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ABSTRACT

Enhanced temporal and spatial resolution of the Geostationary Operational Environmental Satellite–R

Series (GOES-R) will allow for the use of cloud-top-cooling-based convection-initiation (CI) forecasting

algorithms. Two such algorithms have been created on the current generation of GOES: the University of

Wisconsin cloud-top-cooling algorithm (UWCTC) and the University of Alabama in Huntsville’s satellite

convection analysis and tracking algorithm (SATCAST). Preliminary analyses of algorithm products have led

to speculation over preconvective environmental influences on algorithm performance. An objective vali-

dation approach is developed to separate algorithm products into positive and false indications. Seventeen

preconvective environmental variables are examined for the positive and false indications to improve algo-

rithm output. The total dataset consists of two time periods in the late convective season of 2012 and the early

convective season of 2013. Data are examined for environmental relationships using principal component

analysis (PCA) and quadratic discriminant analysis (QDA).Data fusion byQDA is tested for SATCAST and

UWCTC on five separate case-study days to determine whether application of environmental variables im-

proves satellite-based CI forecasting. PCA and significance testing revealed that positive indications favored

environments with greater vertically integrated instability (CAPE), less stability (CIN), and more low-level

convergence. QDA improved both algorithms on all five case studies using significantly different variables.

This study provides an examination of environmental influences on the performance of GOES-R Proving

Ground CI forecasting algorithms and shows that integration of QDA in the cloud-top-cooling-based algo-

rithms using environmental variables will ultimately generate a more skillful product.

1. Introduction

Nowcasting convection initiation (CI) with geosta-

tionary satellite data is an established and skillful tech-

nique and will continue to improve with the launch of

new instrumentation (Mecikalski and Bedka 2006;

Sieglaff et al. 2011). The use of cloud-top-cooling (CTC)

brightness-temperature changes to forecast CI was ex-

plored by Roberts and Rutledge (2003), who found,

through comparisons of Geostationary Operational

Environmental Satellite (GOES) imagery and Weather

Surveillance Radar-1988 Doppler (WSR-88D), that the

first 35-dBZ echo occurred approximately 30min after

large cooling rates were observed at the cloud tops of

subfreezing (.08C) quasi-stationary cloud pixels. As an

immature cumulus builds vertically, the temperature

observed at the cloud top decreases long before the first

radar echo is observed. Roberts and Rutledge (2003)

also observed that CTC can discriminate between

storms with weak precipitation (,35 dBZ) and strong

precipitation (.35dBZ).

The demonstrated value of CTC for nowcasting

CI led to the development of two GOES infrared

(IR)-based CI forecasting algorithms. The University
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of Wisconsin–Madison cloud-top-cooling algorithm

(UWCTC) uses a computationally inexpensive boxed

averaging method to track cloud objects with complex

logic to filter out horizontal-motion-based cooling

(Sieglaff et al. 2011). TheUWCTC products are forecast

indications with units of measured vertical cooling

[K (15min)21] using IR-only satellite trends.TheUWCTC

data are obtained from the University of Wisconsin Space

Science and Engineering Center (SSEC 2013).

The University of Alabama in Huntsville satellite

convection analysis and tracking algorithm (SATCAST)

uses mesoscale atmospheric-motion vectors (Bedka and

Mecikalski 2005) to track cloud objects of interest and to

monitor changes in several spectral trends (Mecikalski

and Bedka 2006; Walker et al. 2012). The changes in

important spectral trends, which Mecikalski and Bedka

(2006) called ‘‘interest fields,’’ are input into a logistic

regression equation to determine the strength of signal

(SoS), or the probability that the cloud object will gen-

erate reflectivity $ 35dBZ within the next hour. More

recent versions of SATCAST (version 2.3, after April

2013) are beginning to incorporate preconvective envi-

ronmental variables in the logistic regression equation

for SoS (J. Mecikalski 2013, personal communication).

The output of SATCAST is a grid of identified cloud

objects with associated SoS values. The SATCAST data

are obtained from the University of Alabama in

Huntsville (UAH 2013).

Previous studies have done basic validations to test

the skill of CI products (Mecikalski et al. 2008; Hartung

et al. 2013), but only a few have speculated on the impact

of the preconvective environment on CTC-based pre-

dictions of CI (Mecikalski et al. 2008; Sieglaff et al. 2011;

Walker et al. 2012). Validations range from radar-based

CI detection (Mecikalski and Bedka 2006; Mecikalski

et al. 2008;Walker et al. 2012) to occurrence of lightning

near CTC indications (Sieglaff et al. 2011). Mecikalski

et al. (2008) andWalker et al. (2012) also noted amodest

false-alarm ratio even after using optimized interest

fields. Sieglaff et al. (2011) andWalker et al. (2012) both

discuss the possibility that preconvective environments

may lower observed skill values in the output satellite-

based CI forecasts. Variables such as convective in-

hibition (CIN; Walker et al. 2012) or high storm motion

(SM; Sieglaff et al. 2011) can change both the probability

that convection will occur in an area and the ability of a

satellite algorithm to correctly diagnose changes in

brightness temperature.

The goal of this work is to consider the influence of the

preconvective environment on algorithm performance.

This study is designed to answer three questions: Do

preconvective environments have an impact on satellite-

based CI forecasting algorithms? Can preconvective

environmental variables be applied to new satellite

products through a data-fusion process? Is forecast skill

improved through the incorporation of preconvective

environmental variables into the CTC algorithms? To

answer these questions, an objective validation method

similar to that of Sieglaff et al. (2013) is developed to

examine large samples of both SATCAST and UWCTC

products. Positive and false indications from both algo-

rithms are examined with respect to preconvective en-

vironments derived from the analyses of numerical

weather prediction (NWP) models by using principal

component analysis (PCA) and tests for statistically

significant differences. Environmental variables identi-

fied to hinder satellite-based CI forecasting are exam-

ined for their potential in a data-fusion process. Data

fusion is tested using a quadratic discriminant analysis

(QDA) approach on select case studies during the 2013

convective season. It is the goal of this work to explore

the utility of data fusion and whether it will ultimately

create a more skillful forecasting product.

2. Method

Several CTC and satellite interest-field-based studies

that were focused on the U.S. central plains have been

performed (Roberts and Rutledge 2003; Mecikalski and

Bedka 2006; Sieglaff et al. 2011;Walker et al. 2012). This

study uses a similar region over the Great Plains (Fig. 1)

to examine satellite-based CI forecasts. The area was

chosen because of the radar coverage and the avail-

ability of in situ measurements through surface obser-

vations and radiosondes. For the environmental

analysis, data from 20 July to 17 August 2012 (July study

period) and from 17 April to 17 May 2013 (April study

period) are used.

A large-scale mosaic radar dataset is needed to vali-

date satellite-based convective algorithms. TheNational

Mosaic and Multi-Sensor Quantitative Precipitation

Estimation (NMQ) system radar dataset offers multi-

radar, multisensor coverage over the study region

(Zhang and Qi 2010; Zhang et al. 2011). NMQ data are

obtained from the National Severe Storms Laboratory

(NSSL) in Norman, Oklahoma (NSSL 2013). In addi-

tion, an NWP model is needed to resolve a full three-

dimensional picture of the environment containing the

observed CI indications. The Rapid Refresh model

(RAP) is an hourly-updating model with 50 vertical

levels and a Lambert conformal;13-km-resolution grid

covering North America. The standard-pressure-level

data that are produced and archived span from 1000 to

100 hPa, with a vertical resolution of 25 hPa. RAP data

are obtained from the National Climatic Data Center in

Asheville, North Carolina (NCDC 2013).
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a. Defining convection initiation

Validation first requires a definition for convection. A

radar-based definition appropriately characterizes CI

over the Great Plains and has been used in past studies

(Roberts and Rutledge 2003; Mecikalski and Bedka

2006; Walker et al. 2012). For this study, CI is defined as

the first occurrence of a radar return of 35 dBZ. Since

our goal is to determine points of CI at any height, NMQ

composite data are used. One advantage to using NMQ

data is that the quality control procedures remove re-

flectivity issues that complicate identifying CI, such as

bright banding, which helps to ensure that identified

echoes are convective in nature (Zhang et al. 2011). The

composite dataset requires radar-return segmentation

and tracking for objective validation.

The ‘‘w2segmotionll’’ algorithm, which is part of the

Warning Decision Support System–Integrated In-

formation (WDSS-II) suite of algorithms, is utilized for

this study.WDSS-II was developed by the NSSL and the

Cooperative Institute for Mesoscale Meteorological

Studies at the University of Oklahoma (Lakshmanan

et al. 2007). The w2segmotionll algorithm clusters radar

data on the basis of a combined k-means and enhanced-

watershed technique (Lakshmanan and Smith 2009).

The enhanced-watershed technique (Lakshmanan et al.

