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ABSTRACT

This work evaluates the performance of a recently developed cloud-scale lightning data assimilation

technique implemented within theWeather Research and ForecastingModel running at convection-allowing

scales (4-km grid spacing). Data provided by the Earth Networks Total Lightning Network for the contiguous

United States (CONUS) were assimilated in real time over 67 days spanning the 2013 warm season (May–

July). The lightning data were assimilated during the first 2 h of simulations each day. Bias-corrected,

neighborhood-based, equitable threat scores (BC-ETSs) were the chief metric used to quantify the skill of the

forecasts utilizing this assimilation scheme. Owing to inferior observational data quality over mountainous

terrain, this evaluation focused on the eastern two-thirds of the United States.

During the first 3 h following the assimilation (i.e., 3-h forecasts), all the simulations suffered from a high

wet bias in forecasted accumulated precipitation (APCP), particularly for the lightning assimilation run

(LIGHT). Forecasts produced by LIGHT, however, had a noticeable, statistically significant (a 5 0.05)

improvement over those by the control run (CTRL) up to 6 h into the forecast with BC-ETS differences often

exceeding 0.4. This improvement was seen independently of the APCP threshold (ranging from 2.5 to 50mm)

and the neighborhood radius (ranging from 0 to 40 km) selected. Past 6 h of the forecast, theAPCP fields from

LIGHT progressively converged to that of CTRL probably due to the longer-term evolution being bounded

by the large-scale model environment. Thus, this computationally inexpensive lightning assimilation scheme

shows considerable promise for routinely improving short-term (#6 h) forecasts of high-impact weather by

convection-allowing forecast models.

1. Introduction

The numerical prediction of deep, moist convec-

tion remains a challenging problem owing to complex

physical interactions between dynamical and micro-

physical processes over a large range of scales that must

be reasonably well depicted by the model (e.g., Bryan

et al. 2003; Weisman et al. 2008; Fierro et al. 2009; Kain

et al. 2010a). The difficulties associated with convective-

scale numerical weather prediction (NWP) are partic-

ularly evident at the ‘‘convection allowing’’ spatial

scales typified by grid spacings on the order of 2–4 km

that correspond to minimum resolvable wavelengths of
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12–24km (e.g., Weisman et al. 2008; Clark et al. 2010a,b;

Kain et al. 2010b).

Several recent studies have highlighted that convection-

allowing forecasts were able to better predict the frequency

andmode of convection, particularly mesoscale convective

systems (MCSs) and supercells, than coarser forecasts using

convection parameterization (e.g., Done et al. 2004; Kain

et al. 2006, 2008; Weisman et al. 2008; Dixon et al. 2009;

Clark et al. 2010a).Along the same lines, Ikeda et al. (2013)

demonstrated that the High-Resolution Rapid Refresh

(HRRR)model was able to reliably predict the timing and

location of areas of ground-accumulated snow, rain, and

mixed-phase precipitation. These studies all emphasized

that higher-resolution grids provide more relevant in-

formation on the morphology, evolution, and initiation of

the convection. Owing to these notable improvements,

many research and operational centers have recently im-

plemented convection-allowing model configurations

(Clark et al. 2007;Weisman et al. 2008; Stensrud et al. 2009;

Coniglio et al. 2010; Schwartz et al. 2010; Baldauf et al.

2011; Kain et al. 2008, 2010a,b, 2013; Ikeda et al. 2013).

Conventional data sources for the large-scale fields uti-

lized to derive initial and lateral boundary conditions of the

convection-allowing forecasts, however, typically exist on

coarser grids (e.g., Kain et al. 2010a; Clark et al. 2010b).

Thus, the model is forced to ‘‘spin up’’ incipient cell-scale

circulations (e.g., convective overturning) during the first

3–6 h of the simulation (Skamarock 2004). To alleviate

this problem, it has become attractive to seek com-

putationally efficient approaches aimed at assimilat-

ing observational datasets that are of the same order

of scale of the model grid (e.g., radar data; Zhang et al.

2009; Aksoy et al. 2009; Dixon et al. 2009; Kain et al.

2010a; Gao and Stensrud 2012; Gao et al. 2013). As

described in this work, one possible source of data that

could be utilized to achieve this goal is lightning.

This study focuses on evaluating the performance of

forecasted accumulated precipitation (APCP) using a re-

cently developed computationally inexpensive lightning

data nudging method (Fierro et al. 2012, hereafter F12),

which utilizes observed two-dimensional gridded total

lightning flash rate density as the main input variable.

In contrast to the relatively large number of studies that

have explored assimilation of conventional radar data into

NWP models, comparatively few have focused their at-

tention on the assimilation of lightning data (Alexander

et al. 1999; Chang et al. 2001; Benjamin et al. 2004;

Papadopoulos et al. 2005; Mansell et al. 2007; Pessi

and Businger 2009; F12; Fierro et al. 2014, hereafter

F14; Marchand and Fuelberg 2014; Mansell 2014). In

comparison to the above listed lightning assimilation

works, the assimilation of radar data is conventionally

achieved through more sophisticated and computationally

expensive techniques such as (i) variational codes such as

3DVAR (e.g., Gao and Stensrud 2012) or (ii) ensemble

techniques such as the ensembleKalman filter (EnKF, e.g.,

Evensen 1994, 2003; Houtekamer and Mitchell 1998;

Zhang et al. 2009; Aksoy et al. 2009; Godinez et al. 2012).

A review on recent lightning data assimilation studies is

provided inF12 andF14 and the reader is invited to consult

these manuscripts for details. In summary, these studies

highlight the potential benefit of assimilating total light-

ning data toward improving the analysis and short-term

forecast of high-impact weather ranging from the meso-

scale (e.g., Mansell et al. 2007) to the storm scale (F12).

One chief motivation for an increasing systematic use of

lightning data assimilation is the forthcoming first launch

of the Geostationary Operational Environmental Satellite

‘‘R’’ series (GOES-R; Gurka et al. 2006; Goodman et al.

