar or higher skill when LR and RF

are used, as seen when comparing classes 1 and 2 in

Table 3, and between groups 1 and 2 in Table 4. POD

scores when using satellite and NWP fields reached 87%

for the RF method. When the group 1 and 2 false-alarm

ratio (FAR) scores are compared (Table 3 vs Table 4),

they range from 22% to 36% for all LR and RF cate-

gories (vs 48%–60% from the Walker et al. study),

FIG. 1. ROC curves for the three case days analyzed—(top left) 21 Apr 2013, (top right) 11 Jun 2013, and (bottom

left) 24 Jun 2013—and (bottom right) a summary of all three days. For these plots, the LR-SatNWP and RF-SatNWP

are used, as shown in Table 4. These ROC diagrams provide a comparative summary of skills of the convective

initiation nowcasts using logistic regression (solid curve) and random forest (dashed curve). The AUC values are

listed per procedure, LR and RF.
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FIG. 2. Example of GOES-R CI nowcasts performed using (left) LR, (center) RF, and (right)WSR-88D

radar for 21 Apr 2013. See text for discussion of these images. Times for the GOES satellite/GOES-R CI

and WSR-88D are shown as UTC.
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FIG. 3. As in Fig. 2, but for 11 Jun 2013.
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FIG. 4. As in Fig. 2, but for 24 Jun 2013.
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suggesting again that the use of more advanced statistical

methods overall leads to significantly better 0–1-h CI

nowcasts. Noteworthy is that the FAR scores were several

percentage points lower when NWP data were included,

for both the LF and RF models. Note that the POFD and

accuracy scores in the Walker et al. (2012) study are sig-

nificantly better than for the statistical models developed

in this study; this is because of the much larger fraction of

non-CI events in the 2012 study, and hence the larger

numbers of correct non-CI nowcasts (i.e., correct negative

forecasts), as compared to the roughly 50/50 ratio used

here (depending on group and dataset partitioning).

Comparing the two statistical methods themselves

based on these results is not as straightforward. From

Table 4, it is seen that the percent correct CI nowcasts

for the LR-Sat and RF-Sat compare well, with the LR-

Sat showing slightly higher skill, but the reverse is true in

the comparison of LR-SatNWP and RF-SatNWP. The

skill scores of the percentage correct non-CI nowcasts

also compare well between LR-Sat and RF-Sat, yet the

difference between groups for RF is much lower. The

remaining skill measures in Table 4 give a slight ad-

vantage to the LR approach when only the GOES fields

are used. One of the most robust measures of skill, the

AUC (Fig. 1), shows that the RF and LR approaches are

nearly identical when GOES fields are used alone,

providing AUCs of ;0.72. For LR and RF with NWP

fields included, the percent correct CI and non-CI

nowcasts again vary considerably between groups 1

and 2, yet not as much as when NWP data are not in-

cluded. The other performance measures for LR-

SatNWP and RF-SatNWP similarly compare well.

Overall, the LR results again show a slight (;2%–4%)

advantage over the corresponding RF scores. For ex-

ample, the AUC reaches 0.83 for LR-SatNWP, versus

0.82 for RF-SatNWP, although it is not clear that this

margin is statistically significant. On the other hand, LR

models are much simpler and can execute more quickly

in making predictions, so in the face of this ambiguity,

the LR model likely has the advantage.

b. Case examples

Figure 1 shows the ROC curves for three example

case days in 2013 (21 April, 11 June, and 24 June, which

are not in the training database), and then for the

average of all three days, with the AUC values

provided for both the LR-SatNWP and RF-SatNWP

models, trained now using the entire dataset. As seen in

Table 4, the AUC for LR is greater than for RF, for all

case days and for the average. In all cases, the ROC

curve increases more rapidly for the LR model than the

corresponding RF model. The AUC values in Fig. 1 can

be interpreted as accepting an;0.15–0.20 false-positive

rate to achieve a true positive (CI nowcast) rate between

0.75 and 0.90. The best performances were seen on

21April and 11 June 2013. For the ROC curves obtained

from all three case study days, the AUC is 0.87 for LR-

SatNWP and 0.80 for RF-SatNWP, and is comparable to

the results shown in Table 4. In all cases, the AUC is at

least 0.05 larger using LR-SatNWP than when using the

RF-SatNWP methodology, reflecting the somewhat

better performance of the LR-SatNWP method.

