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ABSTRACT

An analytic perturbationmethod is introduced for retrieving the lightning ground flash fraction in a set ofN

lightning flashes observed by a satellite lightning mapper. The value of N must be large, typically in the

thousands, and the satellite lightning optical observations consist of the maximum group area (MGA) pro-

duced by each flash. Moreover, the method subsequently determines the flash type (ground or cloud) of each

of the N flashes. Performance tests of the method were conducted using simulated observations that were

based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. It is found that the

mean ground flash fraction retrieval errors are below 0.04 across the full range 0–1 under the nominal con-

ditions defined. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the

numberN of satellite observations, the magnitude of random and systematic instrument measurement errors,

the ground flash fraction itself, and the number of samples used to form certain climate distributions em-

ployed in themethod). The fraction of flashes accurately flash typed by themethod averaged better than 78%.

Overall, the accuracy of ground flash fraction and flash-typing retrievals degrade as the simulated population

ground and cloud flashMGA distributions become more identical. Finally, because the analytic perturbation

method was found to be quite robust (i.e., it performed well for several arbitrary underlying MGA distri-

butions), it is not restricted to the lightning problem studied here but can be applied to any inverse problem

having a similar problem statement.

1. Introduction

TheGeostationaryOperationalEnvironmental Satellite-

R series (GOES-R) is due to launch in early 2016 as of this

writing. In preparation for this launch and in order to

optimize return on investment, many ongoing research

activities are being carried out to explore and exploit the

full information content of theGOES-R instrument data.

One instrument on GOES-R is the Geostationary

Lightning Mapper (GLM) described in Goodman et al.

(2013). The GLMwill map the locations and the time of

occurrence of total (ground flash and cloud flash) light-

ning activity continuously day and night with near-

uniform storm-scale spatial resolution and with a product

refresh rate of under 20 s over the Americas and adjacent

oceanic regions. The GLM is based on two heritage low-

Earth-orbiting National Aeronautics and Space Adminis-

tration (NASA) satellite lightning mappers: the Optical

Transient Detector (OTD) (Christian et al. 1996, 2003)

and the Lightning Imaging Sensor (LIS) (Christian et al.

1992, 1999).

Although the above-mentioned lightning mappers are

designed to provide total lightning activity, these instru-

ments do not directly provide flash type (ground or cloud

flash) classification; that is, they do not determine the

flashes that strike the ground. This is understandable, since

the optically thick thundercloud obscures the view,making

it difficult to determine flash type. Early examinations of

data from the OTD and LIS confirm this difficulty. At

optical frequencies, the thundercloud multiply scatters the
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lightning source, and this results in a diffuse cloud-top

emission that prevents one from deciding whether the

lightning channel below cloud top connects to ground.

Nonetheless, the spatiotemporal pattern of the diffuse

cloud-top emission itself provides key information about

whether or not the channel connects to ground, as first

pointed out in Koshak (2010). Specifically, by inter-

comparing OTD and National Lightning Detection Net-

work (NLDN; Cummins and Murphy 2009) data, Koshak

(2010) showed that the mean maximum group area

(MGA) for ground flashes was substantially larger than

the meanMGA for cloud flashes, so that for spaceborne

detectors, MGA is a fundamental variable for discrim-

inating ground flashes from cloud flashes. [Note: a light-

ning flash typically lasts a few tenths of a second and

typically consists of several optical groups. The term group

follows the vernacular used to describe a contiguous re-

gion of illumination seen by a lightningmapper during one

(2ms) instrument frame time; Mach et al. 2007.]

The hypothesis proposed by Koshak (2010) is that the

return stroke (and its accompanying simultaneous dis-

charges, if any) produces a relatively large optical group

within the flash. In effect, a statistically largeMGA is useful

as a ‘‘return stroke detector.’’ The mean ground flash

MGA also substantially exceeded the mean cloud flash

MGAwhen 9 years (2003–11) of LIS andNLDNdatawere

intercompared (Koshak and Solakiewicz 2012). In addi-

tion, the study byRudlosky andShea (2013) intercompared

WorldWide Lightning LocationNetwork (WWLLN) data

with LIS data and found that LIS flashes associated with

WWLLN ground flash detections had substantially larger

mean MGA values than LIS flashes not associated with

WWLLN ground flash detections. Some of the difference

in the mean MGA value can possibly be attributable to

WWLLN triggering only on the more energetic lightning

events. But, this does not explain all of the difference; that

is, the study byKoshak (2010) andKoshak and Solakiewicz

(2012) still found substantial differences in themeanMGA

valueswhen (themore sensitive)NLDNdatawere used for

the ground flash detections. Whereas the NLDN provides

a ground flash detection efficiency of 90%–95% and

a ground flash location accuracy of better than 500macross

the conterminous United States (CONUS) (Cummins and

Murphy 2009), the WWLLN has respective values of 11%

and under 5km globally as summarized in Hutchins et al.

(2012) and references therein.

The follow-on studies by Koshak and Solakiewicz

(2011) and Koshak (2011) introduced the first attempts

to retrieve the ground flash fraction based on the MGA

variable suggested by Koshak (2010). That is, for a sat-

ellite lightning mapper that observes a large number N

of flashes, these retrieval methods are designed to esti-

mate the fraction of flashes that strike the ground. As

discussed in Koshak (2010), ground flash fraction re-

trieval algorithms would have significant utility in a va-

riety of scientific areas, such as severe weather studies,

lightning nitrogen oxide (NOx) production for air quality

and global chemistry climate modeling, lightning–

convection relationships, the contribution of lightning to

the global electric circuit, and cross-sensor validation.