2012, 2013) in 2016. The GOES-R will be equipped with

the Geostationary Lightning Mapper (GLM; Goodman

et al. 2013) that will be capable of mapping total lightning

[intracloud (IC) and cloud-to-ground (CG) flashes] day

and night, year-round with a nearly uniform resolution

over the Americas ranging between 8 and 12km (Gurka

et al. 2006). In contrast to conventionally assimilated

weather surveillance radar data, lightning detected by

satellite does not suffer from poor coverage in mountain-

ous areas and oceans. Moreover, unlike satellite-based

detection methods, current ground-based networks are

less able to detect and locate lower-amplitude sferics

from ICflashes, which account for the vastmajority of the

total flashes (IC:CG ratio near 2:1; Boccippio et al. 2001)

with IC:CG ratios nearing 10:1 within severe deep con-

tinental storms (e.g., MacGorman et al. 1989). This lim-

itation is critical given that in contrast to CG flashes, IC

flash rates were shown to better correlate with updraft

development and evolution (e.g.,MacGorman et al. 1989;

Wiens et al. 2005; Fierro et al. 2006, 2011; Deierling and

Petersen 2008). Hence, it is expected that the assimilation

of total lightning data would serve as a better proxy

(compared to CG alone) toward improving the placement

and evolution of high-impact weather at the analysis time.

2. Model setup and assimilation procedure

The numerical model employed in this study is the

three-dimensional compressible nonhydrostatic Weather

Research and Forecasting (WRF) Model with the Ad-

vanced Research WRF (ARW) dynamic solver (WRF-

ARW, version 3.4.1) developed by theNational Center of

Atmospheric Research (Skamarock and Klemp 2008).

a. Model grid configuration and physics options

The physics parameterizations and large-scale fields

necessary for providing the initial and boundary
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conditions are identical to that of the National Severe

Storms Laboratory’s (NSSL) daily experimental fore-

cast runs over the contiguous United States (CONUS;

Kain et al. 2010b) known as the NSSL-WRF. The NSSL-

WRF provides guidance to Storm Prediction Center

forecasters and serves as a testing ground for the de-

velopment of storm-scale model diagnostics (Clark et al.

2007, 2010b; Kain et al. 2010a). The main physics options

are the WRF single-moment 6-class bulk microphysics

scheme fromHong and Lim (2006), the Mellor–Yamada–

Janjic ‘‘Eta’’ turbulence kinetic energy scheme for the

boundary layer (Mellor and Yamada 1982; Janjic 1994)

withMonin–Obukhov–Janjic similarity theory for subgrid-

scale turbulence (Chen et al. 1997), the unified Noah land

surface model (Chen and Dudhia 2001; Ek et al. 2003),

and the Dudhia (1989) shortwave and Rapid Radiative

Transfer Model (RRTM) longwave radiation (Mlawer

et al. 1997) schemes. No cumulus parameterization is

employed. For each of the 67 forecast days spanning the

2013 warm season (May–July, Fig. 1), forecasts were ini-

tialized at 0000 UTC and integrated 24h (in lieu of 36h in

NSSL-WRF). The initial and boundary conditions were

derived from the 3-hourly North American Mesoscale

Model (NAM) 40-km grid-spacing analyses and fore-

casts, respectively. As can be noted in Fig. 1, forecast on

several days were not available owing to technical

problems encountered during the course of this experi-

ment, including network outages, node failure, un-

availability of some of the input data at runtime, or system

reboot and maintenance. Because the 0000 UTC NAM

data are delivered at about 0300 UTC daily, the

NSSL-WRF lightning assimilation runs were started at

0415 UTC. The lightning data, on the other hand, are

disseminated almost in real time, and so introduced no

additional lag themselves. All simulations employed 128

cores with the assimilation of lightning requiring rela-

tively little additional computational time (i.e., ,5min)

to the 3.5 h already necessary to complete a 24-h fore-

cast. With this set up, it took 5h of simulation ‘‘forecast’’

time, which included the lightning assimilation period

(see section 2b below), to ‘‘catch up’’ to the actual local

time. In other words, starting at 0415 UTC, the WRF

runs with lightning assimilation integrated to 0500 UTC

when the actual time was 0500 UTC and integrated to

0000 UTC the next day (i.e., the 24-h forecast) when the

actual time was 0745 UTC, 3.5 h after the run began.

The simulation domain (Fig. 2) has a uniform hori-

zontal grid spacing of 4 km and horizontal dimensions in

grid points of 12003 800. The stretched vertical grid has

35 levels with the model top set at 50hPa (;20km). The

computational time step is 24 s. For each of the 67 fore-

cast days in Fig. 1, the forecast with the assimilation of

total lightning (referred to as LIGHT, see section 2b) was

performed in tandem with a control simulation (CTRL)

where no data were assimilated. The model data were

saved every hour during the 24-h simulation period.

The simulatedAPCP fields were evaluated against the

National Centers for Environmental Prediction’s stage-

IV multisensor hourly rainfall accumulation estimates

FIG. 1. May–July 2013 calendar highlighting the cases that were used (gray shaded) and not used (white) in this study.

FIG. 2. Sketch of the WRF-NSSL simulation domain (4-km grid

spacing) with the gray-shaded area (or mask) indicating the sub-

domain where the analysis was performed.
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(Baldwin and Mitchell 1997) made publicly available by

the Earth Observing Laboratory (http://data.eol.ucar.

edu). Despite currently being the best observational

dataset of this kind, it does suffer from several limita-

tions including radars being out of calibration, rain

gauges being clogged, and partial beam blockages due to

buildings and terrain. Owing to radar beam blockage

induced by terrain, only data covering the eastern two-

thirds of the United States were considered for this

analysis (see Fig. 2). To compare model and observa-

tions, the hourly stage-IV data were remapped from its

native 4-km polar stereographic grid onto the WRF

4-km Lambert conformal grid (Fig. 2).

b. Summary of the lightning data assimilation
procedures

The details behind the lightning data assimilation

procedures can be found in F12 and F14 and, hence, are

only briefly reviewed here. The lightning data used in this

work are provided by the Earth Networks Total Light-

ning Network (ENTLN). Their network detects both IC

and CG flashes with a national-average detection effi-

ciency exceeding 95% for typical CG return strokes and

about 50% for typical IC flashes. The location accuracy of

ENTLN varies from tens of meters in dense areas of the

network to about 500m elsewhere (see Fig. 6 in F12).