The three case days are shown visually for select pe-

riods when CI was particularly active, in Figs. 2–4, re-

spectively, with accompanying National Weather

Service Weather Surveillance Radar-1988 Doppler

(WSR-88D) data (Zhang et al. 2011). These figures

provide examples of how both LR-SatNWP (left col-

umn) and RF-SatNWP (center column) CI nowcasts

would appear to a user, with the colors of a cumulus

object representing an estimated percentage probability

(30%–100%) that CI will occur within the coming 15–

60min. For 21 April 2013 (Fig. 2), an example is shown

over Florida, while on 11 June 2013 (Fig. 3) and 24 June

2013 (Fig. 4), examples are given over southeastern

Texas and centered on Pennsylvania, respectively. The

accompanying radar (right column) needs to be checked

15–60 min later for the validating radar echo corre-

sponding to a given highlighted CI object. Radar echoes

in yellow and red colors correspond to echo intensities

$35 dBZ.

Table 5 shows the LR-SatNWP and RF-SatNWP

performance statistics as a function of CI probability

bin for the three case study days (Figs. 2–4), from 30% to

39% (LR30 and RF30) to 90% to 99% (LR90 and RF90),

toward identifying when peak deterministic perfor-

mance can be expected. From Table 5, using accuracy/

total performance, CSI, ETS, and TSS, it is seen that

both the LR and RF methods peak in performance

when the CI probabilities are between 50%and 60%.As

another measure of skill, the Brier score for each case

day was computed. The Brier score (Brier 1950) is a

measure of probabilistic prediction accuracy (Wilks

2011, 332–333). ABrier score of 0 is considered a perfect

forecast (i.e., the better the forecast verification), while a

score of 1 indicates a useless forecast. For 21 April for

LR and RF (LR/RF) the Brier score values are

0.180/0.183, for 11 June, they are 0.155/0.198, and for

24 June they are 0.161/0.202. These results suggest that

both methods provide robust skill beyond a reference

forecast, but that the LR performance is superior to RF

when both are evaluated probabilistic predictions.

c. Variable importance

For RFs, an ‘‘importance’’ measure is provided for

each predictor variable in the course of model training.
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Although importance is calculated deep in the RF al-

gorithm (Topi�c and �Smuc 2014), it is conceptually fairly

simple. In essence, the method replaces each variable in

turn with a randomized resampling, and then measures

the impact of that replacement on the RF trees’ pre-

diction accuracy. The predictor variables with the

highest importance are those whose randomization de-

grades accuracy the most; they are the variables that are

frequently chosen by the random forest for splitting and

that most meaningfully separate the data. Ideally, the

expected importance of a random predictor will be near

zero; a higher importance value suggests the predictor is

more useful than a random variable, and the highest

values indicate the greatest importance.

The RF importance values for the 25 satellite1NWP

fields in group 1 and group 2 are listed in Table 6. This

ranked list shows two measures of CIN and two measures

of CAPE to be the most important, followed by the

10.7-mm TB (longwave IR, representing cloud-top tempera-

ture) and LFC height. Nearness to convective temperature,

which is very similar to CIN, is next. Six out of the first seven

predictors are derived from the thermodynamic stability

profile provided by the NWP model.

One downside of the RF importance calculation is

that it does not reflect correlations between variables.