2009) is used on the quantized hierarchy of clusters in

k-quanta space (Lakshmanan et al. 2003) to grow

segmented clusters to a set minimum scale threshold.

Clusters are then grown on these discrete increments

from their maxima until a minimum scale threshold

(saliency) is reached or surpassed. The segmentation

method has the advantage of not being dependent on a

threshold value only (e.g., $35dBZ). The end result is

an efficient cluster segmentation that allows for storm

identification on a grid (Lakshmanan and Smith 2009).

To identify and track thunderstorms, the ‘‘Thunder-

storm Observations by Radar’’ tracking algorithm

(ThOR) was developed by the University of Nebraska

(Houston et al. 2015). ThOR uses clusters identified in

the w2segmotionll algorithm and storm-motion esti-

mates to develop thunderstorm tracks. Tracking is

achieved by considering all possible tracks within an

acceptable error radius from a first-guess location. Ex-

trapolated cluster positions are based on a combination

of NorthAmericanRegional Reanalysis (NARR) storm

motion and observed stormmotion (Houston et al. 2015;

Lock and Houston 2014). Early in the track evolution

(#10min), only NARR storm motion is used. Later in

the track evolution ($30min), only observed motion is

used. ThOR uses a weighted average between NARR

storm motion and observed cluster motion to generate

first-guess locations between 10 and 30min. When a

track is built, ThOR can use previously known locations

to improve the guess as to where a cell is moving.

Adaptive first-guess locations are advantageous relative

to a storm-motion-only-based approach, in particular

when tracking objects that are not constrained to the 0–

6-km mean wind (e.g., supercells). Pixel clusters are

tracked until they drop below a specific spatial threshold

or move outside regions of interest. All possible tracks

for a given cluster are considered, and ThOR assigns the

track containing the smallest mean error (the average

distance from the first-guess locations to the actual

cluster locations). The first resolved cluster of a track is

considered to be the CI cluster.

The combination of w2segmotionll and ThOR will

objectively identifyCI usingNMQdata. Thew2segmotionll

algorithm requires a minimum spatial threshold to de-

fine a convective system. It also performs smoothing on

a data grid to remove spurious peaks caused by data

noise. The spatial and smoothing scales are determined

using a subjective validation technique that is discussed

in the appendix. The final product of the objective pro-

cess (Fig. 2) is a two-dimensional grid of w2segmotionll-

identified clusters at the same resolution as NMQ and is

used for algorithm validation.

b. Algorithm validation

SATCAST, UWCTC, NMQ, and RAP are output on

grids with;1-km,;4-km,;1-km, and;13-km gridpoint

FIG. 1. Total area of study (solid outline labeledwithA), parallax

and track-corrected area of study (dashed outline, ranging from 918
to 1048W and from 348 to 488N, labeled with B), and validation

domain for CI truth clusters (dotted outline labeled with C).
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spacings, respectively, and on different projections. All

datasets are remapped to the SATCAST grid using a

nearest-neighbor approach. Any discontinuities caused

by grid-pixel centroids being located exactly between

multiple pixels are resolved using the maximum value of

the pixels in question. Discontinuities for the nearest-

neighbor remapping approach only occurred on NMQ

data, and therefore using the maximum value preserved

any possible pixels $ 35dBZ. SATCAST and UWCTC

are produced on a grid of individual pixels; indications

are considered as clusters, however. Clustering is done

by grouping any neighboring pixels and considering

them as a single indication. A UWCTC product is con-

sidered to be a CI indication if the cluster contains a

value , 24K (15min)21 (Roberts and Rutledge 2003;

Sieglaff et al. 2011). SATCAST pixels are considered to

be CI forecasts if any SoS value above 10% is detected

(minimum output SoS value). As performed in

Mecikalski and Bedka (2006) and Sieglaff et al. (2011),

an indication that corresponds to the resolved CI cluster

location within 1 h is considered to be a positive de-

tection. If an indication occurs with no corresponding CI

event, then that indication is considered to be false.

Since indications are witnessed up to 1 h before they

are validated, the vertical development that created the

indication is expected to advect out of its original loca-

tion. Thus, CTC may be witnessed well upstream of the

first 35-dBZ reflectivity cluster. To correct for storm

motion, the validation process includes use of RAP-

derived 0–6-km density-weighted storm-motion vectors

to advect indication validation areas through time.

When an indication is first detected, the storm-motion

vector for that indication is used to advect the

indication’s validation area forward appropriately for

each radar time step (every 5min). It is acknowledged

that the cloud-object depth may not extend through the

0–6-km layer, but the 0–6-km layer-mean wind is a suf-

ficient representation of motion for cloud objects that

are convective in nature (Mecikalski and Bedka 2006;

Walker et al. 2012).

Although the nearest-neighbor approach does not

change the values of the data, it does change the inten-

ded position of the forecast (with errors , ;1km).

Spatial correlation problems also exist when comparing

satellite brightness-temperature values with reflectivity.

A spatial displacement of satellite-based indications can

also exist as a result of parallax. Parallax is resolved

using a method similar to that in Sieglaff et al. (2011) in

which indications are assumed to be at a height of 7 km.

When correcting for parallax,;0.58 is lost on all sides of

the domain. To correctly identify CI points near the

boundary of the domain using ThOR, another ;0.58 is
used only to track objects and not for validation. The

resulting domain ranges from 918 to 1048Wand from 348
to 488N (Fig. 1b). All other spatial correspondence is-

sues are resolved through a subjective analysis. The

subjective analysis is performed to validate indications

as the algorithm would by comparing radar data with

parallax-corrected satellite indications. The CI points

are found by using the objective definition. Positive in-

dications were found over a period of 4 h on 21 July 2012

across the entire domain. The process of identifying

positive satellite indications involved identifying a cloud

object as convective subjectively. The need for a sub-

jective process here stems from the difficulty in back-

tracking satellite data at a 15-min temporal resolution.

Objects identified objectively as convection by satellite

would need to be appropriately backtracked to the

correct preconvective cloud object, which would in-

troduce several unwanted tracking errors at a low tem-

poral resolution (Sieglaff et al. 2013). Subjective

identification for the events involved avoids tracking

errors, and, with the relatively isolated nature of the

events used, subjective bias on identification of the

correct cloud object is minimized. The positive centroids

are advected and compared with the centroids of their

respective CI detection (centroid distance) by using

RAP-derived density-weighted 0–6-km storm motion.

The centroid distance was compared with the average

spatial radius (the average distance between an indication

cluster centroid and cluster pixels) of both SATCAST

and UWCTC indications. It was found that SATCAST

pixels had a 2.96-km average spatial radius with CI

centroid distances at 4.58 km. UWCTC indications on

FIG. 2. Flowchart for defining CI.
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average covered a larger area, with an average spatial

radius of ;5.68 km and with CI centroid distances

5.86 km away. It is possible that this spatial error is caused

by parallax issues or by problems with the process of re-

mapping data. To compensate for the maximum possible

spatial error, indications within approximately three

pixels (;3 km) of a CI detection are considered to be

positive forecasts.

A separate error that needs to be addressed in vali-

dation is the problem of multiple indications on a single

storm changing the number of positive and false in-

dications. If one system produces multiple indications, a

system with several indications, either positive or false,

would be favored in an environmental analysis over

systems that may produce only a few indications. Data

from GOES rapid scans would populate a larger

sample size in study-period collections unless in-

dications are tracked and coupled. ThOR is used to

track indications from both UWCTC and SATCAST.

An indication track is considered to be either one

positive or one false indication. The track is positive if

it contains an indication deemed to successfully fore-

cast CI. Thus, from this point on, a positive or false

indication refers to a group of tracked indications. The

averages of environmental variables for the entire

track are recorded for the single positive or false

indication.

Tracking of satellite-based CI indications requires

some changes from the radar-based tracking approach.

Radar-based detections that are tracked are above the

set spatial and reflectivity thresholds for deep convec-

tion and thus normally propagate with the mean 0–6-km

wind. UWCTC indications are only given if substantial

vertical cooling is identified, and they usually propagate

in a manner that is similar to radar indications along the

mean 0–6-km wind. SATCAST variables are produced

on all clouds determined to be ‘‘preconvective’’ (Walker

et al. 2012), and thus misidentified objects (edges of

cirrus) may not be influenced by the lower-tropospheric

wind at all. Although ThOR tracking with reasonable

temporal scales (7–15min) was able to handle this issue

through track-weighted first-guess values, large temporal

gaps on full disc scans created tracks deemed unreason-

able upon closer examination. Thus, SATCAST tracks

were not allowed to make temporal jumps $ 30min,

and new tracks were created after each full disc scan.