At observed lightning locations, the cloud-scale

lightning assimilation imposes incremental increases in

water vapor mixing ratio (qy) within the mixed-phase

layer (between 08 and 2208C) wherein electrification

processes (i.e., noninductive charging) were shown to be

most active (e.g., Takahashi 1978; Saunders and Peck

1998; Emersic and Saunders 2010; Bruning et al. 2010;

Fierro et al. 2013). Based on a recent study from

Marchand and Fuelberg (2014), it is possible that in-

creasing water vapor within a layer confined in the lower

troposphere (below ;700 hPa) instead of the mixed-

phase region would allow convection to become more

quickly rooted in the boundary layer and, incidentally,

allow the present scheme to potentially better represent

weakly forced deep convection. The nudging-induced

increase in qy at a grid point within this layer is pro-

portional to the observed gridded total flash rate density

(per 4-km grid cell herein). To impose minimal con-

straints on the running model, two conditionals were

devised: (i) the qy increase is inversely proportional to the

simulated graupel mixing ratio (qg) with zero nudging

applied at qg exceeding 2gkg21 and (ii) increases in qy
are only applied at lightning locations with a simulated

relative humidity (RH) #95% (with respect to liquid

water). In other words, the aforementioned conditionals

do not nudge the layer toward saturation if the conditions

within themodel already are indicative of the presence of

convection (through qg) or nearly saturated already.

Nudging over a confined layer further reduces the total

water mass introduced by the assimilation.

The present simulations employ the same nudging co-

efficients B, C, andD as in F12 [see their Eq. (1) and their

Fig. 7]1 and F14 as these were specifically designed for

convection-allowing scales. Some differences should be

noted, however. First, F12 used a lower RH threshold

[coefficient A in their Eq. (1)] because the nudging was

simultaneously applied on three grids, namely a 9-km

parent grid containing two nested grids with a horizontal

grid spacing of 3 and 1km, respectively. Because the

convective response to the assimilation of lightning in-

creased as the grid spacing decreased (F12), the RH

threshold needed to be lowered from 95% to ;80% (i.e.,

the grid volume where nudging is applied decreased) to

avoid potential mass–wind imbalance on the 1-km grid, as

noted in their study. The authors take this opportunity to

point out that F14 usedA5 95%, not 80%as stated in that

study.Another difference is the use of a lower qg threshold

(2gkg21) than in the two aforementioned studies (which

used 3gkg21). A lower threshold was chosen because in-

stances of RH, 95%and qg exceeding either 3 or 2gkg
21

remain relatively rare in the model. Thus, in principle,

similar results can be achieved using a lower qg threshold.

It is relevant to reiterate that this simple lightning as-

similation technique does not address the development of

spurious convection arising from errors in the model and

in the initial conditions (F12; F14). While forcing con-

vection at the observed lightning locations through in-

cremental increases of water vapor mass is conceptually

succinct, the removal of spurious convection in a bal-

anced manner remains a far more difficult problem.

To reasonably resolve stormmotion, the lightning data

for each day were binned into 10-min intervals and as-

similated during the first 2h of the simulations, namely

between 0000 and 0200 UTC. By virtue of this set up, the

forecasts thus start at 0200 UTC. The nudging of water

vapor is maintained throughout the 10-min interval at each

computational time step until switching to the next 10-min

interval (as in F12). While it is conventional for studies

utilizing well-documented radar data assimilation pro-

cedures to focus solely on the forecast period for evaluation,

this work also examines the assimilation period, because no

studies have yet statistically evaluated an approach assimi-

lating total lightning data over a large sample of forecast

days. To examine how this approachworks in awide variety

of conditions, these forecasts were conducted in real time at

1 In F12, the labels of the curves in Fig. 7 associated with

the graupel mass constants: ‘‘0.5 and 1 g kg21’’ should instead read

‘‘1 and 1.5 g kg21.’’
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convection-allowing scales over a relatively large domain.

Such an analysis is necessary to illustrate how this assimi-

lation scheme spins up the convection and, thus, to shed

light on how the forecast is affected.

3. Evaluation procedures

The first part of this study focuses on a general eval-

uation of the simulated bulk total and average APCP

fields using various standard approaches with the ex-

ception of aggregate composite frequency diagrams,

which are devised to identify potential systematic dis-

placement errors in the simulated convection. The ag-

gregate composite frequencies of forecast rainfall

relative to observed rainfall were computed following

the procedure outlined in Clark et al. [2010b; see Eq. (3)]

within the mask area of the simulation domain (Fig. 2).

The compositing procedure is implemented as follows:

looping through all the points on the horizontal plane

within the mask area (Fig. 2), the algorithm first de-

termines a set of grid points G where the observed

APCP is greater than or equal to a given threshold (ranging

from 2.5 to 50mm). For each of the grid points in G,

a square of predetermined area of 640 km 3 640km

centered at this point is then constructed. Each of the

grid points within each square is then either assigned

a hit (‘‘1’’) if the aforementionedAPCP threshold was at

least met in the simulation or assigned a miss (‘‘0’’)

otherwise. This procedure was repeated for each of the

67 cases with all the hits summed yielding a 160 3 160

size array (i.e., 640km3 640 km)with the grand totals of

hits. These totals are then normalized by the number of

grid points in the mask area in Fig. 2 and by the number

of cases (Fig. 1). These calculations were performed for

theAPCP thresholds of 2.5, 5, and 10mmover 1-, 3-, and

6-h accumulation intervals.

The second part of this work, which focuses on a sta-

tistical evaluation of the simulations, employs aggregated

neighborhood-based equitable threat scores (ETSs) fol-

lowing Clark et al. [2010b; Eqs. (1) and (2)] as the chief

metric to evaluate the overall skill of the lightning as-

similation scheme described in section 2b. Defined this

way, an ETS of 1.0 indicates a perfect forecast (ETS of

0.0 means no skill), and 21/3 is the lower limit.