When several highly correlated variables are utilized,

they are all assigned approximately the same impor-

tance, although only one may be needed for a skillful

model. Thus, one should not read too much into the

presence of two versions of CIN at the top of the list;

likely only one of them is truly needed. Surface-based

andmost-unstable parcel CIN are very similar and are in

fact highly correlated (correlation coefficient ’ 0.9 for

this dataset). At the same time, this list does show that

some predictors are more useful than others. For ex-

ample, LCL height is more important than convective

condensation level (CCL) height, and dominant cloud

type (time 1) and land/sea flag were the least useful of

their satellite1NWP peers. Variables that show low RF

importance are likely not useful for the RF model and

may have the potential to harm the generalization error

of the learned model if they are included.

While RF variable importance is a good indicator of

the value of individual predictor variables, it does not

determine a minimal set of variables that can be used

collectively by a model to provide the best predictive

performance. To achieve this, a forward–backward se-

lection method was used in which two forward steps

(adding variables that most improved the cross-

validation performance of the model) were followed

by a backward step (removing the variable that harmed

the cross-validation performance of the model the

least). Thus, at any stage of forward–backward selection,

this method provides an approximation to the best

performance that can be achieved with that given

number of predictor variables. This method can be ap-

plied to any statistical learning method, including RF

and LR.

Performing forward–backward selection with group 1

as the training set and group 2 as the cross-validation set,

TABLE 5. Performancemetrics for the three case study days as shown in Figs. 2–4 for LR andRFCI nowcasts. Results are shown for LR-

SatNWP and RF-SatNWP as in Table 4 yet are binned by CI probability (as predicted by LR and RF) from 30% to 39% (i.e., LR30 and

RF30), 40% to 49% (i.e., LR40 andRF40), and so forth to 90% to 99%. Themathematical formula used to generate each skill score are as in

Table 3. In bold are maximum values of accuracy, total performance, CSI, ETS, and TSS, showing that both the LR and RFmethods peak

in performance when the CI probabilities are between 50% and 60%.

Method LR30 LR40 LR50 LR60 LR70 LR80 LR90 RF30 RF40 RF50 RF60 RF70 RF80 RF90

POD 0.966 0.909 0.841 0.716 0.542 0.216 0.074 0.989 0.949 0.841 0.551 0.324 0.222 0.108

POFD 0.775 0.497 0.231 0.087 0.023 0.006 0.000 0.908 0.659 0.428 0.121 0.052 0.029 0.012

FAR 0.441 0.350 0.213 0.106 0.059 0.026 0.000 0.474 0.406 0.333 0.178 0.136 0.114 0.095

Accuracy/total

performance

0.599 0.708 0.805 0.814 0.664 0.675 0.533 0.544 0.648 0.708 0.713 0.633 0.593 0.544

% correct CI

nowcasts

96.6% 90.9% 84.1% 71.6% 54.2% 21.6% 7.4% 98.9% 94.9% 84.1% 55.1% 32.4% 22.2% 10.8%

% correct non-CI

nowcasts

22.5% 50.3% 76.9% 91.3% 97.7% 99.4% 100.0% 9.2% 34.1% 57.2% 87.9% 94.8% 97.1% 98.8%

Positive predictive

value

55.9% 65.0% 78.7% 89.4% 94.1% 97.4% 100.0% 52.6% 59.4% 66.7% 82.2% 86.4% 88.6% 90.5%

Negative predictive

value

86.7% 84.5% 82.6% 76.0% 59.7% 55.5% 51.5% 88.9% 86.8% 78.0% 65.8% 58.0% 55.1% 52.1%

Bias 1.727 1.398 1.068 0.801 0.382 0.222 0.074 1.881 1.597 1.261 0.670 0.375 0.250 0.119