The retrieval algorithm in Koshak and Solakiewicz

(2011) depended on using a fixed value for the mean

ground flash MGA and a fixed value for the mean cloud

flash MGA; the two means were derived for CONUS by

comparing NLDN and OTD observations. Thus, re-

trieval errors are expected to increase when other geo-

graphical regions and seasons are considered.

The more sophisticated retrieval algorithm in Koshak

(2011) attempted to overcome this limitation by em-

ploying a mixed exponential distribution model to de-

scribe the ground and cloud flash (shifted) MGA

distributions. In this approach, one would retrieve not

only the ground flash fraction for the region–season

under consideration but also the optimum values of the

population means of each shifted MGA distribution;

that is, the approach was to find the three parameters of

the fixed (mixed exponential distribution) model that

best describes the satellite observations.

Even with this beneficial advancement, one can still

argue that a different region/season might have ground

and cloud flash MGA population distributions that de-

viate too much from the fixed mathematical model

employed. In addition, both retrieval algorithms provide

no way for flash typing specific flashes. These two limi-

tations have motivated the present study.

In this paper we introduce amodel-independentmethod

for retrieving the ground flash fraction in a set ofN flashes

observed by a satellite lightning mapper (such as OTD,

LIS, or the future GLM). The method also subsequently

determines the flash type of each of the N flashes.

The retrieval method introduced here is called the

Analytic PerturbationMethod (APM), and it consists of

two basic phases: 1) a ‘‘burn in’’ phase and 2) an oper-

ational phase wherein theAPM is applied to retrieve the

ground flash fraction, the ground and cloud flash MGA

density functions, and the flash type of each flash. The

details of the APM are provided in section 2. In section

3, we provide detailed performance tests of the APM.

Mathematical error analyses are provided in section 4

that provide additional insight and context. A summary

of the study is given in section 5.

2. APM

This section introduces the mathematical details of the

APM. Section 2a describes the burn-in phase. Section 2b
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describes how the ground flash fraction, the density

function of ground flash MGAs, and the density function

of cloud flash MGAs are retrieved from a set ofN flashes

observed by a lightning mapper. Finally, section 2c de-

scribes how the N flashes are individually flash typed.

a. Burn-in phase

Before the APM can be applied to retrieve the

quantities mentioned above, the lightning mapper ide-

ally first collects a large sample of flashes from the target

(i.e., region and season of interest) that have already

been flash typed using an independent validation dataset.

This collection period or ‘‘burn-in’’ phase estimates the

mathematical forms of the underlying ground and cloud

flashMGApopulation density functions for the target. For

example, theGLMwould sample a large number of flashes

over the CONUS using NLDN data for flash typing.

If independent validation datasets are unavailable for

a particular target, then one is forced to apply burn-in

results from a different target (e.g., CONUS, and for the

same season of interest, where independent ground

validation is ample). In taking this route, one would

need to anticipate degradation in APM solution re-

trieval accuracy (see section 4 for details). However, it

has been demonstrated in Koshak and Solakiewicz

(2011) that, at least for CONUS (a region of highly

variable lightning, highly variable thunderstorm struc-

tures, and highly variable cloud morphologies with di-

verse cloud-scattering properties) the ground and cloud

flash values ofMGA do not vary greatly. In other words,

it might be possible to adequately apply the APM to

most regions of the world using only the CONUS-based

burn-in results as an approximation. Again, section 4

quantifies how accurate such a process must be in order

to retain reasonably accurate APM retrievals.

To summarize, the burn-in phase can be viewed as

a training or information collection period for the re-

trieval algorithm. After this period, the retrieval algo-

rithm can be run autonomously for a wide range of

targets, including possibly those targets that may have

no, or inadequate, independent lightning flash type

validation measurements available.

b. Ground flash fraction and MGA density functions

Suppose a lightning mapper detects N lightning

flashes over a particular region in a given interval of

time. Each flash is composed of one or more ‘‘optical

groups,’’ and so the MGA of each flash can be obtained.

The MGA of a single group flash is simply the area of

that single group. If two or more groups in a flash have

equivalent areas A, and this area A is the MGA, then

this is simply the value of MGA for the flash (i.e., one

does not numerically enhance the value of the MGA in

an attempt to account for the several equivalent max-

ima). In addition, it is assumed for the present discussion

that the N MGA values are exact; that is, they have no

measurement error associated with them.

Next, theNMGAvalues are placed into anN-vector x.

In general, Ng of these MGAs will be from ground

flashes and Nc of these MGAs will be from cloud flashes,

whereN5Ng1Nc. Therefore, one can also construct the

Ng-vector xg to hold the ground flash MGAs, and one can

construct the Nc-vector xc to hold the cloud flash MGAs.

From x, one can easily find the frequency distribution of

theMGAvalues. Specifically, one picks anMGAbinwidth

(typically 20km2) and some appropriate MGA range (say,

0–4000km2), and then determines to what bin each ele-

ment of x belongs. The number of bins is given by n, which

in this example would equal 4000km2/20km2 5 200.

Hence, after tallying the number of occurrences in each

bin, the MGA frequency distribution can be written

as an n-vector U. Because U consists of the union of

ground and cloud flash MGAs in general, it is called the

union frequency distribution, or the mixture distribution

for brevity. Similarly, a ground flash MGA frequency

distribution,G, can be derived from xg, and a cloud flash

MGA frequency distribution, C, can be derived from xc.