To calculate the final ETS values, two main iterations

were utilized. During the first iteration, contingency

table elements were derived for each day and simply

summed over all 67 cases (Fig. 1) to yield an (initial)

aggregate ETS value. The aggregate and case-specific

ETSs were computed for the APCP thresholds of 2.5, 5,

and 10mm over 1-, 3-, 6-, 12-, and 24-h accumulation

intervals. Higher thresholds of 15, 25, and 50mm were

considered for the APCP at 6-, 12-, and 24-h

accumulation intervals. For each of the aforementioned

six APCP thresholds and five APCP periods, the fol-

lowing nine neighborhood radii around each scalar point

[i.e., the geometrical center of the grid cell, see Fig. 5 of

Clark et al. (2010b)] were considered: r5 0, 4, 8, 12, 16,

20, 24, 32, and 40 km. In this manuscript, the notation

hETSir refers to the aggregate ETS value at a radius r,

following the nomenclature employed in Clark et al.

(2010b). Thus, hETSi0 is equivalent to the conventional

gridpoint-based ETS. As noted in many studies (Casati

et al. 2008; Roberts and Lean 2008; Ebert 2009; Schwartz

et al. 2010; Clark et al. 2010b), neighborhood-based

methods are advantageous because they reduce the oc-

currence of ‘‘double penalty’’ events associated with

small displacement errors in the model. This is achieved

by relaxing the requirements for hits, misses, and false

alarms by also considering the adjacent grid points within

the prescribed radius (Ebert 2009). Using the contin-

gency data required to derive the hETSir, the associated

bias was computed simultaneously for each single day

and in the aggregate. The bias was calculated because

past studies have shown that high/low bias can signifi-

cantly impact the ETS (Baldwin and Kain 2006; Clark

et al. 2010b). Thus, if a high or low bias was obtained,

a second iteration (below) was devised to account for it.

To compute the final ETS values, a second iteration

was subsequently performed whereby a bias correction

toward 1 (i.e., perfect forecast) was applied using the

formerly computed contingency tables and biases for

each of the 67 days. As noted inHamill (1999),Mesinger

(2008), and Clark et al. (2010b), a bias correction allows

for a more even-handed comparison between given sets

of model forecasts [e.g., quartiles of APCP distribution;

Jenkner et al. (2008)] and a more reasonable estimation

of position errors. The bias correction algorithm was

applied iteratively on each case as follows: for each time

interval where the bias exceeds (is smaller than)

a nominal value of ;1.3 (;0.7), the 2D APCP data at

that time were converted into a 1D array. The APCP

values in this 1D array were then sorted in ascending

order to facilitate the determination of the new APCP

threshold, which are subsequently used to update the

contingency data and ETS (hereafter BC-ETS). For

a bias exceeding 1.3, the algorithm increases the APCP

threshold to lower the bias, while for bias , 0.7, the al-

gorithm finds a sufficiently lower APCP threshold to

increase the bias. For bias values between 0.7 and 1.3, no

action was taken, because additional analysis revealed

that the aggregate bias is primarily affected by bias

values that generally lie outside the (0.7:1.3) range.

Note that the initial null bias value was not altered in

the algorithm because it is expected that no convection

would be present initially in the model.
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The differences between bias-corrected and un-

corrected values of aggregate ETS in this study’s forecasts

were #0.05. Clark et al. (2010b) found that noticeable

differences (i.e., ;0.1) between the bias-corrected and

uncorrected aggregate ETS were more consistently seen

when the following conditions were met: (i) the APCP

threshold was.10mm, (ii) theAPCP intervals were$3h,

and (iii) the neighborhood radius was$8km. In a test (not

shown) of our forecasts using r 5 40km and an APCP

threshold of 25mm for 3-h APCP intervals, correcting the

bias to ;1 improved the aggregate ETS by ;0.1.

To determine the statistical significance (at the 95%

confidence) of the computed differences between the BC-

ETS from LIGHT and CTRL, a bootstrap resampling

technique (repeated 1000 times) was applied onto each set

of bias-corrected contingency table elements following

a methodology described in Hamill (1999) and used in

Clark et al. (2010b).

To contrast the above BC-ETS results with another

neighborhood-bases metric, the last part of this statisti-

cal analysis focuses on evaluating the skill of LIGHT

using the fraction skill score (FSS) method as defined by

Roberts and Lean (2008). FSS is a variant of the fraction

Brier score (FBS; Roberts 2005) and is an attractive

measure of skill on finescale grids primarily because, at

a given neighborhood radius, small displacement errors

are less penalized than with the ETS. FSS divides the

original FBS by a hypothetical ‘‘worst-case FBS’’ which,

akin to the original FBS, is a function of the observed and

simulated fractions. FSS ranges from 0 (no skill) to 1

(perfect forecast). Perhaps the chief limitation of FSS lies

in its inability to account for bias, which is elevated in the

current simulations, especially for LIGHT (Fig. 7). This

limitation is particularly relevant, given the relatively

large sample size herein. Because of this drawback, the

FSS was computed on the bias-corrected contingency

data. The neighborhood area in the original method from

Roberts and Lean (2008) consists of squares (their Fig. 2),

while the Clark et al. (2010b) neighborhood approach

employs disks (their Fig. 5). Although quantitative dif-

ferences in FSS are expected to arise from using either

definition of neighborhood areas, they are expected to

remain negligible, especially on the aggregate.

4. Results

To provide a comprehensive view of the performance

of the LIGHT runs, this section is divided into two parts.