SATCAST tracking with ThOR also had issues, with

large numbers of candidate tracks being generated be-

cause of the large number of indications. Since ThOR

considers all possible tracks for each indication, data-

rich areas such as cumulus fields generated large num-

bers of candidate tracks that became unreasonable for

computation. Excessive candidate tracks are mitigated

by reducing the normal search radius of consideration

and discarding tracks that would cause unreasonable

mean error. By examining output candidate tracks, it

was found that reducing the normal search radius to one-

third of the radar-based default settings was a sufficient

correction. Since the search radius around a first guess

is a function of time, increasing with larger temporal

data gaps (see Houston et al. 2015), the issue of too

many candidate tracks will be mitigated with datasets

that contain larger temporal resolution. In summary,

SATCAST indications cannot currently be coupled

across 30-min time gaps and the ThOR tracking radius is

reduced to allow for reasonable computation by re-

ducing the number of excessive candidate tracks. Both

corrections with SATCAST tracking should be noted by

the reader, but both corrections should not be necessary

when this study is repeated on higher-temporal-

resolution data with the launch of GOES-R.

c. Environmental analysis

The remapped RAP data are used with validated

SATCAST and UWCTC indications to help to explain

why some indications are positive while others are false.

Since products are evaluated in clusters, environments

can vary for different regions of SATCAST and

UWCTC indications. Environmental variables for an

indication are considered to be the average of the in-

dication clusters’ spatial and temporal domain. All grid

points in the clusters along the track are averaged to

give a representative preconvective environment of the

indication. This study focuses on variables that would

influence vertical growth of CI and its detection by sat-

ellite (Table 1).

All algorithms use brightness-temperature differences

to derive areas of upward vertical motion (Mecikalski

and Bedka 2006; Sieglaff et al. 2011; Mecikalski et al.

2013). When one is diagnosing areas that are prone to

convective motion, parcel-theory-based convective

variables are useful forecasting tools (Williams and

Renno 1993). An environment that contains larger

CAPE values is more conducive to faster transitions

from immature cumulus to mature cumulonimbus

(Mecikalski et al. 2013). Additional parcel-theory vari-

ables used include CIN, level of free convection (LFC),

equilibrium level (EL), and lifted condensation level

(LCL), which are dependent on the lifted parcel level

(LPL). A most unstable approximation is used to ac-

count for both surface-based and elevated convection.

The maximum pseudoequivalent potential temperature

ue in the lowest 300 hPa is set as the LPL. Parcel-theory

variables are supplemented by layer depths, including

from the LCL to the LFC (ZLFC-LCL) and from the LFC

to the EL (ZEL-LFC).
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Positive and false indications are compared with the

layers through which a convective parcel will have to

traverse, including ZLFC-LCL and ZEL-LFC. Large values

of ZLFC-LCL are indicative of deep inversion layers that

hinder both convective development and algorithmic

cooling identification (Walker et al. 2012). Layer

ZEL-LFC is examined to monitor the convective cooling

depth throughout the unstable layer. Areas with larger

ZEL-LFC have greater adiabatic temperature change

throughout parcel excursion and are easier for brightness-

temperature-differencing algorithms to resolve correctly.

CAPE is also normalized throughout the depth of

the unstable layer (NCAPE) and can parameterize a

parcel’s susceptibility to entrainment during ascent.

Large NCAPE values suggest that the environment is

conducive to more explosive development (less en-

trainment) with larger buoyant accelerations in a layer.

Normalized CIN (NCIN) is also calculated. Lower

NCIN values (more negative) are a characteristic of

deeper stable layers, which, if a parcel is allowed to cool

through a deeper layer, may be more prone to pro-

ducing false identification (Walker et al. 2012). This

study also examines the influence of 0–6-kmmean wind

differential (MWD; Weisman and Klemp 1984), lapse

rates from the 0–3-km height (LOWLR) and 700–500-hPa

pressure levels (MIDLR), mean relative humidity from

the LCL to the LFC (RH), convective condensation

level (CCL), convective temperature depression (Tc2Te),

divergence resolved at the lifted parcel level (LPLD;

see Banacos and Schultz 2005), and density-weighted

0–6-km SM. Storm motion is included, as mentioned

in both Sieglaff et al. (2011) and Walker et al. (2012),

to reduce the likelihood that convection is in-

correctly detected by satellite-based CI forecasting

algorithms.

The temporal granularity of the RAP is an important

limitation in convective-time-scale studies. Convection

can occur on 0–1-h time scales, whereas the RAP

products are received and updated on only an hourly

basis. Thus, convective events that occur on subhour

time scales change the environmental parameters in a

way that cannot be detected by using RAP analysis.

Since convection-contaminated environments cannot

yet be resolved with sufficient temporal resolution by

operational NWPmodels, areas near ongoing convection

are removed from datasets used for statistical analysis.

This study uses a 50-km-radiusmask (;7850km2) around

all w2segmotionll-resolved convective clusters to iden-

tify what are considered to be contaminated (and

therefore unused) areas. The 50-km radius ensures that

convective events cannot advect into areas that are be-

ing considered for preconvective environmental analysis

TABLE 1. List of variables used with respective abbreviations (abbr) and descriptions.

Variable Abbr Description

Convective available potential

energy

CAPE Total integrated positive buoyancy from the LFC to the EL

Convective condensation level CCL Level at which the surface mixing ratio meets the temperature

profile

Convective inhibition CIN Total integrated negative buoyancy from the LPL

to the LFC

Equilibrium level EL Level above LFC at which a lifted parcel becomes

cooler than the surrounding environment

Lifted condensation level LCL Level at which a lifted parcel saturates

Level of free convection LFC Level at which an adiabatically lifted parcel becomes

warmer than the surrounding environment

Lifted parcel level LPL Level of max ue in the lowest 300 hPa

LPL divergence LPLD $ � V composite value calculated at the LPL

Lapse rates LR Change in temperature with respect to height

calculated at several levels (0–3 km; 700–500 hPa)

Mean wind differential MWD Magnitude of the vector change in wind velocity (0–6 km)

Normalized CAPE NCAPE CAPE divided by the LFC 2 EL depth

Normalized CIN NCIN CIN divided by the LPL 2 LFC depth

Layer relative humidity RH Avg relative humidity calculated from the LCL to the

LFC

Storm motion SM Averaged layer of mean wind from 0 to 6 km, assumed to

be the characteristic storm motion

Convective environmental

difference

Tc 2 Te Approximation of cumulus-field formation potential;

the difference of the convective and environmental

temperatures

EL 2 LFC ZEL-LFC Distance in meters from the LFC to the EL

LFC 2 LCL ZLFC-LCL Distance in meters from the LCL to the LFC
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on sub-RAP (,60min) time scales. The 50-km-radius

mask does not directly affect calculation of validation

statistics because RAP variables are not required in

determining algorithm performance.

d. Data fusion

The final step of this study is to take the environ-

mental variable analysis of positive and false indications

and use it on future products to improve satellite-only CI

forecasting algorithms. Once the original CTC algo-

rithms are validated and the environmental variables are

found for each indication, two different statistical ap-

proaches are used. The first is PCA. PCA is a simple

statistical way to reduce the dimensionality of data

(Hotelling 1933). The PCAmethod was previously used

to analyze the variation in several satellite-based in-

terest fields in Mecikalski et al. (2008). The top two

principal components are resolved and plotted with re-

spect to positive and false indications.

The second statistical approach taken is in the form of

Z statistics that are based on the Mann–Whitney (MW)

test (Mann andWhitney 1947). TheMWapproach is not

sensitive to nonnormality in datasets given that it is an

examination of ranked data. Statistically significant

differences are applied to a probability-based data-

fusion method. Several data-fusionmethods are available

for use; for example, logistic regression is used for the

current version of SATCAST (Mecikalski et al. 2015).

Since the goal of this work is to identify and remove

indications that are false in nature on the basis of

environmental data, the method chosen is a QDA

(Fisher 1936). Discrimination and classification are

techniques designed to separate sets of observations into

groups and to allocate new observations to those

groups using the gathered statistical data (Johnson and

Wichern 2007). QDA works by comparing the proba-

bility of an indication coming from a group to prior

estimated probabilities that an indication is within a

group (Fig. 3). Probability density functions that are

based on environmental data are generated with sta-

tistical databases by using the objective validation. If

there is no statistically significant difference in a par-

ticular environmental variable between positive and

false groups of indications, the probability from the

density functions for both groups will be approximately

equal. Therefore, if a statistically significant difference

is not found for an environmental variable, it is re-

moved from QDA.

QDA relies on the assumption of multivariate nor-

mality to determine probability density functions of

positive and false indications. In the atmosphere, most

data are not always normally distributed. Nonnormal

distributions are resolved through variable trans-

formation (Table 2). The MW approach is not sensitive

to nonnormality in datasets given that it is an examina-

tion of ranked data (Mann and Whitney 1947).