Clearly, the sum of ground and cloud MGA frequency

distributions must equal themixture distribution, that is,

U5G1C . (1)

Dividing this relationship by N yields an expression in

terms of probability density functions (pdfs), that is,

u5ag1 (12a)c , (2)

where

U5Nu, G5Ngg, C5Ncc , (3)

and the ground flash fraction, a, is given by

a5
Ng

N
. (4)

Next, one can set up a fundamental retrieval equation.

To do this, the presence of measurement errors in the

MGA values needs consideration. These errors will

propagate into the pdfs shown in (2). Characterizing the

errors added to u by the vector e, the observed mixture

densitym is given bym5 u1 e. So, when measurement

errors are included, the analog to (2) is given by

m5argr 1 (12ar)cr . (5)

Here, the lhs represents a set of measurements (origi-

nating from the satellite MGA observations x) and the

JANUARY 2015 KOSHAK AND SOLAK IEW ICZ 81



rhs is a modeling of those measurements. The retriev-

able parameters in the model are ar, gr, and cr.

The densities (g, c) associated with the satellite ob-

servations x will be some deviation from the associated

population densities [denoted here by (gpop, cpop)] from

which they are respectively drawn. Hence, the retrieved

densities can be viewed as a perturbation from the cli-

matological estimate of the population densities; that is,

gr 5 a1d, cr 5 b1 e , (6)

where (a, b) are the ground and cloud flash climatolog-

ical estimates of the population densities obtained by

the burn-in phase, respectively, and (d, e) are the per-

turbations. To help visualize the n-dimensional space

employed, Fig. 1 provides a conceptual (three dimensional)

illustration of the climate vectors (a, b), their perturbants

(d, e), and the mixture density vector (m).

Figure 2 emphasizes that the hyperplane formed by

the retrieved densities (gr, cr) must be perturbed from

the climate vectors in such a way that the (fixed) mixture

densitym is in this hyperplane. In other words, one wants

to pick the perturbants (d, e) such that (5) holds; the

skewed vectors (gr, cr) span the hyperplane vector space.

As an additional aid in understanding the solution

process, one can define a reference density mo that is in

the hyperplane space spanned by the climate vectors as

mo 5aoa1 (12ao)b , (7)

where the reference ground flash fraction, ao, is given by

solving (7):

ao 5
(mo 2 b)T(a2 b)

(a2 b)2
. (8)

Since the observation m is not (in general) in the hy-

perplane space spanned by the climate vectors, it

deviates from the reference mo by some perturbation

p(ao) [ po, that is,

m5mo 1 po . (9)

Now, if Ng is large, then g likely deviates little from

gpop. Similarly, if Nc is large, then c likely deviates little

from cpop. This motivates finding the values of (ar, d, e)

that minimize a scalar function,H5H(ar, d, e), given by

H5ard
2 1 (12ar)e

2 , (10)

which is subject to the constraint given in (5). The re-

trieved densities in (5) are as given in (6). For example, if

the observations x contained mostly cloud flashes, then

the ground flash fraction is near zero, and one would

retrieve a value for ar close to zero. This implies that d2

could get relatively large without making H too large

(desirable, since g likely deviates from gpop). It also

implies that e2 should be forced to stay relatively small,

otherwise H will get too large (desirable, since c likely

deviates relatively little from cpop).

FIG. 1. Geometry associated with the perturbation approach (depicted conceptually in three

dimensions). The blue-shaded regions are spherical.
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One can guarantee that (5) will hold exactly by

choosing one perturbant properly. Substituting (6) into

(5) and solving for d gives

d5
1

ar

[m2 (12ar)(b1 e)]2 a . (11)

Alternatively, one could just as well have eliminated e in

terms of d; the choice does not change the final retrieval

solution.

Substituting (11) into (10) produces a new scalar

function Q 5 Q(ar, e), given by

Q5 �
n

i51

[(arA1br)e
2
i 1arBiei 1arCi] , (12)

where theCi are not to be confused with the components

of C in (1) and

A5b2
r /a

2
r ,

Bi 5
2br(arai 2fi)

a2
r

,

Ci 5
f2
i 2 2araifi 1a2

r a
2
i

a2
r

,

fi 5mi2brbi, br 5 12ar . (13)

Next, one can find the e that minimizes Q by solving

the system of equations ›Q/›ek5 0, with k5 1, 2, . . . , n,

which gives the critical point perturbant

(ek)crit 5
2arBk

2(arA1br)
. (14)

Substituting (14) into (12) gives a new scalar function

S 5 S(ar), given by

S5 �
n

i51

"
arCi 2

a2
rB

2
i

4(arA1br)

#
. (15)

The expressions in (13) can be used to further simplify

(14) and (15); the algebra is lengthy but straightfor-

ward. Also, (14) is substituted into (11) to get the as-

sociated critical point form for d. The rather interesting

results are

ecrit 5 ecrit(ar)5m2 [ara1 (12ar)b]5 p(ar),

dcrit 5 dcrit(ar)5 ecrit,

P5P(ar)5 e2crit .

(16)

Using the results in (16), one can find ar that mini-

mizes S by solving the equation dS/dar 5 0. This gives

the final APM solution as

ar 5a15
(m2 b)T(a2b)

(a2b)2
,

gr 5 a1 p(a1)5m1 (12a1)(a2 b),

cr 5 b1 p(a1)5m2a1(a2 b) . (17)

FIG. 2. The solution space hyperplane depicted in three dimensions; the hyperplane must be

moved so that it contains the (fixed) m.
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The final perturbants are dcrit(ar5 a1)5 ecrit(ar5 a1)5
m 2 m1 5 p(a1) 5 p1. Note that the solution is in terms

of the three vector densities (m, a, b), wherem is derived

from the satellite MGA observations x, and the climate

vectors (a, b) are obtained from the burn-in process.