The first focuses on directly comparing the APCP values

(summed and averaged across all 67 cases) between

CTRL, LIGHT, and the stage-IV data (referred to as

‘‘OBS’’ in the remainder of the manuscript). The second

part presents the statistical analysis described in section 3.

a. General evaluation

Before providing a statistical perspective of the per-

formance of LIGHT, it is useful to illustrate qualita-

tively how the spatial distribution of APCP fields differ

between LIGHT, CTRL, and OBS. The first intuitive

step is to evaluate how various differences in total APCP

(i.e., summed over all 67 cases) between the above three

datasets are distributed over the area of interest (Fig. 2)

and evolve over time. The difference in the 0–3-h APCP

fields summed over all 67 cases betweenCTRL andOBS

(Figs. 3a,b) and LIGHT and OBS (Figs. 3b,d), show

a general tendency for LIGHT to significantly over-

estimate the 0–3-h APCP. In contrast, CTRL tends to

underestimate the 0–3-h APCP (Fig. 3a) owing to a de-

lay in convection initiation (CI) incurred by the initial

model adjustment (or spinup; Skamarock 2004; Kain

et al. 2010a). Considering the 0–24-h APCP fields, the

same general qualitative behavior for LIGHT and CTRL

is seen for the Great Plains (cf. Figs. 3b,d). A noticeable

positive difference in the precipitation fields is also noted

over the East Coast and the Southeast United States for

both LIGHT and CTRL. This indicates that the model

tends to overpredict late afternoon airmass convection,

which may arise partly from errors in the initial and

boundary conditions. The fields in Fig. 3 contain a great

deal of small-scale variability, probably due to the rela-

tively small sample size that allows individual events to

exert considerable influence, particularly MCSs in the

Great Plains (Fig. 3c).

Hovmöller diagrams of latitudinally averaged APCP
over the eastern two-thirds of the United States (i.e.,
within the mask area of Fig. 2) corroborate the afore-

mentioned behavior: As shown in Fig. 4e, during the first

6h of the simulations, LIGHT (Fig. 4c) clearly over-

estimates the stage-IV APCP (OBS Fig. 4a), especially

within the longitudinal belt geographically consistent

with the Great Plains (998–878W). Although of lesser

magnitude, CTRL (Fig. 4b) also overestimates the APCP

between 3 and 6h, while largely underestimating APCP

during the first 3h of simulation (Fig. 4d) owing to the

initial model spinup (Skamarock 2004; Kain et al. 2010a).

As shown in Figs. 3b and 3d, the overestimation of the

LIGHT-generated APCP is carried over to the 0–24-h

APCP. Figures 4d–f also illustrate that the largest dif-

ferences seen between CTRL and LIGHT occur during

simulation hours 1–6 (i.e., during and shortly after the 2-h

assimilation period). After 12h of simulation the differ-

ence in solutions becomes increasingly smaller.

To better illustrate the integrated impact of the as-

similation of lightning data on the simulated APCP, the

total water substance mass (APCP mass 1 total hydro-

meteor and water vapor mass) and total APCP mass
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averaged over all 67 cases were computed at the first

hour of simulation (i.e., 0100 UTC). Recalling that the

model output was saved every hour and that the light-

ning assimilation was conducted during the first two

hours of simulation (i.e., 0000 until 0200 UTC),

0100 UTC was selected because the unconstrained

model (i.e., CTRL) is still in the process of spinning up

the convection, as evidenced by the overall lack of

APCP at this time in CTRL (Fig. 4b) compared to

LIGHT (Fig. 4c). Averaged over all days, the lightning

assimilation scheme increases the total water substance

mass by about 0.5%. Both the total hydrometeor and

APCP masses are roughly doubled and equal to about

85% of the added water vapor. It is unknown how much

of the added vapor is directly converted to hydrometeors.

Much of the added vapor may remain as vapor and be

exhausted by anvil-level detrainment, while induced

updrafts may draw up environmental moisture that

actually results in much of the hydrometeor mass. In

both CTRL and LIGHT, the total hydrometeor mass is

about two orders of magnitude larger than the accu-

mulated precipitation at 1 h, suggesting that many

storms have not reached maturity (e.g., towering cu-

mulus stage) and not yet precipitating efficiently. These

same calculations were also performed for the 29 June

2012 derecho case of F14 and revealed remarkably

consistent results. It was also found that the fraction of

water substancemass added by the lightning assimilation

(0.6%) is about one order of magnitude smaller than the

fraction added by the cloud analysis (9%) of the three-

dimensional variational data assimilation system of Gao

et al. (2013), which was also tested in F14.

A closer inspection of hourly radar reflectivity com-

posite plots for each of the 67 cases helped to elucidate

the chief reasons for the tendency of LIGHT to over-

estimate APCP in the Great Plains during the first 6 h of

FIG. 3. Difference of the total 0–3- and 0–24-h accumulated precipitation (APCP,mm) over all the 67 cases (Fig. 1) and the stage-IV data

(OBS) within the mask area shown Fig. 2. (a) Total 0–3-h APCP differences between CTRL and OBS. (b) As in (a), but for the 0–24-h

APCP. (c),(d) As in (a),(b), but for the APCP differences between LIGHT and OBS.
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simulations. Nocturnal MCS commonly occur in the

Great Plains in the May–July time period (e.g., Maddox

1980) and typically develop or begin to mature near the

time when the present simulations were initialized (i.e.,

0000 UTC). In fact, of the 67 days considered herein,

about 18 (;27%) had an MCS or squall line during

the first 6 h of simulation. Because these MCSs are co-

pious lightning (and rainfall) producers (Goodman and

MacGorman 1986; F14) and generally are driven by

large-scale features that are reasonably well captured by

the 40-km NAM-derived initial conditions (e.g., low-

level jet, fronts, and axes of instability), the LIGHT runs

reasonably reproduce their overall evolution (Fritsch

et al. 1986) by quickly generating convection and asso-

ciated mesoscale cold pools near the correct locations.