Inmathematical terms, the derivation for aQDA comes

from the minimized expected-cost-of-misclassification

function, which Johnson and Wichern (2007) show

to be

ECM5 c(2 j 1)P(2 j 1)p11 c(1 j 2)P(1 j 2)p2 ,

where p1 and p2 are prior probabilities of an indication

being from group 1 or 2, c(1 j 2) and c(2 j 1) are costs

of misclassification, and P(2 j 1) and P(1 j 2) are the

probabilities of misclassification. Johnson andWichern

(2007) show that the function is minimized by alloca-

tion of observations to groups in the following way:

TABLE 2. Transformations done to normalize convective-

variable distributions. These transformations are used in the

statistical tests, and results are reported in the original forms.

Variables that are not in this table were left untransformed.

Variable Transformation

CAPE x1/2

NCAPE x1/6

CIN 21 3 (jxj)1/5
NCIN 21 3 (jxj)1/9
LPL x1/2

LFC x1/2

EL x1.5

CCL x1/2

FIG. 3. Sample variable-distribution comparison performed by

QDA. Two group distributions are presented: group A and group

B. QDAwill use these distributions to classify new data into groups

on the basis of probability (area under the curve). For example, if

these distributions were to be used to classify a new point with

a variable value of 100, that variable would be assigned to group A

given a higher probability. In this paper, this technique is per-

formed on a multivariate basis.
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Observation xo is allocated to group 1 if

P(xo)1
P(xo)2

$
c(1 j 2)p2
c(2 j 1)p1

.

The left-hand side of the equation is the ratio of probability

density functions that an indication lies within group 1 or 2

on the basis of xo (the indications-corresponding matrix of

m environmental variables). If the environmental data

are a multivariate normal distribution, the probability

density functions on the left-hand side of the equation

are defined as

P(xo)n 5
1

(2p)m/2jSnj1/2
exp

�
2
1

2
(xo 2mn)

0S21
n (xo 2mn)

�
,

where Sn refers to the m 3 m population covariance

matrix of group n and mn is an m 3 1 matrix of the

population average environmental variables for group n

(Johnson and Wichern 2007; Wilks 2011). If it is as-

sumed that positive and false indication environmental

data have equal covariance matrices, the left-hand side

of the equation simplifies to a comparison of covariance-

weighted distances to prior probabilities (also known

as a linear discriminant analysis). By assuming equal

costs of misclassifications and equal prior probabilities,

the discriminant function becomes a simple comparison

of covariance-weighted distances (i.e., if environmental

data of an indication are closer to the statistical database

of environmental data for positive indications than to

the one for false indications, that indication is classified

as a positive indication). In this study, the assumption

that the covariance matrices are equal is not made, and

the resulting allocation function is as follows:

Observation xo is allocated to group 1 if

2
1

2
x0o(S

21
1 2 S21

2 )xo 1 (x01S
21
1 2 x02S

21
2 )xo2 k

$ ln

��
c(1 j 2)
c(2 j 1)

��
p2
p1

��
,

where k is defined as

k5
1

2
ln

�jS1j
jS2j

�
1

1

2
(x01S

21
1 x12 x02S

21
2 x2) ,

where Sn refers to them3m sample covariance matrix

of group n and xn is an m 3 1 matrix of the sample av-

erage environmental variables for group n (Johnson and

Wichern 2007). If the observation does not satisfy the

condition, it is assigned to group 2. The sample co-

variance matrix and sample mean matrix are derived

from the data collected, and new data stored in xo are

used fromdifferent case studies. Costs ofmisclassification

are assumed to be equal in this study. Costs can be ad-

justed by future users to weight the discriminant function

toward assigning a specific group if necessary.

Prior probabilities are also not assumed to be equal.

Current SoS values are probabilities of CI within the

next hour calculated through multivariate logistic re-

gression of satellite interest fields and environmental var-

iables from a database that contains ;9000 subjectively

validated indications (Mecikalski et al. 2015). Prior prob-

abilities are used when discriminating SATCAST data,

where p1 is the probability that a detection will be false

(1 2 SoS) and p2 is just SoS. Use of SoS values as prior

probabilities allows us to weight the QDA on the basis

FIG. 4. RAPMSLP (contours; hPa) and surface dewpoint (shading;

8C) at 0200 UTC 25 Jun 2013.

TABLE 3. Example confusion matrix. Columns represent QDA

classification, and rows represent actual classification. The per-

centage of improvement is found with j 5 100%[(a/e) 2 (c/f)].

Predicted

False Positive Total

Actual False a b e

Positive c d f

Total g h i

Percentage of improvement: j
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of previous successful derivations of probability of CI

for a given indication. The training dataset for calculation

of the environmental covariance and mean matrices in

QDA was created without considering SoS values, and

therefore statistical differences found between indication

groups are not affected. Use of SoS as prior probabilities

will act to merge the two statistical approaches for

incorporation of environmental variables and should

not harm the end result of the QDA. If a variable is

deemed not significantly different, however, a QDA can

be further improved if the SoS value does not consider

the environmental variable in question. Although the

calculation of SoS is beyond the scope of this paper,

future studies can use the statistically significant differ-

ences found in environmental variables of positive and

false indications to improve new product output.

Since UWCTC is not produced in probability format,

prior probabilities are estimated on the basis of the

givenCTC value.Here, p2 is assumed to be 0.25 for weak

UWCTC signals [210 , CTC , 24K (15min)21], 0.5

for moderate signals [220, CTC,210K (15min)21],

and 0.75 for strong signals [CTC , 220K (15min)21]

(Hartung et al. 2013). The assignment of these proba-

bilities is acknowledged to be heuristic; because these

products are evolving to probability-based systems

(Cintineo et al. 2014), however, the assignment is meant

to provide future users with examples on how to prop-

erly use the QDA database. Prior probabilities used

here conform to prior understanding of CTC and CI

(Sieglaff et al. 2011; Hartung et al. 2013), and can be

adjusted by future users to account for observed in-

dications with different parameterizations.

QDA performance is evaluated on separate case

studies that have been collected and are not part of the

original dataset. Evaluation is done using a dichotomous

confusion matrix, which quantifies performance of a

QDA by determining the matches between actual and

classified groups (Table 3). QDA-resolved false variables

are removed to create a filtered satellite-based fore-

casting product. In previous literature, it was common to

evaluate algorithm skill using validation statistics such as

POD, FAR, and CSI (see the appendix) for UWCTC and

Brier scores for SATCAST. The confusion-matrix ap-

proach is used to determine whether overall skill scores

(CSI and Brier score) have changed by using the relative

difference between positive and false indications. The

percentage of improvement (POI) is the relative number

of false indications removed in comparison with the rel-

ative number of positive indications removed. Positive

POI values suggest that more false indications than pos-

itive indications have been removed; thus, the resulting

product will have improved skill scores. Five case-study

days in 2013 are selected to examine the effectiveness of

the QDA using the confusion-matrix approach.

e. Case studies

The case studies are chosen to provide a variety of

synoptic situations to test the QDA filtering approach.

FIG. 6. Radar reflectivity (dBZ) at three time steps, where initiation

occurs at time t. The black-outlined polygons represent CTC in-

dications. (a) Example of a positive post-CI CTC indication, in which

reflectivity values intensify after cooling. (b) Example of a false CTC

detection occurring after CI, with no nearby ongoing convection.

FIG. 5. As in Fig. 4, but at 1800 UTC 20 May 2013 and showing

surface boundaries.
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In chronological order, they are 1800 UTC 9 April–

0300 UTC 10 April 2013, 1800 UTC 20 May–0000 UTC

21 May 2013, 1200 UTC 20 June–1200 UTC 22 June

2013 (two cases over 2 days), and 0000–1200 UTC

25 June 2013. The case studies range in scope from weak

nocturnal convection (the 25 June 2013 case; Fig. 4) to

high-impact severe-convection days (the 20 May 2013

case—the Moore, Oklahoma, tornado; Fig. 5). All case

studies are used to evaluate QDA performance. An

advantage of using case studies will be to understand

how well probability-based data filtering will work in an

operational setting.

3. Results

Objective validation determines positive and false

groups within the July 2012 and April 2013 study pe-

riods. Objective validation also determined positive and

false groups for selected case studies. For UWCTC en-

vironmental analysis there are 1211 (284) false (positive)

indications during the July study period and 797 (391)

false (positive) indications during the April study pe-

riod. For SATCAST environmental analysis there are

357 496 (4209) false (positive) indications for the July

study period and 282 965 (1160) false (positive) in-

dications for theApril study period. These numbers may

seem daunting to prospective users, but the reader is

reminded that these data are all indications that are at

least 50 km away from ongoing convection. It is common

for positive indications to be clustered along a boundary.

If several positive indications occur near or along a

boundary, the first indications will be collected in the

dataset and all subsequent indications cannot be con-

sidered. Also, SATCAST indications are produced on

all cloud types determined to be preconvective (Walker

et al. 2012). SoS is only changed on the basis of witnessed

interest fields. For the July study period, of the 357 496

FIG. 8. As in Fig. 7, but for the April UWCTC study period.