CSI 0.548 0.611 0.685 0.660 0.352 0.215 0.074 0.523 0.576 0.592 0.492 0.308 0.215 0.107

ETS 0.107 0.261 0.439 0.287 0.200 0.117 0.038 0.043 0.171 0.261 0.273 0.156 0.106 0.050

TSS 0.191 0.412 0.610 0.629 0.336 0.210 0.074 0.081 0.290 0.413 0.430 0.272 0.193 0.096
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and then vice versa, and aggregating the results showed

that for LR, the cross-validation performance peaked at

7 variables and declined after 11 variables, whereas for

RF the performance peaked at 11 variables and declined

only after about 20. This result suggests that using too

many predictor variables in either method causes over-

fitting, but more quickly and significantly for LR. The

variable rankings based on their number of occurrences

in the forward–backward selection (Occ) are shown in

Table 7 for LR and RF. The results for RF are notably

different than the variable importance rankings: similar

variables (e.g., most-unstable CIN and surface-based

CIN, or surface-based CAPE andmost-unstable CAPE)

are now separated. This is because once the more useful

of the pair has been selected for inclusion, the other has

little marginal value. The land/sea flag, which had an RF

importance rank near the bottom (24), was selected as

the 10th variable. It is also notable that the variable

rankings are significantly different between LR and RF.

For instance, 10.7-mm TB has rank 3 for RF but only 17

for LR; similarly, surface-based CAPEhas rank 7 for RF

and 15 for LR. These results underscore that the in-

herently nonlinear RF method uses the information in

the variables differently from the linear LR method.

For LR, an additional way to evaluate variable impor-

tance is to observe the absolute value of their coefficients

in a trained LR model, assuming that the predictor vari-

ables have been normalized to have mean zero and vari-

ance one prior to calculating the LR fit. A higher

magnitude weight for a predictor variable indicates that it

will contribute more to the linear combination, and

therefore have a bigger impact on the LR model output.

Removing variables with small coefficients can reduce

overfitting and therefore improve the LR model’s gener-

alization performance. Table 8 lists the weights in order of

absolute value magnitudes for the LR equation for all in-

put variables in Table 1. The weights in Table 8 are for the

LR-SatNWP model that produced the highest AUC of

0.83 in Table 4. The largest weight is for the most-unstable

CAPE of 0.666, with the second highest being for the

surface-based CAPE of 20.626, followed by the cumulus

cloud object size at time 2 (0.520), the 13.3–10.7-mm

channel difference (0.513), and the most-unstable CIN

(0.496). The variable with the lowest weight was LFC

height (20.005). Interpretation of these weights is that CI

is most sensitive to and associated with high instability

(most-unstable CAPE, surface-based CAPE), low CIN,

rapidly developing cumulus clouds (object size at time 2),

and preexisting nearby convection (the 13.3–10.7-mm

channel difference). Specifically, the correspondence be-

tween nearby more mature convection (as identified as

small 13.3–10.7-mm values) and new CI occurrence is in-

teresting with the association being that CI is more likely

to occur in unstable environments (high CAPE, low CIN)

when convective storms are ongoing in the near vicinity

(within a distance of several GOES 4-km-resolution

pixels). It is important to note that because the coefficients

of most-unstable CAPE and surface-based CAPE have

opposite signs but similar absolute values (Table 8), the

two variables may be highly correlated. A goal of future

LR analysis will be to remove highly correlated predictor

variables and repeat the analysis (which would likely lead

to one type of CAPE with a positive coefficient being

overall less important in the GOES-R CI algorithm, and

perhaps less important than other satellite fields).

5. Conclusions

The study presented here demonstrates howGOES IR

satellite observations of cumulus cloud objects can be

combined with fields from NWP models (Table 1) to

predict short-term (0–1h) CI nowcasts using two statis-

tical learning approaches. In a previous study by Walker

et al. (2012) the GOES-R CI algorithmmethodology was

developed, and therefore this study extends that previous

analysis by incorporating NWP fields, and developing

probabilistic LR and RF statistical modeling techniques.

As a means of quantifying the benefits of both LR and

RF, and of comparing these two approaches, 13measures

TABLE 6. Random forest variable importance ranks and scores

obtained from groups 1 and 2. See text for the interpretation of

these results.