Owing to the relatively large area of the lightning den-

sity fields associated with MCSs, however, the lightning

assimilation scheme will add water vapor over a large

area (and volume), which would further exacerbate any

preexisting positive APCP bias. This is because some

of this added moisture will, through microphysical

processes, eventually be converted to surface pre-

cipitation. The severity of the bias incurred by the as-

similation, however, could partially be curtailed by

(i) reducing the volume where nudging is applied (de-

creasing coefficient A or assimilate over a shallower

layer) and/or (ii) using a shorter assimilation time

window and/or (iii) reduce the absolute amount of

water vapor mass added per time step by the scheme

(through coefficients B, C, and/or D). For instance,

FIG. 4. Hovmöller diagrams of latitudinally averagedAPCP (mm) over all 67 cases along the longitudinal belt delineated by the mask in
Fig. 2 for (a) stage-IV rainfall estimates (OBS), (b) CTRL, and (c) LIGHT. (d)–(f) Differences between the latitudinally averaged APCP

(over all 67 cases) of CTRL and OBS, between LIGHT and OBS and between LIGHT and CTRL, respectively. Legends for colors and

shading are shown at the bottom of each corresponding row.
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reducing B from the current high value of 0.2 to 0.05

(i.e., limit the maximum nudging to water saturation)

yields smaller areal coverage of simulated 1-h APCP

contours $;20mm (not shown).

To illustrate the ability of the lightning assimilation to

beneficially force the evolution of nocturnal convection

and MCSs and, simultaneously, to amplify an already

existing positive APCP bias in CTRL, a representative

example of the evolution of the APCP fields for the 30

May 2013 multi-MCS case over the Nebraska–Kansas–

Oklahoma area is provided in Fig. 5. The geographical

area in Fig. 5 contains most of the lightning that was

detected by the ENTLN during the first 2 h of simula-

tion. The difference in BC-ETS values for this particular

case was also higher than the aggregate at all thresholds

by as much as 0.1, highlighting the tendency for this

lightning assimilation scheme to perform particularly

well during MCS days. A side-by-side comparison be-

tween the last 10-min bin (0150–0200 UTC) of the as-

similated ENTLN data and the LIGHT APCP fields at

0200 UTC revealed a high spatial agreement (Figs. 5m

and 5i) in contrast to CTRL (Figs. 5m and 5e). There are

FIG. 5. Horizontal cross sections of hourly APCP (ending at

the time shown in the plot) zoomed over the Central Plains

from the stage-IV data interpolated onto the local 4-km do-

main at (a) 0200, (b) 0500, (c) 0800, and (d) 1100 UTC 30 May

2013. (e)–(h) As in (a)–(d), but for the CTRL run. (i)–(l) As in

(e)–(h), but for LIGHT. (m) For reference, a plot of the

ENTLN data interpolated onto D01 for the last 10-min bin of

assimilation from 0150 to 0200 UTC is shown at the bottom

left.
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still areas of observed lightning, however, without any

discernable APCP collocated with it (e.g., 358N, 968W
in Figs. 5m and 5i), which arise for two main reasons:

(i) the time scale (delay) necessary to generate light-to-

moderate precipitation at the surface (defined here as

rates of 5mmh21) after initiation of convective over-

turning via the assimilation is on the order of 10–15min;

and (ii) errors in the local environment advanced from

imperfect large-scale fields in the initial conditions may

further exacerbate this delay or, for low flash rate

storms, suppress the convection forced by the assimila-

tion. Although less evident, a similarly noteworthy spatial

collocation is seen between the ENTLN fields and OBS

at 0200 UTC (cf. Figs. 5m and 5a). Despite this good

spatial agreement between LIGHT and OBS, the

LIGHTAPCP fields clearly are overestimated by almost

an order of magnitude in some places (e.g., convection of

Oklahoma, Figs. 5b and 5j). Note that CTRLalso exhibits

a tendency to overestimate APCP after the end of the

spinup period at about 0200 UTC (e.g., Figs. 5b and 5f).

During the spinup period, however, the CTRL-simulated

APCP generally are smaller than observed (,20mm, not

shown), consistent with the results shown earlier (Figs. 3

and 4). As will be shown in the subsequent section, this

systematic overestimation in APCP accounts for an ini-

tially high (.1.5) aggregate bias after 0200 UTC for both

CTRL and LIGHT. In summary, CTRL and LIGHT

each have good and bad features depending on the

forecast hour with LIGHT performing generally best

at the analysis time (0200 UTC) and CTRL showing

FIG. 6. (a)–(d) Composite frequencies of grid points forecasting 3-hourly APCP $ 10mm relative to the observed 3-hourly APCP $

10mm for the CTRL run during each 3-h intervals contained during the first 12-h simulation. (e)–(h) As in (a)–(d), but for LIGHT. (i)–(l)

Differences of the composite frequencies between LIGHT and CTRL. The composite frequencies were normalized by the number of grid

points in themask area shown in Fig. 2 and by the number of cases in Fig. 1. Legends for color and shadings are shown at the bottom of the

corresponding row(s) with the numbers shown under each color bar scaled (multiplied) by a factor of 1000.
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overall a reduced positive APCP bias relative to LIGHT

throughout the forecast.

Later in the day during the afternoon hours (1800–

0000 UTC), which corresponds to the last 6 h of the

simulations herein, diurnal airmass thunderstorms are

common, particularly over the eastern and southeastern

United States. Owing to their comparatively much

smaller (i) characteristic length scale (e.g., Bryan et al.

2003), (ii) ‘‘cell-scale’’ lightning footprint, and (iii) flash

rates, and because the lightning assimilation ceased

more than 16h before this time period, both CTRL and

LIGHT produce similar radar reflectivity fields (not

shown). As will be shown in the next section, the dif-

ference in skill between LIGHT and CTRL tends to

become statistically insignificant (a 5 0.05) past 9–12h

of the simulations as the overall solution tends to be-

come bounded by the NAM-derived large-scale envi-

ronment. One potential factor for this behavior may

arise from the solution becoming progressively more

saturated with error on the convective scale at later

times. A hint of this behavior can be seen in Fig. 5 when

comparing the simulated APCP fields between LIGHT

and CTRL at 0500 and 1100 UTC (Figs. 5f,h,j,l); initially

the differences in simulatedAPCP between LIGHT and

CTRL are larger, in contrast to later on in the simula-

tion. Other studies also found that the improvements

incurred by the assimilation of lightning (e.g., Mansell

et al. 2007) or radar data (e.g., Hu et al. 2006; Sugimoto

et al. 2009; Jones et al. 2014) wanes generally after about

the first 6 h of forecasts.