FIG. 7. Plot for the JulyUWCTC study period that shows the first

(x axis) and second (y axis) principal components. Positive (false)

UWCTC indications shown in green (red).

TABLE 4. UWCTC PCA eigenvectors with amount of variation

explained by the principal component. The top five variables are

shown in boldface font for each principal component.

Jul 2012 Apr 2013

PC1 PC2 PC1 PC2

CAPE 20.279 20.321 0.225 20.383
CIN 20.287 0.068 20.076 20.151

LCL 20.007 0.464 20.205 0.273

LFC 0.365 20.069 0.285 0.296

EL 20.281 20.181 0.146 20.367
RH 20.071 20.211 0.288 20.104

LPL 0.180 0.015 0.302 0.252

LPLD 0.069 20.073 0.059 0.002

Tc 2 Te 0.376 20.131 0.254 0.164

CCL 0.143 0.423 20.151 0.200

MIDLR 0.067 0.242 20.084 20.105

LOWLR 20.320 0.312 20.395 20.064

MWD 0.137 20.103 0.265 0.215

NCAPE 20.163 20.296 0.284 20.322

NCIN 20.070 0.042 20.109 0.025

ZEL-LFC 20.398 20.110 20.014 20.459
ZLFC-LCL 0.326 20.303 0.372 0.124

SM 0.045 20.185 0.266 20.024

Variation

explained (%)

27.10 18.03 29.46 22.46
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false indications found, 187 355 indications are below

30% SoS (;50% of false indications). Approximately

85% of the 4209 positive indications have SoS values

that are greater than 30%. For the April study period, of

the 282 965 false indications, 254 025 contain an SoS

value of less than 30% (;90% of false indications).

Also, 457 positive indications, or 40% of positive in-

dications, have an SoS value that is greater than 30%.

The substantial improvement in SoS value for the false

indications in the April SATCAST is due to the in-

corporation of convective variables into the SoS value

calculation. SATCAST output from after April of 2013

now includes several convective variables in the logistic

regression equation, including CAPE, CIN, LCL, LFC,

CCL, and many others that will be discussed in up-

coming publications (J. Mecikalski 2013, personal

communication). There are still a large number of false

indications with SoS values of greater than 30%, which

suggests that QDA incorporation may be helpful.

A simple test of how well the validation works is to

compare the skill scores found here with previous find-

ings. Since the current UWCTC algorithm was exten-

sively analyzed for skill in previous studies, this

algorithm was chosen for subjective interpretation. The

objective validation approach produced a 36.1% POD

and 45.5% FAR for the UWCTC algorithm. The vali-

dation statistics for UWCTC presented here are less

skillful than the statistics that are found in Sieglaff et al.

(2011) and Hartung et al. (2013) (FAR values of ;40%

and POD of ;50%). UWCTC presented a 45.2% POD

and 27% FAR with subjective validation. Upon closer

examination, many subjectively identified positive in-

dications occurred after CI was detected on a complex.

A post-CI CTC indication is a satellite-based indication

that occurs on a convective complex after it has reached

spatial and quantitative thresholds for reflectivity that

were set to identify CI. Most post-CI CTC indications

were indicators of a strengthening system in which re-

flectivity would increase after the forecast was made.

Since subjective validation considers post-CI CTC

FIG. 10. As in Fig. 7, but for the April SATCAST study period.

TABLE 5. As in Table 4, but for SATCAST.

Jul 2012 Apr 2013

PC1 PC2 PC1 PC2

CAPE 0.199 0.310 20.053 20.458

CIN 0.297 20.067 20.226 0.085

LCL 20.146 0.225 0.117 0.403
LFC 20.417 0.107 0.441 20.033

EL 0.152 0.448 20.097 20.428

RH 0.132 20.242 0.052 20.207

LPL 20.212 20.013 0.372 0.049

LPLD 20.015 20.062 0.049 20.017

Tc 2 Te 20.397 0.050 0.397 20.038

CCL 20.259 0.367 0.153 0.314

MIDLR 20.229 0.259 0.114 20.084

LOWLR 0.289 0.231 20.361 0.260

MWD 20.046 20.236 0.162 20.038

NCAPE 0.001 0.003 0.005 20.018

NCIN 0.001 0.019 20.001 0.005

ZEL-LFC 0.326 0.337 20.289 20.359

ZLFC-LCL 20.340 20.034 0.367 20.259

SM 0.075 20.382 0.126 20.138

Variation

explained (%)

25.28 15.37 24.11 16.76FIG. 9. As in Fig. 7, but for the July SATCAST study period.

JULY 2015 APKE ET AL . 1647



indications as reasonable forecasts, similar skill scores

were found for CTC indications as reported in Sieglaff

et al. (2011) and Hartung et al. (2013). Upon further

inspection it was found that the increased FAR (de-

creased POD) directly resulted from the exclusion of

indications that occur on convective systems after CI

was detected.

If CTC indications are considered to be positive for a

17-min period after CI detection [as in Hartung et al.

(2013)], the objective validation used here produces vali-

dation statistics that are similar to those of previous studies.

Allowing for successful CTC indications after CI provides

no benefit to environmental analysis, however, and risks

contaminating environmental-data collection with respect

FIG. 11. July, April, and total UWCTC and SATCAST study-period RAP values for positive (green) and neg-

ative (red) indications. Boxes represent the 25th–75th percentiles, and whiskers are from the 10th to the 90th

percentiles. Medians are shown as solid lines within the boxes.
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to performance (Fig. 6). All positive post-CI CTC in-

dications occur within close proximity to ongoing con-

vection and, therefore, are excluded from an

environmental analysis regardless of objective positive or

false classification. Post-CI CTC false indications are not

always in close proximity to ongoing convection and,

therefore, could be included in an environmental analysis.

It is crucial to classify post-CICTC indications as false for a

correct assessment of environmental influence on CTC

algorithm performance with a model that cannot resolve

convective time scales. Thus, all validations in this study

are not a finalized evaluation of algorithm ‘‘skill.’’ Rather

this validation technique is good for objectively identifying

regions where positive or false indications occur for envi-

ronmental analysis. Therefore, validation statistics (POD,

FAR, CSI, and Brier score) should not be calculated using

this method. Objective validation methods for environ-

mental analysis that do include post-CI indications will

need to use models that sufficiently resolve convective-

scale motions.

FIG. 11. (Continued)
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a. Principal component analysis

PCA is the first step in this statistical examination.

PCA for the UWCTC indications determined that the

top two sources of variance in the July 2012 dataset

explained 45% of overall variation (Table 4). The ei-

genvector for the first principal component (PC1) sug-

gests that the first source of variation is related to LFC

height. CIN also has a notable influence on the first

source of variation, despite not being among the top five

components. Variables related to LFC (ZLFC-LCL and

ZEL-LFC) had larger components in PC1, however. It is

likely that changes in CIN are related to changes in

ZLFC-LCL. The second principal component (PC2) ei-

genvector was largely related to instability present, with

large eigenvector components in CAPE, LCL, and

NCAPE. The signs of PC1 and PC2 suggest that LFC

height increases as PC1 increases and that instability

decreases as PC2 increases. Dependency upon values of

PC1 and PC2 becomes apparent when the principal

FIG. 11. (Continued)

1650 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 54



component scores are plotted (Fig. 7). Positive in-

dications favor areas with lower-than-average LFC

heights, with ;80% of positive indications occurring in

areas with PC1, 0. The dependence on CAPE is not as

clear with the July PCA. It is notable that there are a

larger number of positive indications in more-unstable

regions. However, the relative difference between

quadrants is too small to make a definitive conclusion

about CAPE using only PCA.

The April 2013 UWCTC data PCA displays similar

sources of variation as do the July data (Table 4). PC1

and PC2 again explain the majority of the variation

(;52%). The April PC1 did not lend itself to the same

interpretation as the July PC1, however. The April PC1

dependence did not appear to be linked with LFC

height, given the relatively low magnitude of theZEL-LFC

eigenvector component. The April PC1 did display a

dependence on ZLFC-LCL, with another notably large

magnitude on LOWLR. This lends itself to the inter-

pretation that higher April PC1 scores suggest envi-

ronments conducive to deeper stable layers that are

visible by satellite. April PC2 again is related to in-

stability, with higher PC2 scores being almost di-

rectly linked to less statically unstable environments.

The differences between July and April variation

suggest that the choice of initial distributions for

probability-based discrimination should vary for dif-

ferent time periods. April UWCTC also suggests de-

pendence on both the amount of instability and

stability in the atmosphere. Almost 80% of all posi-

tive indications occur in more-unstable regions

(Fig. 8). Since almost 50% of positive indications

occur in areas with both larger instability and smaller

ZLFC-LCL layers, PCA suggests that there is a relation-

ship between instability and stability with respect to

UWCTC performance.