Since (m, a, b) are each pdfs, they are normalized (their

elements sum to unity) and their elements are non-

negative (negative probabilities are not allowed). By

inspection of the last two equations in (17), one can see

that (gr, cr) are normalized. In this lightning retrieval

problem, we have found minor instances of some of the

elements of cr going very slightly negative but not

enough to adversely affect our retrieval results. In any

case, one can always zero out negative retrieved ele-

ments and then renormalize the vector.

Figure 3 provides a geometrical summary of the so-

lution process. The steps taken to minimize H while

satisfying (5) have resulted in there being only one via-

ble type of perturbation, given by p1. Note that for an

arbitrary perturbation [i.e., arbitrary (gr, cr)], one ob-

tains the usual algebraic result of

ar 5
(m2 cr)

T(gr 2 cr)

(gr 2 cr)
2

. (18)

The perturbation p1 can be described as a trans-

formation T: (a, b) / (gr, cr) given by the last two

equations in (17); that is, the transformation can be

expressed as

2
4 gr
cr
m

3
55

2
4 br 2br 1

2ar ar 1

0 0 1

3
5
2
4 a

b

m

3
5 . (19)

Here, we use the mnemonic where the vectors play the

role of scalars, so that normal matrix multiplication can

be used to reproduce the two transformation equations

in (17). In addition, br 5 1 2 ar as in (13). The trans-

formation matrix in (19) defines T. The first application

of T perturbs one from a to gr, and from b to cr, by the

amount p1 as discussed. In other words, substituting the

last two equations of (17) into (18) yields a1.

Finally, the perturbation (transformation) has an in-

teresting mathematical property. Once one completes

the transformation (T), additional applications of the

same transformation result in no further changes in (ar,

gr, cr). This is because T
j 5 T, for j5 1, 2, 3, . . . . That is,

pre-multiplying both sides of (19) by T any number of

times still gives back the lhs of (19). In other words, and

from the perspective of the physical inverse problem at

hand, ifm happens to be already in the space spanned by

the climate vectors, then no perturbations are necessary

to model the observation vector m.

c. Flash type

In this section, we show that it is possible to mathe-

matically infer the flash type (i.e., ground or cloud) of

each of theN flashes observed. In other words, a distinct

advantage of the APM is that it retrieves estimates of

FIG. 3. A geometrical conception of the APM solution process (depicted in three dimensions).
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not only the ground flash fraction a but also estimates of

the ground and cloud flash MGA probability density

functions, g(x) and c(x), respectively. [Note: in this

section we use the notation of continuous functions in-

stead of vectors, i.e., g(x) denotes g, c(x) denotes c, and

so on.] The retrieved values in (17) and the observed

MGA of a flash allow one to estimate the probability

Pg(x) that the observed flash is a ground flash. The

probability that the flash is a cloud flash is simply

12 Pg(x). To understand how this can be accomplished,

note the following:

a5
Ng

Ng1Nc

5
Ng

ð‘
0
g(x) dx

Ng

ð‘
0
g(x) dx1Nc

ð‘
0
c(x) dx

. (20)

Now, the number of ground flashes with MGAs in the

interval I given by (x 2 d) , y , (x 1 d) is

ng5 ng(x, d)5Ng

ðx1d

x2d
g(y) dy , (21)

where y is a dummy integration variable. Similarly, the

number of cloud flashes with MGAs in the interval I is

nc 5nc(x, d)5Nc

ðx1d

x2d
c(y) dy . (22)

The fraction of flashes with MGAs in the interval I that

are ground flashes is denoted as fg(x, d). Similarly, the

fraction of flashes with MGAs in I that are cloud flashes

is denoted as fc(x, d). These fractions are given by

fg(x, d)5
ng

ng1 nc
, fc(x, d)5

nc
ng1 nc

. (23)

Substituting (21) and (22) into (23) and noting thatNg5
aN and that Nc 5 (1 2 a)N, one obtains

fg(x, d)5
a

ðx1d

x2d
g(y) dy

a

ðx1d

x2d
g( y) dy1 (12a)

ðx1d

x2d
c(y) dy

, (24)

fc(x, d)5
(12a)

ðx1d

x2d
c(y) dy

a

ðx1d

x2d
g(y) dy1 (12a)

ðx1d

x2d
c( y) dy

. (25)

In addition, note that a 5 fg(x, ‘), where g(x) and c(x)

are zero for x , 0.

In the limit of small d, the integrals in the above-given

two equations each have the simplified form

lim
d/0

ðx1d

x2d
h(y) dy5 2dh(x), h5 g or c . (26)

So, one obtains

Pg(x)[ fg(x, 0)5
ag(x)

ag(x)1 (12a)c(x)
, (27)

Pc(x)[ fc(x, 0)5
(12a)c(x)

ag(x)1 (12a)c(x)
. (28)

Here, Pg(x) is the probability that the flash is a ground

flash given that it has an MGA value equal to x. Simi-

larly,Pc(x) is the probability that the flash is a cloud flash

given that it has an MGA value equal to x. Note from

(27) and (28) that Pg(x)1 Pc(x)5 1 as it should; that is,

Pc(x) 5 1 2 Pg(x) is the complimentary probability.