To identify potential systematic displacement errors

and generalize the above findings further, aggregate

composite frequencies of forecast rainfall relative to

observed rainfall within the mask area of the simulation

domain (Fig. 2) are shown in Fig. 6. The composite

frequencies of forecast rainfall above a 3-hourly APCP

threshold of 10mm for LIGHT and CTRL (Fig. 6) fur-

ther corroborates some of the findings drawn from

Figs. 3–5. During the first 6 h of simulation, LIGHT

exhibits the highest frequencies, which are much larger

than those of CTRL (cf. Figs. 6a,b and 6e,f), particularly

during the first 3 h of simulation, as illustrated by the

large differences seen between the two (Figs. 6i,j). No-

tably, these relatively higher frequencies are consistent

with the large positive bias in the simulated APCP for

LIGHT (Figs. 3 and 4). Overall, no significant horizontal

displacement of themaximum frequency contours of the

simulated APCP relative to the OBS is noted for either

CTRL or LIGHT (Figs. 6a–h). During the subsequent

simulation time window (6–9h), the difference in com-

posite frequencies reveals that LIGHT still exhibits

better skill than CTRL as indicated by large positive

differences near the center (zero displacement) of the

plot (Figs. 6c,g,k). Later in the simulation, (9–12h,

Fig. 6k, 12–24h, not shown), LIGHT shows higher

APCP frequencies to the west (and lower values to the

east) relative to CTRL. This relative spatial displace-

ment error for LIGHT is consistent with a general ten-

dency for WRF forecasts on either convection-allowing

or -parameterizing grids to exhibit a westward position

bias (Grams et al. 2006; Clark et al. 2010b), which could

partly arise from problems in accurately depicting the zonal

movement of MCSs. Similar westward position errors were

found with the NAM on convection-parameterizing grids

(Wang et al. 2009). The greater composite frequencies

also indicate a southwest–northeast alignment during

the first 6 h of simulation, particularly for LIGHT (cf.

Figs. 6a,b and 6e,f). This particular orientation likely

arises from the convection being preferentially forced

along fronts, whose typical orientation over CONUS

during this time of year lies generally in a southwest–

northeast direction. In line with the previous results

drawn from Figs. 3–5, the comparatively small differ-

ences in frequencies after 15 h of simulation (not shown)

offers an alternative view of the previously documented

behavior whereby the model solution of LIGHT pro-

gressively converges to that of CTRL as the former

FIG. 7. Aggregate bias for hourlyAPCPof 2.5, 5, and 10mmbefore

(dashed) and after (solid) the correctionwas applied for (a)CTRLand

(b) LIGHT. Legends are shown in the top-left corner of (a).
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becomes bounded by the environmental conditions

provided by the initial and boundary conditions derived

from the NAM dataset.

b. Statistical analysis

As mentioned earlier, ETS were subject to two itera-

tions wherein the initial bias estimates were utilized in the

subsequent bias-correction step to yield a bias-corrected

ETS (or BC-ETS). Figure 7 illustrates for the 1-h APCP

how the algorithm corrects the initially high (aggregated)

bias for bothCTRLandLIGHT toward a general nominal

value near 1 (perfect forecast). Figure 7b also shows that

initially, the bias for LIGHT is much larger during the first

6h of forecast—with peak values exceeding 6.0 at simu-

lation hours 5 and 6. This is consistent with the previously

documented tendency for LIGHT to significantly over-

estimate the APCP relative to CTRL during this time

period (cf. Figs. 3, 4, and 5). During the first 3h of simu-

lation, however, CTRL is still in the process of spinning up

convection, which explains the generally low initial bias

seen at simulation hours 1 and 2 (Fig. 7a). This initial low

bias is consistent with the generally negative total differ-

ences in 0–3-h APCP seen between CTRL and OBS

throughout the analysis domain (Figs. 2 and 3a).

Looking at the BC-ETS statistics in Fig. 8, the hourly

APCP for a threshold of 2.5mm is significantly

improved during the first 5 h of simulation (i.e., 3 h after

the lightning assimilation ceased) for all nine neigh-

borhood radii considered herein (Figs. 8a–c). Consis-

tent with the results presented earlier in Figs. 3 and 4,

the BC-ETS differences between LIGHT and CTRL

progressively converge toward the same value (Fig. 8c).

A similar behavior is concordantly seen for the 3-

hourly APCP (Figs. 8d–f) with generally slightly

higher BC-ETS for both CTRL and LIGHT because of

an increasing chance of reaching a given APCP

threshold over a 3-h period relative to a 1-h period (i.e.,

more hits).

Results for 1-, 3-, and 6-hourly APCP at a higher

threshold of 10mm are similar (Fig. 9) to the lower

thresholds. Tables 1 and 2 further corroborate the im-

provements of the simulated APCP in the LIGHT runs

for 12- and 24-h APCP at the thresholds of 10, 25, and

50mm. When comparing both tables side by side it is

easily noticed that the larger 0–24-h APCP BC-ETS for

LIGHT is explained almost exclusively from the im-

provements of the 0–12-h APCP (as seen in Figs. 7 and

8). Given that the largest improvements in BC-ETS are

seen during the first ;6 h of simulation, it is relevant to

determine how much of the increased BC-ETS of the 0–

24-h APCP in LIGHT is actually explained by the 0–2-h

spinup (assimilation) period. Given an APCP threshold,

FIG. 8. Aggregate BC-ETS for the 1-hAPCP threshold of 2.5mm for (a) CTRL, (b) LIGHT, and (c) the difference betweenLIGHTand

CTRL. (d)–(f) As in (a)–(c), but for 3-hourly APCP. BC-ETS are shown for all the nine neighborhood radii considered in this study, with

the legend shown in (c).
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the differences in BC-ETS for hourly APCP between

LIGHT and CTRL first are computed for each nine

radii. Then, the area under each of the curves of the BC-

ETS differences is determined using the trapezoidal

rule. The contribution of BC-ETS improvement from

the spinup is then simply given by the ratio of the area

under the curve between 0 and 2 h and the area under

the curve between 0 and 24h. At 10mm, the contribu-

tion ranges from ;21.1% at r 5 0 to ;26.5% at r 5
40km. The contribution from the spinup increases with

increasing (hourly) APCP thresholds. For instance, the

contribution of the spinup is reduced to;16.4% at r5 0

FIG. 9. (a)–(f) As in Fig. 8, but for an APCP threshold of 10mm. Because of the higher threshold, (g)–(i) additionally shows the BC-ETS

for 6-hourly APCP. Legends for all nine neighborhood radii are shown in (i).