The PCA for the July SATCAST dataset (Fig. 9) had

similar variations that were explained with the top five

eigenvectors (Table 5). PCA for SATCAST has a much

larger sample size of points in the July dataset than for

UWCTC (Figs. 6 and 7). The SATCAST July PC1

suggests similar dependence on LFC height to that seen

for UWCTC. Larger PC1 scores are related to lower

LFC heights, lower ZLFC-LCL, and higher ZEL-LFC. PC2

for the July SATCAST also displays a dependence upon

instability, with a notably large component for storm

motion. Thus, higher PC2 scores suggest slow-moving

storms in more unstable environments. The PCA plot

for July SATCAST (Fig. 9) suggests a much larger

performance on PC2 than does that for the UWCTC.

Positive indications are clustered in environments with

lower LFCs and higher instability (with ;56% of all

positive indications in the top-right quadrant of Fig. 9).

Few positive indications are observed below a PC2 score

of23, suggesting that there exists a minimum necessary

instability factor for a SATCAST indication to be

positive.

The April SATCAST PC1has large dependence on

values related only to ZLFC-LCL and excluded values

related to the actual value of CIN (Table 5). This result

displays a consistently large source of variation ex-

plained by ZLFC-LCL throughout all CTC-based prod-

ucts. It is notable that SATCAST in April is also

sensitive to LFC height. The lack of a robust ZEL-LFC

component prevents an interpretation that is based only

on LFC, however. The April SATCAST PC2 is again

TABLE 6. The P values for MW tests between positive and false

indications for the total dataset (combined July and April). Vari-

ables with 99.5% significance are shown in boldface font.

SATCAST UWCTC

CAPE 0.000 0.000

CIN 0.000 0.000

LCL 0.000 0.008

LFC 0.000 0.000

EL 0.000 0.000

RH 0.000 0.000

LPL 0.108 0.455

LPLD 0.000 0.000

Tc 2 Te 0.000 0.000

CCL 0.000 0.042

MIDLR 0.000 0.009

LOWLR 0.000 0.000

MWD 0.057 0.000

NCAPE 0.000 0.000
NCIN 0.000 0.000

ZEL-LFC 0.000 0.000

ZLFC-LCL 0.000 0.000

SM 0.000 0.014

TABLE 7. The 9 Apr 2013 confusion matrices for UWCTC and

SATCAST performance of QDA, removing insignificant variables

as diagnosed by MW.

UWCTC predicted

False Positive Total

UWCTC actual False 88 34 122

Positive 27 11 38

Total 115 45 160

Percentage of improvement: 1.08%

SATCAST predicted

False Positive Total

SATCAST actual False 9154 9546 18 700

Positive 153 282 435

Total 9307 9828 19 135

Percentage of improvement: 13.78%
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instability, with the largest components of eigenvectors

in CAPE and related variables.

Further analysis of the first two principal components

of April SATCAST yields two distinct clusters of posi-

tive indications (Fig. 10). Since the first component is

again related to the depth of the stable layer, the first

positive detection cluster appears to occur when in-

stability is low or nonexistent. The apparent PC1 mini-

mum is caused by data censorship when CIN 5 0; thus,

the PC1 score near ;3 should be interpreted as near-

zero stability with very low or negative ZLFC-LCL. This

result raises the question of why a second cluster would

be seen with relatively large (in compared with the first)

values of ZLFC-LCL. The clustering could be caused by

the abundance of forced convection in April, yielding

two different stability environments in which convection

is witnessed. Despite this clustering, again a majority of

positive indications are located in areaswith smallZLFC-LCL

values and large instability.

Throughout all four PCA analyses, it becomes clear

that the largest source of variation in the overall data is

related to ZLFC-LCL. This large variation does not mean

that ZLFC-LCL is a better discrimination variable to use

than CIN. Determining which variable is a better dis-

criminator is done using MW testing. Although it is

possible to create plots along the PC3, PC4, and PC5

values for all study periods, the plots for PC1 and PC2

were sufficient to conclude that a general relationship is

apparent between environmental variables and CI al-

gorithm performance. For a more detailed analysis of

just what that relationship is, tests for statistically sig-

nificant differences are analyzed. Finding a general

FIG. 12. The 1832 UTC 9 Apr 2013 (top left) unfiltered and (top right) QDA-filtered

SATCAST. The green-dashed circle displays an area where QDA successfully removes non-

convective SATCAST indications. Also shown are the (bottom left) 1835 UTC 9 Apr 2013

composite NMQ radar reflectivity data (dBZ) inside the rectangle and (bottom right)

1935 UTC 9 Apr composite radar reflectivity (dBZ), displaying several CI events (.35 dBZ)

that were successfully forecast by SATCAST.
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relationship with the largest sources of variation (ZLFC-LCL

and CAPE) does suggest that one or the other should be

important.

b. Variable contribution

Several variables appear to have statistically signifi-

cant differences upon initial examination (Fig. 11).

Variables such as CAPE and ZEL-LFC vary as expected,

with notably larger values for positive indications than

for false indications in UWCTC and SATCAST

(Figs. 11a,p). The importance of instability is also found

in LFC and EL differences where positive indications

have lower LFC values and higher EL values than false

indications for both algorithms (Figs. 11d,e). CIN-

related variables also have a consistent relationship,

such that false indications are found in more stable re-

gions for UWCTC (Figs. 11b,o,q). Relative humidity

variables are consistently different across the time pe-

riods for UWCTC, for which larger RH is seen with

positive indications (Fig. 11f). Note that Tc 2 Te also

appears to have a relationship with performance, since

lower values are common with positive indications

(Fig. 11i). Several preconvective environmental re-

lationships yield differences that change depending on

the time period. LPL is larger for positive UWCTC in-

dications in July than for false indications. Positive-

indication LPL is lower than for false indications for

April (Fig. 11g). The same characteristic is witnessed in

UWCTC LCL, MIDLR, and SM (Figs. 11c,k). The total

dataset (combination of July and April study periods)

FIG. 13. The 1855 UTC 9Apr 2013 (top left) UWCTC product with one positive detection in

northern Kansas and three false detections and (top right) with a QDA filter applied to the

product. Also shown are (bottom left) the 1855 UTC 9 Apr 2013 NMQ reflectivity data (dBZ)

and (bottom right) the reflectivity data 1 h later. Two false detections are correctly dropped

(dashed green circles in top panels) at the cost of one positive (red circles).
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with variables that exhibit differing relationships (such as

UWCTC LPL, LCL, MIDLR, and SM) ends up being

relatively similar (no significant difference should be

found). If no significant difference is found, then the

variables are deemed not important to QDA and po-

tentially not important to overall algorithm performance.

SATCAST RAP environmental-variable results have

similar characteristics to UWCTC values (Fig. 11).

Instability-related factors (e.g., CAPE,EL, andZEL-LFC,)

all show large differences (Figs. 11a,e,p) in a manner

consistent with the PCA findings (i.e., more instability

and higher likelihood of a positive detection). Other

variables, such as LFC, LCL, LPL, CCL, MWD, and

SM, exhibit different tendencies depending on the time

period (Figs. 11c,d,g,j,m,r). Variables that have differing

relationships between time periods for positive and false

groups result in little change when considered as a total

dataset. For example, CCL is larger for positive in-

dications than for false indications in the July study

period for SATCAST (Fig. 11j). In the April study pe-

riod for SATCAST, positive indications have a much

lower CCL than do false indications. The resulting total

dataset exhibits a difference that is not statistically sig-

nificant. Other data, such as RH and SM, do not exhibit

large differences between positive and false SATCAST

indications for both time periods (Figs. 11f,r).

The total UWCTC dataset has several statistically

significant differences between positive and false in-

dications in MW tests (Table 6). MW suggests that

MIDLR, LCL, LPL, CCL, and SM differences are not

statistically significant. Fewer variables are found to not

have statistically significant differences between SAT-

CAST positive and false indications. LPL and MWD

differences are not statistically significant. Statistical dif-

ferences could be caused by the object-identification

schemes used by each algorithm. UWCTC is a fairly con-

servative algorithm that only produces indications if a

cloud object is deemed vertically cooling. The SATCAST

identification scheme identifies all cloud objects rather

than only vertically cooling areas, which produces more

indications in nonconvective areas. Changing statistical

differences between both algorithms for two different time

periods imply that different relationships could be more

important at different times of the year. Examining sea-

sonality changes is beyond the scope of this writing, but

future studies with larger datasets could explore seasonal

relationships further. Now that statistically significant

variables have been identified, the total study periods can

be applied to future case studies with QDA.

c. Case studies

The QDA approach improved both UWCTC and

SATCAST for the first case study (9 April 2013; Table 7).

Important indications are kept in central Kansas,

which result in CI approximately 1 h later (Fig. 12).

Several false indications with relatively high SoS

values are removed from areas such as eastern Kansas.