An alternate way to obtain (27) is to start with Bayes’s

theorem, which gives

p(tg j x)5
p(x j tg)p(tg)

p(x)
. (29)

Here, p(x j tg) is the probability density function of

MGAs for ground flashes; that is, p(x j tg)5 g(x), where

tg indicates flash type ‘‘ground.’’ In addition, p(tg) is the

probability of choosing a ground flash from the set of all

N observed flashes, hence p(tg) 5 a. Finally, p(x) is the

probability of drawing an MGA value of x from the mix-

ture of flashes; that is, p(x)5m(x)5 ag(x)1 (12 a)c(x),

where the expression for m(x) was derived in (2). Sub-

stituting these expressions into (29) gives

p(tg j x)5
ag(x)

ag(x)1 (12a)c(x)
. (30)

But, p(tg j x) is the probability that the flash is a ground

flash given that it has an MGA 5 x; that is, p(tg j x) is
equivalent to Pg(x) even though the notations differ.

Hence, the result in (27) has once again been obtained.

To summarize, the APM first retrieves estimates of

[a, g(x), c(x)] given by their discrete vector forms (ar, gr, cr)

as obtained from (17). These estimates are used to es-

timate Pg(x) in (27). Each of the N flashes observed has

a specific MGA value x. So, the APM-retrieved flash type

probability and flash-typing conditions are

Pgr(x)5
argr(x)

argr(x)1 (12ar)cr(x)
,

Pgr(x). 0:50ground flash,

Pgr(x)# 0:50cloud flash. (31)
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3. Performance tests

To evaluate the performance of the APM, simulated

retrievals are conducted. To accomplish this, the pop-

ulation densities (gpop, cpop) are created fromwhich both

the burn-in observations and the N operational mea-

surements can be drawn.

To simulate realistic populations, we use the OTD

MGA distributions obtained from Koshak (2010). The

ground and cloud flash MGA distributions are shown in

the bottom two panels of Fig. 4. These frequency dis-

tributions are interpolated to high resolution and

smoothed using Interactive Data Language (IDL) util-

ities; they are then scaled by the respective sample sizes

to obtain pdfs. The pdfs are shown in the top-right panel

of Fig. 4.

Since LIS data are of generally higher quality than

OTD, simulations are also conducted using population

densities that are based on LIS MGA distributions

FIG. 4. Summary of OTD MGA analyses (adapted from Koshak 2010). (top left) Ground flash locations (red dots) and cloud flash

locations (blue dots). (bottom left) Ground and (bottom right) cloud flash MGA distributions. (top right) High-resolution smoothed

MGA pdfs derived from the OTD data.
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obtained from Koshak and Solakiewicz (2012). Figure 5

provides the results for LIS in the same format as pro-

vided in Fig. 4. For all of our simulations, it was conve-

nient and computationally expedient to use an MGA

range from 0 to 2000 km2, ignoring the few flashes that

exist beyond this upper limit.

Figure 6 provides an overview of the retrieval error

analysis associated with the simulation runs. By nor-

malizing the ground and cloud flash MGA frequency

distributions given in the bottom panels of Fig. 4 (or

Fig. 5), one obtains the respective densities (a*, b*)

shown in Fig. 6. Interpolating these densities to high

resolution, and smoothing, gives the simulated pop-

ulation densities (gpop, cpop). These densities are then

converted to cumulative distribution functions (CDFs).

To simulate the burn-in phase, a large number hg of

samples from the ground flash CDF are drawn; simu-

lated random and systematic instrument measurement

errors are added to eachMGA sample. Similarly, a large

number hc of samples from the cloud flash CDF are

drawn and instrument measurement errors added. This

sampling produces a ground flashMGAdistribution and

FIG. 5. As in Fig. 4, but for LIS MGA analyses (adapted from Koshak and Solakiewicz 2012).
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a cloud flash MGA distribution; scaling these distribu-

tion by hg and hc, respectively, produces the associated

climate vector pdfs (a, b).

With the value of (a, b) given, one can now simulate

the observation of N flashes and apply the APM to an-

alyze the flashes. One is interested in the APM accuracy

as a function of the true ground flash fraction a.

Therefore, a total of 21 values of the true ground flash

fraction (a 5 0, 0.05, 0.10, 0.15, . . . , 0.95, 1.0) are ex-

amined. For each of these values of a, 100 trials (i.e.,

simulated APM retrievals) are performed. Each trial

consists of uniquely drawing Ng samples from the

ground flash CDF and Nc samples from the cloud flash

CDF, adding the simulated random and systematic er-

rors to these simulated MGAs, and then applying the

APM to obtain the desired retrieved quantities. Here,

N 5 Ng 1 Nc and a 5 Ng/N. Hence, a total of 2100 re-

trievals are performed for one analysis run (i.e., one

error plot). All of our simulation runs were performed

twice (i.e., once using OTD data to build the population

densities and once using LIS data to build the population

densities). For brevity, and because LIS data are gen-

erally of higher quality, the test results given below are

based on the LIS data; one exception is the comparative

analysis (see Fig. 9) discussed later.

Both random and systematic measurement errors are

simulated. Simulated randommeasurement error added

to each MGA value is chosen from a uniform distribu-

tion ranging from (2R to1R) km2, whereR is chosen to

be about twice the instrument nadir pixel footprint; the

nadir footprints are approximately 16 km2 (LIS) and

64 km2 (OTD). Simulated systematic measurement er-

ror, S, is the negative systematic error associated with

the finite instrument pixel footprint (taken as the nadir

footprint values mentioned above). That is, each MGA

value is reduced by truncation via the conversion x0 5
long(x/FP)FP, where FP is the instrument footprint, and

long is the IDL utility that converts its argument to an

integer value. Hence, S ranges from 0 to216km2 for LIS

and 0 to 264km2 for OTD. In some of the LIS-based

FIG. 6. Overview of the simulator used to evaluate APM performance. The error added to the MGA observations x consists of simulated

random and systematic measurement errors described in the main text.
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FIG. 7. The effect of reducing the sample size (hg and hc) in the burn-in phase.
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FIG. 8. The effect of reducing the number of flashes (N) observed. Color key as in Fig. 7.
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sensitivity tests to follow, the value of S takes on specific

fixed values (i.e., 216, 28, 24, 4, 8, and 16km2).