Rank Importance Predictor

1 3.61 Surface-based CIN

2 3.31 Most-unstable CIN

3 3.29 Surface-based CAPE

4 3.22 MUCAPE

5 2.98 10.7-mm TB (cloud-top temp)

6 2.65 LFC height

7 2.37 Nearness to convective temp

8 2.36 LCL height

9 2.32 Object size at time 2

10 2.29 Convective temp

11 2.22 13.3–10.7-mm TB diff

12 2.09 Freezing-level height

13 2.04 Surface–700-hPa wind shear

14 2.03 Surface lifted index

15 2.00 Surface–500-hPa wind shear

16 1.95 CCL height

17 1.75 Best lifted index

18 1.65 6.5–10.7-mm TB diff

19 1.56 10.7-mm TB cooling rate

20 1.31 Object size at time 1

21 1.04 700–500-hPa wind shear

22 1.00 13.3–10.7-mm TB temporal diff

23 0.93 Dominant cloud type at time 2

24 0.43 Land/sea flag

25 0.39 Dominant cloud type at time 1
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of skill were used to evaluate cross-validation experi-

ments using two disjoint subgroups of the training da-

taset (Table 4). As noted, the main motivation of this

research was not to show which statistical learning ap-

proach is superior but rather to highlight two points:

1) the value of combining GOES satellite indicators

with information on the convective environment (as

obtained in this case from NWP) toward generating

short-term CI predictions with higher quality than can

be obtained when using GOES data alone (e.g., as in

Mecikalski et al. 2008; Sieglaff et al. 2011) and 2) how

statistical-learning-based methods can be used in con-

structing applications that benefit NWS and other

forecast systems by providing improved forecasts. The

outcome of this study is to provide improved GOES-R

CI nowcasts to NWS forecasters, which is the broader

impact of this work. The CI nowcasts will be evaluated

objectively in test beds like HWT and AWT.

The training dataset used here consists of 16 con-

vectively active storm days in 2010 and 5 similar days in

2011. This main dataset was divided into two roughly

equal groups (Table 2) that were used for cross-

validation evaluations (i.e., one for training and the

other for testing, then vice versa). To help ensure in-

dependence of the training and testing sets, cases from

the same daywere not split between groups. The LR and

RF models were then trained on the entire dataset, and

the predictive models were run on three new days from

the spring and summer of 2013 (as shown in Figs. 1–4).

The main conclusions are summarized as follows:

1) With the proper choice of probability thresholds,

both the LR and RF techniques using NWP data pro-

duce fewer false alarms and show better skill for a va-

riety of evaluationmetrics than theGOES-onlymethod.

Use of NWP information helps identify environmental

conditions (as favorable or unfavorable) for the de-

velopment of convective storms, information that is not

provided by the satellite observations alone. Thus, the

NWP data are valuable for improving the skill of CI

nowcasts that operate on a GOES-satellite-based cloud

object, as compared to when only IR fields are used.

2) The LR procedure as outlined here performed

slightly better than the RF on the training set cross

validations when a variety of skill measures were used to

quantify the results, but it was not clear whether this

advantage was significant. 3) The LRmethod performed

better than the RF on the three case studies from 2013

based on several skill scores, and the Brier scores for the

LR method were better than for RF, which is designed

to evaluate probabilistic predictions. Given that the

TABLE 7. Forward–backward variable selection ranks and occurrences (Occ) for LR andRF, respectively, aggregated fromgroups 1 and 2,

as described in the text.