The resulting POI value near 14% improves the Brier

scores for the dataset. UWCTC saw a notably smaller

improvement with POI near 1%. Several positive in-

dications are lost in the 9 April 2013 case for the

UWCTC dataset behind the cold front (Fig. 13). In-

dications are in regions containing little instability and

thus are deemed environments that are not conducive

to positive indications.

An examination that uses MW on the 20 May 2013

(Table 8) case study finds several false indications

correctly removed from the SATCAST and UWCTC

datasets (Figs. 13 and 14). Both SATCAST and

UWCTC show impressive lead time in forecasting the

strong updraft on the storm that produced the Moore

tornado. These values are correctly kept in all analyses,

and false indications are correctly removed around

central Nebraska. The QDA successfully keeps what is

probably the strongest of the updrafts that were ana-

lyzed in this study with the Moore cell, where cooling

values of ;62K (15min)21 are observed with an ap-

parent bounded weak-echo region on the composite

NMQ dataset.

A notably larger improvement in theUWCTC dataset

using QDA is found in the 20–22 June 2013 case studies,

for which only ;19% of positive indications were con-

sidered to be false by the filtering process. The QDA

removed ;33% of false indications, resulting in an

;14% improvement (Table 9). SATCAST displayed

considerable improvement as well (Fig. 15). It is found

that several false indications are left unfiltered near the

area of interest, however. These indications contain

relatively large SoS values and, if left unchecked, may

cause confusion to a nowcaster who uses such products.

TABLE 8. As in Table 7, but for 20 May 2013.

UWCTC predicted

False Positive Total

UWCTC actual False 15 79 94

Positive 7 70 77

Total 22 149 171

Percentage of improvement: 6.87%

SATCAST predicted

False Positive Total

SATCAST actual False 9845 21 031 30 876

Positive 302 798 1100

Total 10 147 21 829 31 976

Percentage of improvement: 4.43%
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Combined use of the SATCAST and UWCTC datasets

in this case is found to be helpful, with both containing

CI indications in northern Nebraska, resulting in several

CI events (Figs. 16 and 17). The lack of filtering on

several large SATCAST indications suggests that,

while a QDA does arguably improve the satellite-based

CTC forecasting dataset, the filtering method does not

remove all false indications. A forecaster therefore

should still couple this product with several other ob-

servational tools (surface data, soundings, and high-

resolution models) to correctly nowcast CI in specific

areas. A QDA-filtered dataset should therefore be

considered only for decision support.

The 25 June 2013 case showed some of the largest

percentage improvements for both UWCTC and

SATCAST (Table 10). Several false indications are

correctly removed from SATCAST, which correctly

detects the small nocturnal line of CI in central Ne-

braska (Fig. 18). Although UWCTC did not pick up this

line, indications for several additional events are found

in central Iowa (Fig. 19). QDA successfully filters two

separate indications, keeping a positive yet relatively

weak [;7K (15min)21] CI indication in central Iowa

and discarding a moderate [;14K (15min)21] yet false

indication in central Missouri.

Overall, simple application of QDA is found to im-

prove all case studies examined herein. Although it does

not remove all false indications from the two algorithms,

it does show that it is possible to successfully apply NWP

variables to a CTC-based algorithm to improve the skill

FIG. 14. The 1825 UTC 20 May 2013 (top left) unfiltered and (top right) QDA-filtered

SATCASTdata. The green-dashed circle highlights an areawhere false detections are correctly

removed. Also shown are (bottom left) the 1910 UTC 20 May 2013 NMQ reflectivity data

(dBZ) over central Oklahoma and (bottom right) the reflectivity data 1 h later.
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of the overall product. Therefore, probability-based fil-

ters should be used with unfiltered products and other

datasets to improve the situational awareness of a CI

nowcaster.

4. Summary and conclusions

Convection initiation can be determined using

satellite-based brightness-temperature and interest-field

trends. UWCTC and SATCAST algorithms both make

use of differing CI forecasting techniques that will utilize

the Advanced Baseline Imager on board the GOES-R

series. Both algorithms are being extensively tested be-

fore they become operational after the launch. While

several studies have examined algorithm performance

and relation to severe-weather occurrence, only a few

have speculated on the influences of unfavorable pre-

convective environments. This study therefore set out to

answer three questions: Do preconvective environments

have an impact on satellite-based CI forecasting algo-

rithms? Can preconvective environmental variables be

applied to new satellite products through a data-fusion

process? Is forecast skill improved through the in-

corporation of preconvective environmental variables

into the CTC algorithms? To answer all three questions,

an objective validation study was conducted to create a

large dataset of positive and false indications for both

algorithms. Positive and false indications were exam-

ined with Rapid Refresh–resolved preconvective envi-

ronmental variables using a principal component

analysis, and significant differences between both

groups were determined. Environmental variables that

were significantly different between groups were used to

filter five case studies using a quadratic discriminant

analysis approach.

Objective validation took place in several steps. NMQ

radar data are segmented using the WDSS-II frame-

work, and the centroids of the segmented clusters are

tracked through space and time using ThOR. Tracking

allows for the identification of the first occurrence of a

segmented WDSS-II cluster, also known as the point of

convection initiation. The WDSS-II settings that best

matched the clusters as identified by a forecaster

are used.

The objective validation results in large positive and

false samples of SATCAST and UWCTC indications.

Study periods are taken from the late convective season

in 2012 and early convective season in 2013 over the

Great Plains. Study periods depended upon data avail-

ability from GOES, NMQ, and RAP data sources. A

principal component analysis was completed on the

TABLE 9. As in Table 7, but for 20–22 Jun 2013.

UWCTC predicted

False Positive Total

UWCTC actual False 133 272 405

Positive 23 102 125

Total 156 374 530

Percentage of improvement: 14.44%

SATCAST predicted

False Positive Total

SATCAST actual False 18 845 35 474 54 319

Positive 74 379 453

Total 18 919 35 853 54 772

Percentage of improvement: 18.36%

FIG. 15. (left) The 1910 UTC 20 May 2013 UWCTC product with QDA filtering and the

maximum value of measured cooling for the Moore tornadic supercell, and (right) an 1815 UTC

20 May 2013 example of correctly QDA-filtered UWCTC product (circled in red).
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data to examine the sources of variation in the entire

dataset. An examination of data plotted in terms of the

top two sources of variation (related to ZLFC-LCL and

CAPE) suggests that a relationship exists between how

good an indication-forecast of convection initiation is

and the preconvective environment. PCA found that

more positive indications exist in environments that are

conducive to larger-than-average CAPE and lower-

than-average CIN.

Significance testing was also performed to further the

exploration of relationships between preconvective en-

vironments and the satellite-algorithm performances.

Larger (smaller) CAPE is found with indications that

are positive (false) CI forecasts. The relationship with

CAPE is possibly due to the difficulty of identifying

areas that are actually undergoing vertical cooling rather

than falsely resolved horizontal changes. CAPE is found

in truly convective areas, where false areas (identified as

objects in SATCAST or vertically cooling pixels in

UWCTC) can reside in both unstable and stable regions.

In addition to CAPE, CIN is an important variable to

consider for algorithm performance, which is consistent

with speculations from Mecikalski et al. (2008) and

Walker et al. (2012). Low-level divergence is also a

helpful discrimination variable when resolved at the

LPL through RAP data. Therefore, it is apparent that

preconvective environments do affect the performance

of satellite-based CI forecasting algorithms. No de-

finitive conclusion can be reached with regard to the

impact of shear, lapse rates, convective condensation

level, layer relative humidity, and lifted condensation

level because of the varying relationships between time

periods. It is possible that all four variables have little

impact on the overall performance of either algorithm.

Storm motion is not significant for the likelihood of a

positive or false indication. The storm-motion problem

FIG. 16. The 0055 UTC 22 Jun 2013 (top left) unfiltered and (top right) QDA-filtered

SATCASTdata. The green-dashed circle highlights an areawhere false detections are correctly

removed.Also shown are (bottom left) the 0125UTC 22 Jun 2013NMQ reflectivity data (dBZ)

over central Nebraska and (bottom right) the reflectivity data 1 h later.
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may stem from an issue about missed detections rather

than likelihood of an indication performing well. Any

issues regarding storm motion are heavily dependent

upon the temporal resolution of the satellite imagery

and should be examined in further detail after the

launch of the GOES-R series.

All significant variables, including CAPE, CIN, di-

vergence, and related variables, are then used in a

probability-based QDA. Use of the QDA consistently

improved the performance of both algorithms when the

proper variables were removed from the analysis. Even

though MW does not remove some of the inconsistent

variables discussed previously, the overall algorithm is

still improved with application of the QDA. Thus, it is

shown that differences exist in the preconvective envi-

ronments for positive and false indications in both algo-

rithms. The application of the statistically significant

environmental variables resulted in improvement in both

products. Data fusion did not remove several important

indications, including the Moore cell. The successfully

developedQDAfiltering process showed that it is possible

to statistically combineNWP variables with satellite-based

CI forecasts, and the new data-fused product can reduce

indication noise and improve the skill of the forecasts.