The performance test results in Fig. 7 demonstrate

how decreasing the sampling size in the burn-in phase

degrades the APM solution accuracy. For these simu-

lations, N 5 5000, R 5 32 km2, and S is the negative

systematic error due to the finite pixel footprint, as dis-

cussed above. Each error plot shows statistics of the

ground flash fraction retrieval error (Da 5 jar 2 aj) as
a function of the true ground flash fractiona. Curves for the

meanofDa (black curve), the standarddeviationofDa (red

curve), the median of Da (blue curve), and the maximum

(green) and minimum (turquoise) of Da are provided.

Note that the retrieval errors are sufficiently small when

the burn-in phase collects just hg 5 5000 ground flashes

and hc 5 5000 cloud flashes. Degradation in the APM

solutions occurs below these values, and is significant

when 1000 or fewer are collected for each flash type.

The performance test results in Fig. 8 demonstrate

how decreasing the value of N degrades the APM so-

lution accuracy. For these simulations, R and S are as

described in the previous paragraph, and the burn-in

sample sizes are hg 5 40 000, hc 5 120 000. Note that

there is not much return on investment in increasing N

from 5000 to 7500, and that decreasing N below 2500

shows noticeable increases in solution retrieval error.

Figure 9 summarizes the performance of the APM

when LIS data are used to generate the population

densities (left column) and when OTD data are em-

ployed (right column). These simulations use the values

N 5 5000, hg 5 40 000, and hc 5 120 000. For the LIS

data run, the values of R and S are as given above for

FIG. 9. Summary of APM performance using (left) LIS data to construct the MGA population and using (right)

OTD data: (top) alpha error and (bottom) fraction correct. Color key as in Fig. 7. See text for additional details.
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Figs. 7 and 8, but for the OTD data run the value of

R5 64km2 and S ranges from 0 to 64km2. In addition to

the statistics of Da, statistics of the fraction correctly

flash typed are also provided (two bottom panels in

Fig. 9). The results are very encouraging. The overall

mean error in Da is only 0.027 (LIS data run) and 0.018

(OTD data run). The associated average fraction of

flashes correctly flash typed is 0.780 and 0.797, re-

spectively. Even though the OTD data run involves

larger values of R and S, it provides better retrievals.

This is because the LIS ground and cloud flash MGA

distributions overlap more than the OTD ground and

cloud flash distributions (see bottom panels in Figs. 4

and 5). Specifically, the difference in the mean MGA

is 277.4 km2 (5 493.0 – 215.6 km2) for the OTD data

but only 213.5 km2 (5 465.4 – 251.9 km2) for the LIS

data.

Figure 10 demonstrates that one can apply the APM

method to arbitrary population densities that have

nothing to do with lightning; that is, the APM is

FIG. 10. The effect of reducing the distinction between the underlying population densities (the densities are shown in the left panel, one

in black, the other in blue). Population densities having nothing to do with lightning were purposely employed to demonstrate that the

APM is a general inversion technique. The right panel follows the color key as in Fig. 7.

92 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32



a general inversion technique that can be applied to any

inverse problem having a similar problem statement to

the lightning problem studied here. In this particular test,

the population densities are defined by phase-shifted ab-

solute value sine functions that have been appropriately

normalized. We have also mixed various exponential

distributions with absolute value sine functions and ach-

ieved similar performance by the APM.

Figure 10 also demonstrates that if the population

densities for the two species involved (i.e., ground and

cloud flashes in the case of the lightning problem) be-

come less distinct, the retrieval errors increase. If there

is no distinction, then there is no information content

and the inverse problem is ill posed.

Finally, Tables 1–4 provide additional simulation runs

that evaluate the impact of the simulated measurement

errors R and S. All of these performance tests employ

N5 5000 flash observations. It is known that the burn-in

approach is only approximate; that is, the climate vector

pdfs (a, b) are only approximations to (g, c), respec-

tively. Such approximations result in APM solution re-

trieval errors. Therefore, in order to conduct a true

sensitivity test of the effects of R or S on APM solution

retrieval errors, it is necessary to shut off the errors due

FIG. 10. (Continued)
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to the burn-in phase approximation; that is, from the

known value of x in the simulation, the values of (g, c)

are extracted and used in the APM solution rather than

the approximations (a, b).

Hence, for the simulation run associated with Table 1,

the burn-in phase approximation is shut off, the value of

S 5 0, and the value of R is ramped up. Note that as the

value of R increases, the error statistics (Min, Avg, Std,

Median,Max) ofDa increase. The variable f in Table 1 is

the fraction correctly flash typed. Because the APM

flash typing is probabilistic in nature, there is less of

a trend in the statistics of f as a function of R.

To obtain the true impact of ramping up the value of

R, the burn-in phase approximation (with hg 5 40 000,

hc5 120 000) is turned back on, and S5 0 still holds. The

results are provided in Table 2. Now, there is virtually no

impact of varying R because these random errors are

small in comparison to the errors associated with the

burn-in phase approximation.