LR RF

Rank Occ Predictor variable name Rank Occ Predictor variable name

1 64 Most-unstable CIN 1 70 Most-unstable CIN

2 63 13.3–10.7-mm TB diff 2 68 Object size at time 2

3 55 13.3–10.7-mm TB temporal diff 3 59 10.7-mm TB

4 52 10.7-mm TB cooling rate 4 59 Dominant cloud type at time 2

5 50 Dominant cloud type at time 2 5 48 6.5–10.7-mm TB diff

6 47 Object size at time 2 6 47 10.7-mm TB cooling rate

7 45 6.5–10.7-mm TB diff 7 47 Surface-based CAPE

8 45 Dominant cloud type at time 1 8 47 Dominant cloud type at time 1

9 44 Surface-based CIN 9 46 13.3–10.7-mm TB diff

10 44 700–500-hPa wind shear 10 40 Land/sea flag

11 38 Nearness to convective temp 11 39 LCL height

12 36 Object size at time 1 12 35 Surface-based CIN

13 36 MUCAPE 13 34 Object size at time 1

14 36 Convective temp 14 34 Surface lifted index

15 35 Surface-based CAPE 15 33 CCL height

16 35 Freezing-level height 16 33 13.3–10.7-mm TB temporal diff

17 30 10.7-mm TB 17 32 Freezing-level height

18 29 CCL height 18 28 Surface–700-hPa wind shear

19 25 Land/sea flag 19 27 MUCAPE

20 24 Surface–700-hPa wind shear 20 26 Nearness to convective temp

21 24 Surface–500-hPa wind shear 21 25 Surface–500-hPa wind shear

22 23 Surface lifted index 22 19 Convective temp

23 17 LCL height 23 17 LFC height

24 17 Best lifted index 24 13 Best lifted index

25 14 LFC height 25 4 700–500-hPa wind shear
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implementation of the trained LR model to make CI

nowcasts is significantly simpler than the RF, these re-

sults suggest that the LR method is more appropriate

for this application. 4) The performance of both the LR

and RF methods when using satellite and NWP fields

together peaks for several deterministic skill scores

when the predicted CI probability threshold is near

60%. And 5), in terms of variable importance between

both statistical methods, CAPE and CIN fields that

measure the amount of stability and lack of an inhibiting

mechanism for the release of the instability (low CIN)

are most important, along with GOES information on

the depth of the clouds being analyzed (10.7-mm TB),

the presence of nearby convection (low 13.3–10.7-mm

channel differences), and the size of the convective

cloud object at the second 15-min GOES time of

analysis (t2). Last, a forward–backward variable selec-

tion procedure showed that performance peaked at 7

variables and declined after 11 variables for LR, while

for RF the performance peaked at 11 variables and

declined only after about 20.

The superior performance of the LR method for the

CI nowcast problem was surprising to the authors,

given previous comparisons of these two approaches

for other complex meteorological forecast problems

(e.g., Williams 2014). We speculate that two aspects of

the CI nowcast problem account for this result: 1) The

satellite and NWP predictor variables selected for this

study were generally monotonically related to the

likelihood of CI, and thus were ideally suited for being

combined using a linear method. The RF method may

be better suited to domains in which the predictive

relationships of the variables are more complicated.

2) As a nonlinear model capable of capturing complex

predictive relationships, the trained RF model may

have keyed on some idiosyncratic aspects of the 2010

and 2011 data and thus did not generalize as well to

predicting CI for the 2013 cases. This failure to gener-

alize well could be addressed by performing more

careful variable selection, using only those predictor

variables that were most useful and thereby simplifying

the trained model. Related to this unexpected perfor-

mance is the impact of the relatively small training

database size used in this study, which was collected

mainly near the Gulf of Mexico (as guided by the pro-

ject’s funding—see the acknowledgments). Present

work is focused toward automating the validation

procedure, forming a training database .20 times in

size toward capturing CI in a wide variety of regimes

and cloud conditions (e.g., from completely clear to

cumulus clouds partially obscured by higher clouds),

which will be reported in subsequent science papers.

Another goal of future work will be to remove corre-

lated predictor fields and arrive at a refined set of only

the most important CI predictors.

An important future consideration is how this re-

search will be improved once the GOES-R generation

of geostationary satellites becomes operational. These

improvements fall into four themes: 1) Increased visi-

ble channel resolution to 500m, IR spatial resolution to

2 km, and increased time resolution to 5 min will help

automated algorithms discern cumulus clouds better

than is possible today with the current GOES satellites.

This increased resolution will afford enhanced nowcast

lead times for CI. Furthermore, the use of 5-min-

resolution data will improve the tracking of small-scale

cumulus clouds, especially in a GOES-R-like system

where cloud object overlap can be relied upon. Presently,

with 15-min GOES data, many smaller clouds are missed

at early stages of growth given significant cloud evo-

lution between image scenes, which is especially the

case for more rapidly moving clouds (Mecikalski et al.