Comparison of radar data with CTC indications can

introduce issues stemming from unresolved parallax

problems. Spatial decorrelation between radar and sat-

ellite data is also possible because the two datasets are

measuring two different things: radar measures the

droplet distribution in an area, and CTC or cloud-based

interest fields measure the area of a cold cloud-top

temperature. Both issues are accounted for in this

study, but a better validation in future data periods can

take advantage of the GOES-RGeostationary Lightning

Mapper (GLM; http://www.goes-r.gov) to determine

locations of convection initiation. The GLM will not

suffer from issues stemming from parallax, beam

blockage, or lack of radar coverage, and much larger

domains can be used for validation.

Sieglaff et al. (2013) also suggest that a validation that

is based on the tracking and identification of cloud ob-

jects may be a better approach to identifying convective

events than a radar-based event-identification method.

The advantage of cloud-object identification stems from

the ability to diagnose correct null forecasts, in which a

cumulus pixel exists without a CTC indication. The

diagnosis of correct null forecasts will allow for the

computation of Heidke skill scores. The reason that a

cloud-object approach was not adopted for this work

was that the current generation of GOES has very low

temporal resolution (normally 7–15min, with 30-min

data gaps every 3 h for full disc scans). The cloud-object

approach could result in a better objective validation

FIG. 17. (left) The 0125 UTC 22 Jun 2013 QDA-filtered UWCTC product over northern

Nebraska, and (right) a 0155 UTC 22 Jun 2013 example of two correctly removed products in

the nonconvective area of northern Missouri.

TABLE 10. As in Table 7, but for 25 Jun 2013.

UWCTC predicted

False Positive Total

UWCTC actual False 54 28 82

Positive 3 7 10

Total 57 35 92

Percentage of improvement: 35.85%

SATCAST predicted

False Positive Total

SATCAST actual False 10 352 9239 19 591

Positive 28 100 128

Total 10 380 9339 19 719

Percentage of improvement: 30.96%
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after the launch of GOES-R because temporal resolu-

tion will increase to 5min.

Several problems occur when tracking large-volume

datasets such as SATCAST. The ThOR method, to

consider all tracks in an acceptable range, had to be

tweaked to handle the low temporal resolution of

GOES and the high object density of SATCAST.

Without correction, ThOR would consider too many

candidate tracks with SATCAST objects for reasonable

computation. The reduction in first-guess search

radius allowed ThOR to produce usable tracks with

reasonable computational time. Some tracking error is

expected with the reduction in search radius, particu-

larly with fast-moving cloud objects that could be lost by

ThOR’s tracking scheme. Future studies with an;5-min

GOES-R temporal resolution should not have the same

tracking issues.

An issue that may have occurred in the QDA is that

convective contamination is not considered in the ap-

plication of RAP-based variables to new cases. Ongoing

convection processes contaminating RAP analysis were

not included in new cases so as to simulate the perfor-

mance of QDA under real-time conditions. With this

approach, all products are filtered with the approximate

environment in which they are situated. This limitation

of RAP data (temporal granularity) may explain some

of the performance variability of the QDA filter on

differing case studies. As higher-temporal-resolution

models become operational, such as the higher-

temporal-resolution Rapid Refresh, QDA-filtered data

performance should improve in the real-time environ-

ment. Another issue that may have occurred in QDA is

the fact that SATCAST SoS values take into account

convection-related variables that were not removed by

FIG. 18. The 0215 UTC 25 Jun 2013 (top left) unfiltered and (top right) QDA-filtered

SATCASTdata. The green-dashed circle highlights an areawhere false detections are correctly

removed.Also shown are (bottom left) the 0215UTC 22 Jun 2013NMQ reflectivity data (dBZ)

over southern Nebraska and (bottom right) the reflectivity data 1 h later.
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this analysis. Removing variables that are not statistically

different from the QDA increased the observed per-

centage of improvement. Variables that are not statisti-

cally different that are used in the calculation of SoS can

mitigate the improvement of QDA. Future products can

take into account the observed statistical relationships in

this work to improve output when fusing indications with

NWP data. Also, all derived relationships are found on

the currentGOES-series ProvingGround products, which

have a lower temporal resolution than is projected for

GOES-R. It was not the goal of this study to make the

perfectQDA, however. The goal of this studywas to show

that it is possible to apply specific environmental variables

to improve current products, and this goal was successfully

achieved. This study has thus created the initial frame-

work for future examinations of preconvective environ-

mental influence on CTC and interest-field forecasting.

New, more-skillful data-fused products should improve

the situational awareness of CI nowcasters.
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APPENDIX

Subjective Validation Technique

A small dataset of radar-observed deep convection

from 25 July 2012 (Fig. 1c) is examined to determine

which WDSS-II settings would work best for an objec-

tive scheme. The domain that is used is from 2000 UTC

25 July to 0000 UTC 26 July 2012 because of the abun-

dance of CI events. The validation process begins with

forecasters at the University of Nebraska identifying

events they believed to be CI in this time frame, which

are referred to as ‘‘truth’’ clusters. Forecasters identified

FIG. 19. (left) The 0815 UTC 25 Jun 2013 QDA-filtered UWCTC product over Iowa, and

(right) a 0945 UTC 25 June 2013 example of a UWCTC removed value.

TABLEA1. Theminimumscaleswith the highest skill values shown

for validation of w2segmotionll–ThOR CI clusters in comparison

with subjectively identified truth CI clusters. The w2segmotionll

settings are presented as low smooth (50th-percentile smoothing

over a 5 3 5 box), medium smooth (50th-percentile smoothing over

a 73 7 box), and high smooth (50th-percentile smoothing over a 93
9 box).

Half-size in pixels

(smoothing)

Min scale in pixels

(saliency) POD FAR CSI

4 (high) 20 73.1 20.4 63.5

3 (medium) 30 69.7 18.6 66.67

2 (low) 40 62.7 18.6 61.2
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truth clusters using a spatial scale that they believed

accurately represented the initial areal extent of a deep-

convection event. The objective clusters are then vali-

dated with the given truth clusters.

The first variable tested is the smoothing filter that

w2segmotionll uses to remove spurious peaks and noise.

The default w2segmotionll setting uses a 50th-percentile

filter with a box half-size of 5 (an 11 3 11 pixel box).

Larger half-sizes can remove information that may be

important to identifying CI events. Lowering half-sizes

comes with the consequence of increased spurious peaks

and noise values, and therefore half-sizes of 2, 3, 4, and 5

are tested. A minimum scale is also tested with different

half-sizes. Minimum-scale saliency values of 20, 30, and

40 pixels are examined with all four half-sizes.

Four different half-sizes with three different scales are

input into ThOR to determine the location of a CI event,

which is then compared with the truth dataset. A ThOR

CI cluster with (without) a corresponding subjectively

identified truth cluster within 10min is considered to

be a positive (false) indication. A truth cluster without a

corresponding ThOR cluster is considered to be a

missed detection. The probability of detection (POD),

false-alarm ratio (FAR), and critical success index (CSI)

are determined for the w2segmotionll–ThOR objective-

validation techniques as follows:

POD5
a

a1 b
,

FAR5
c

c1 d
, and

CSI5
d

d1 b1 c
,

where a is the number of detectedCI truth clusters, b is the

number ofmissedCI truth clusters, c is the number of false

w2segmotionll–ThOR CI detections, and d is the number

of positive WDSS-II–ThOR CI detections. Optimizing

w2segmotionll settings will allow for robust identification

of CI events that are used in objective validation.

An objective validation is designed to mimic the in-

terpretation of CI by a forecaster. Thus, the design of the

objective scheme is optimized through comparison with a

subjective validation. The objective scheme that best re-

sembles the small-scale subjective validation is used. The

subjective validation revealed optimal settings for the

w2segmotionll (Table A1). The default smoothing pa-

rameter (half-size of 5) is too aggressive and removed

results that could be important in an objective-validation

scheme. As lower and more skillful half-sizes are used,

several important features became visible to the clustering

process (Fig. A1). It is clear that increasing the half-sizes

of the smoothing parameters allows for smaller saliency

FIG. A1. (a) Example of unsmoothed composite NMQ data over the Texas Panhandle and

southwesternOklahoma.Also shown are the data with (b) light smoothing applied, with a 50th-

percentile filter over a 5 3 5 box; (c) medium smoothing applied, with a 50th-percentile filter

over a 73 7 box; and (d) heavy smoothing applied, with a 50th-percentile filter over a 93 9 box.

Colors that are ‘‘hotter’’ than yellow are above 35 dBZ and are considered to be convective.
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scales to be more skillful. Less smoothing results in too

many clusters being identified and thus presents a need for

larger saliency scales to improve the skill scores. For this

study, the medium (and most skillful) value of half-size of

3 with a 30-pixel saliency scale was chosen.
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