Similarly, Table 3 shuts off the burn-in phase ap-

proximation, sets R 5 0, and varies S. A value of S 5
nad16 denotes the variable negative systematic mea-

surement error associated with the LIS finite pixel

footprint (taken as the nadir value of 16 km2). The error

statistics of Da increase as the magnitude of S increases,

and the statistics of f are again more variable. Note that

the negative values of S had a much more adverse im-

pact on the minimum f than did the positive values of S.

The true impact of varying S is obtained by turning the

burn-in phase approximation back on (with hg 5 40000,

hc 5 120000) and setting R 5 0 (see results in Table 4).

Once again, there is virtually no impact of varying S be-

cause these systematic errors are small in comparison to the

errors associated with the burn-in phase approximation.

4. Mathematical error analysis

In this section we clarify exactly what retrieval errors

Da are expected given the percent burn-in errors Va 5
100jg 2 aj/jgj and Vb 5 100jc 2 bj/jcj. This is just

a mathematical test to see how these burn-in errors

mathematically map into Da. For this analysis, N 5
5000, R 5 0, S 5 0, and the LIS data are used to obtain

the population densities. TheusualAPMburn-in approach

is not followed (i.e., the parameters hg and hc are not used

or assigned any values). Instead, each of the 100 trials for

a given knowna is conducted by assigning each element of

a as follows: ai 5 gi 1 (2r 2 1)g, where r is a uniform

TABLE 1. The effect of random measurement errors when one sets a 5 g and b 5 g in the simulation. The quantities Da and f are both

dimensionless fractions (no units). See text for a description of the table headings.

Type R (km2) Min Avg Std Median Max

Da 0 0.000 4.1 3 1026 2.1 3 1025 2 3 10216 2.2 3 1024

Da 8 0.000 0.007 0.006 0.006 0.046

Da 16 7.4 3 1026 0.010 0.009 0.007 0.060

Da 32 2.6 3 1025 0.022 0.015 0.019 0.113

Da 64 3.1 3 1024 0.078 0.032 0.079 0.184

f 0 0.000 0.736 0.203 0.750 1.000

f 8 0.585 0.783 0.129 0.769 1.000

f 16 0.588 0.782 0.129 0.767 1.000

f 32 0.575 0.780 0.130 0.764 1.000

f 64 0.511 0.769 0.138 0.754 1.000

TABLE 2. The effect of random measurement errors when one

obtains a and b from the burn-in phase with hg 5 40 000 and hc 5
120 000.

Type R (km2) Min Avg Std Median Max

Da 0 0.000 0.024 0.019 0.020 0.118

Da 8 0.000 0.024 0.019 0.020 0.118

Da 16 0.000 0.024 0.019 0.019 0.116

Da 32 0.000 0.024 0.019 0.020 0.115

Da 64 0.000 0.024 0.019 0.020 0.117

f 0 0.577 0.780 0.130 0.762 1.000

f 8 0.579 0.780 0.130 0.761 1.000

f 16 0.577 0.780 0.131 0.762 1.000

f 32 0.578 0.780 0.131 0.761 1.000

f 64 0.570 0.780 0.131 0.762 1.000

TABLE 3. The effect of systematic measurement errors when one

sets a 5 g and b 5 g in the simulation.

Type S (km2) Min Avg Std Median Max

Da 24 0.000 0.025 0.013 0.027 0.078

Da 28 0.000 0.048 0.022 0.051 0.108

Da 216 0.001 0.087 0.038 0.093 0.196

Da 4 0.000 0.027 0.014 0.029 0.076

Da 8 5.0 3 1025 0.056 0.024 0.059 0.158

Da 16 0.006 0.117 0.048 0.128 0.267

Da nad16 0.000 0.059 0.048 0.049 0.275

f 24 0.001 0.779 0.132 0.767 1.000

f 28 0.012 0.771 0.136 0.762 1.000

f 216 0.006 0.747 0.153 0.750 1.000

f 4 0.573 0.782 0.131 0.769 1.000

f 8 0.543 0.777 0.135 0.764 1.000

f 16 0.446 0.759 0.152 0.750 1.000

f nad16 0.104 0.766 0.139 0.755 1.000
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random variable. An analogous expression is used to as-

sign each element of b. Negative components are re-

sampled, and the vectors are appropriately normalized. As

before, each trial consists of N 5 5000 observations that

are randomly drawn from the population densities.

The test results are provided in Table 5. As g increases,

the values of Da, Va, and Vb all increase, as expected.

Note that forg5 0.001, the average ofDa is 0.020,which

is very close to the average values shown for the nominal

runs provided in Fig. 9. Moreover, the corresponding

percent errors (Va, and Vb) are both under 4%. This

implies that the APM burn-in approach carried out for

Fig. 9 is doing quite well. That is, the burn-in approach is

good enough to move the climate vectors (a, b) to within

about 4% of the true pdfs (g, c), respectively.

The results in Table 5 provide additional valuable

insight. Suppose region A did not have independent

observations available for conducting a burn-in phase

but region B did. One wonders if the burn-in results

from region B could be used for region A. Table 5 helps

determine if this is feasible. For example, if one wanted

to retrieve the ground flash fraction to within (on aver-

age) 0.09 in region A, then according to Table 5 a g of

about 0.003 would be needed. That is, the population

densities in region A should not be more than about

10.4% different from the population densities in region

B; that is, Va 5 10.40% and Vb 5 10.46%. Note from

Table 5 that the ratio ave(Da)/ave(Va, Vb) is under

about 0.009/1%.