TABLE 8. Per-field weights as produced byXLSTATS for the LR

model, listed in order of the highest to lowest absolute value of the

weights. The weights shown are for the model that provided the

largest area under the ROC curve (0.83 for LR-SatNWP in Table

4). See Table 1 for definitions. For those not in Table 1: t1 is the first

time of cloud object tracking in theGOES-RCI algorithm, and t2 is

the second time of cloud object tracking in the GOES-R CI algo-

rithm. The largest weight magnitude was found for the MUCAPE

(0.666). See text for description of the physical interpretation of

these results.

Source—all parameters Weights

MUCAPE 0.666

Surface-based CAPE 20.626

Object size at t2 0.520

13.3–10.7-mm diff 0.513

Most-unstable CIN 0.496

Surface lifted index 20.379

6.5–10.7-mm diff 20.275

Convective temp 0.242

Surface-based CIN 0.239

Best lifted index 0.229

10.7-mm cooling rate 20.219

Freezing-level height 20.177

Surface–700-hPa wind shear 20.176

700–500-hPa wind shear 20.173

13.3–10.7-mm temporal diff 20.166

Nearness to convective temp 20.141

Surface–500-hPa wind shear 0.137

Object size at t1 0.115

10.7-mm temp 20.097

Land/sea flag (0—land, 1—sea) 0.086

CCL height 0.075

Dominant cloud type at t2 20.063

LCL height 0.033

Dominant cloud type at tl 0.009

LFC height 20.005
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2008). The higher temporal resolution will also facili-

tate improved measures of the rates of change of cloud

properties, which should further increase CI nowcast

accuracy. 2) The additional channels (16 vs the

present-day 4) will help improve our ability to deter-

mine cloud-top glaciation, and likely cloud-top heights.

The current GOES lacks channels that can be used to

infer glaciation, whereas having the 8.5- and 12.3-mm

channels, as well as three water vapor channels (6.19,

6.95, and 7.34mm, instead of just the 6.5-mm channel),

will greatly improve our ability to detect ice versus

water particles (see, e.g., Strabala et al. 1994). The

added 10.35-mm channel on GOES-R (in addition to

11.2mm) will also improve estimates of cloud height.

All of these will be critical satellite indicators of rapidly

growing, tall clouds. 3) Presently, efforts are being

made toward evaluating how properties that describe

cloud-top microphysics can be exploited in the

GOES-R CI system to determine updraft strength, up-

draft width, and future storm intensity, along the lines of

work done by Rosenfeld et al. (2008). Use of statistical

learning and other statistical methods (beyond the

more simple scoring methods initially employed in

satellite-based CI nowcasting) can reasonably be

trained for use in producing short-term predictions of

storm intensity. Also, products that estimate cloud

optical depth have shown value in the detection of

growing cumulus beneath thin cirrus (Minnis et al.

2011a,b; Mecikalski et al. 2013). 4) Finally, this re-

search on improved methods to nowcast CI will be

synergistic with the forthcoming Geostationary Light-

ning Mapper (GLM) instrument also on GOES-R,

which will provide 8-km spatial and ;20 s temporal

resolution lightning observations over the GOES-R

field of view (Goodman et al. 2013). Thus, an eventual

plan would be to nowcast CI and use the GLM to help

monitor storm evolution for high-impact severe weather

events. Statistical learning methods like LR and RF

may provide an ideal test bed for determining which of

this rich set of future predictors will be most valuable

for CI nowcasting, and for combining them to make

skillful forecasts.

Last, the improved satellite-based CI nowcasts that

utilize statistical learning can be employed within

existing systems that monitor and track convection for a

variety of users. Systems of this kind include the CIWS

(Wolfson and Clark 2006), CbTRAM (Zinner et al.

2008), and the Rapidly Developing Thunderstorm

(RDT; Autones 2012).
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