5. Summary

An Analytic Perturbation Method (APM) was in-

troduced for retrieving several important unknowns

from satellite lightning mapper observations of N

lightning flashes. The value of Nmust be large, typically

in the thousands. Each lightning flash illuminates the

cloud top, and a lightning mapper registers one or more

optical groups per flash. The key lightning mapper

TABLE 4. The effect of systematic measurement errors when one

obtains a and b from the burn-in phase with hg 5 40 000 and hc 5
120 000.

Type S (km2) Min Avg Std Median Max

Da 24 0.000 0.024 0.019 0.020 0.119

Da 28 0.000 0.024 0.019 0.020 0.119

Da 216 0.000 0.023 0.019 0.019 0.119

Da 4 0.000 0.024 0.019 0.020 0.121

Da 8 0.000 0.024 0.019 0.020 0.117

Da 16 0.000 0.024 0.019 0.020 0.119

Da nad16 0.000 0.026 0.021 0.021 0.129

f 24 0.577 0.780 0.130 0.761 1.000

f 28 0.576 0.780 0.131 0.761 1.000

f 216 0.576 0.780 0.130 0.761 1.000

f 4 0.578 0.780 0.130 0.761 1.000

f 8 0.576 0.780 0.130 0.761 1.000

f 16 0.578 0.780 0.130 0.761 1.000

f nad16 0.574 0.780 0.131 0.761 1.000

TABLE 5. The effect of percent errors (Va, Vb) in the burn-in approximation on the ground flash fraction retrieval error.

Type g Min Avg Std Median Max

Da 0.000 0.000 6 3 10216 5 3 10216 5 3 10216 3 3 10215

Va 0.000 0.000 4 3 10214 4 3 10214 2 3 10214 3 3 10213

Vb 0.000 0.000 5 3 10214 4 3 10214 4 3 10214 2 3 10213

Da 0.001 1.2 3 1025 0.020 0.012 0.021 0.057

Va 0.001 2.752 3.547 0.329 3.490 5.481

Vb 0.001 2.370 3.328 0.463 3.251 5.385

Da 0.002 2.5 3 1025 0.053 0.026 0.055 0.132

Va 0.002 5.432 7.002 0.611 6.898 10.40

Vb 0.002 4.939 6.882 0.766 6.783 10.11

Da 0.003 3.4 3 1026 0.090 0.041 0.097 0.201

Va 0.003 8.086 10.40 0.848 10.28 14.84

Vb 0.003 7.652 10.46 0.984 10.39 14.76

Da 0.004 7.4 3 1025 0.125 0.056 0.138 0.259

Va 0.004 10.58 13.80 1.041 13.69 18.86

Vb 0.004 9.922 13.84 1.177 13.78 18.59

Da 0.005 1.6 3 1025 0.160 0.072 0.178 0.323

Va 0.005 13.01 17.11 1.209 17.01 22.53

Vb 0.005 12.86 17.19 1.335 17.15 22.59

Da 0.006 8.2 3 1025 0.191 0.088 0.210 0.390

Va 0.006 15.66 20.33 1.374 20.25 25.88

Vb 0.006 14.94 20.29 1.468 20.26 26.80
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observation exploited by the APM is the maximum group

area (MGA) of each of the N flashes. Hence, the APM

mathematically inverts theseNMGA values to determine

the following: the ground flash fraction (i.e., the number of

ground flashes divided by N), the probability density

functions of the ground and cloud flash MGAs, and the

flash type (ground or cloud) of each of the N flashes.

As part of the method, the lightning mapper first

collects a large number (*5000) of samples of both

ground and cloud flashes from the region/season of in-

terest that have already been flash typed using an in-

dependent validation dataset. This training period is

called a ‘‘burn in’’ phase. Alternatively, if independent

validation is not available, then the burn-in results from

a different region–season can be tried, but with the ex-

pectation that APM solution retrieval error will possibly

increase. Under the conditions of our analysis, every 1%

error in the burn-in process appears to add about 0.009

or less to the APM mean ground flash fraction retrieval

error. Long-term drift in the climate vectors (which are

used to bias the retrieval results) can be mitigated by

repeating the burn-in phase; amore aggressive approach

would be to perform the burn-in phase on a regular

basis. One could even consider using the APM results

themselves to estimate upgrades to the climate vectors;

that is, APM solutions obtained prior to ample drift in

the climate vectors could in principal be accurate

enough to update the climate vectors, thereby effecting

a ‘‘self-propagating’’ system. This of course might only

work up to a certain limit because of the accumulated

effect of retrieval errors over a long period. In such

a case, a new burn-in phase would be required to ‘‘reset’’

the system. Ultimately, the training period allows the

retrieval algorithm to be applied autonomously to tar-

gets of interest during a designated operational phase.

A detailed simulator has been coded to perform ex-

tensive performance tests of the APM. The results are

encouraging. The overall mean error in the retrieved

ground flash fraction is only 0.027 (LIS data run) and

0.018 (OTD data run). The mean ground flash fraction

errors as a function of the true ground flash fraction itself

are under 0.04. The associated average percent of flashes

correctly flash typed are 78.0% and 79.7%, respectively.

Therefore, we believe the APM is a viable approach for

inverting future GLM-observed flashes, especially over

CONUS, where a burn-in phase can be accurately con-

ducted using NLDN data. For other regions, Vaisala

Inc.’s global lightning dataset (GLD360) ground flash

data could be employed to complete the burn-in phase.

Or, the CONUS burn-in results could be used, but with

possible increases in solution retrieval error.
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