TABLE 1. Bias-corrected aggregate equitable threat scores (BC-ETSs) over all 67 CTRL cases for selected neighborhood radii of 0 (i.e.,

gridpoint based), 4, 16, and 32 km (shown in the second row) forAPCP thresholds of 10, 25, and 50mm (shown in the top row). (from top to

bottom) The BC-ETS are shown for the 0–12-, 12–24-, and 0–24-h APCP.

CTRL 10mm 25mm 50mm

Radius (km) 0 4 16 32 1 4 16 32 1 4 16 32

0–12 h 0.19 0.27 0.44 0.61 0.12 0.18 0.34 0.51 0.06 0.10 0.21 0.33

12–24 h 0.15 0.26 0.49 0.66 0.07 0.12 0.26 0.41 0.01 0.03 0.07 0.13

0–24 h 0.22 0.33 0.57 0.73 0.13 0.21 0.40 0.58 0.06 0.09 0.19 0.30
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and to ;18.3% at r 5 40km at the APCP threshold of

2.5mm.

To determine the statistical significance at the 95%

confidence interval of the differences between the

BC-ETS from LIGHT and CTRL, a bootstrap

resampling test statistic (Hamill 1999) was conducted

on those bias-corrected differences with key results

shown in Fig. 10. Although the bias correction had

overall little impact on the aggregate ETS values, the

resampling was conducted on the bias-corrected dif-

ferences for consistency with Figs. 8 and 9. The results

were almost the same (BC-ETS differences between

LIGHT and CTRL ,0.05) when the resampling was

applied to the uncorrected differences. For the 1- and

3-h APCP, the analysis revealed that, overall, the

differences in BC-ETS remained insignificant past

;9 h of simulation (Figs. 10a–d). For the 6-h APCP,

these differences became insignificant later after

about 12 h of simulation (Fig. 10e). Results for 12-h

APCP (at the higher thresholds of 10, 25, and 50mm)

showed that the BC-ETS differences remained sig-

nificant for the 0–12-h APCP and insignificant for the

12–24-h APCP (not shown). Last, the difference in

BC-ETS for the 24-h APCP in Tables 1 and 2 was

marginally insignificant (not shown).

The ETS formulation can be viewed as a convolution

between the probability of detection (POD), which ac-

counts for the hits and misses and the false alarm

rate (FAR), which accounts for correct rejections and

false alarms. Thus, it is useful to determine the relative

contributions of POD and FAR to the statistically

significant BC-ETS improvements documented earlier

(Figs. 9–10 and Tables 1 and 2). An example of FAR and

POD evolution is shown in Fig. 11 for 1-h APCP at the

2.5- and 10-mm thresholds. As can be easily noted, the

improvements in BC-ETS documented earlier during

the first 12 h of simulation (e.g., Fig. 10), is attributed to

a higher POD combined with a lower FAR in LIGHT

relative to CTRL. An explanation for the higher BC-

ETS values at higher neighborhood radii is that the

POD increases and FAR decreases as the neighborhood

radius increases (Fig. 11). Also, the tendency for BC-

ETS differences between LIGHT and CTRL to increase

with APCP thresholds at a given APCP interval (cf.

Figs. 10a and 10b or Figs. 10c and 10d), can be explained

by the evolutions of the respective differences of the

FAR and POD between LIGHT and CTRL. For in-

stance, for the 1-h APCP shown in Fig. 11, the positive

difference (improvement) in POD increases as theAPCP

threshold increases (e.g., Figs. 11a,c), while, conversely,

the difference in FAR between LIGHT and CTRL is

seen to decrease as the APCP threshold increases (e.g.,

Figs. 11b,d). Concomitantly, the individual POD and

FAR for LIGHT and CTRL decrease with increasing

APCP threshold. This is because models have greater

difficulty in forecasting the time and location of areas of

high rainfall rates, especially those arising from smaller-

scale convective features. In line with the BC-ETS results

presented earlier, both the FAR and POD progressively

converge to that of CTRL after 12h of simulation with

their differences (i.e., LIGHT 2 CTRL) becoming sta-

tistically insignificant after that. The same analysis con-

ducted on 3-, 6-, and 12-h APCP yielded similar results

(not shown).

Figure 11 also shows why the BC-ETS improved in

LIGHT despite its noticeably larger aggregate bias. The

much higher POD and slightly lower FAR in LIGHT

indicates that, despite a tendency to overpredict pre-

cipitation, the method consistently succeeds in forcing

some convection to be produced in the correct area,

thereby yielding significantly more hits than in CTRL (see

also Figs. 6e,f) while producing false alarm rates relatively

similar (slightly lower) to those of CTRL. The slightly

lower FAR in LIGHT arises from the development of

spurious convection in the vicinity of the observed light-

ning locations being weakened or even suppressed by the

compensating subsidence that is induced at the periphery

of the forced convection (Fritsch and Chappell 1981).

To conclude this analysis, the remainder of this sec-

tion will focus on FSS. For the sake of comparison and

conciseness, the analysis will present results for 1- and

3-h APCP and focus on the first 9 h of simulation since

BC-ETS differences were shown to be insignificant past

this time for the 1- and 3-h APCP.

The aggregate FSS for 1- and 3-h APCP at the 2.5-

and 10-mm thresholds are displayed in Fig. 12 and,

overall, confirm the general results drawn earlier from

the aggregate BC-ETS (Figs. 8 and 9). Notably, the

most noteworthy improvements are seen at 2–4h in the

simulation with FSS differences (i.e., LIGHT 2 CTRL)

TABLE 2. As in Table 1, but for LIGHT.

LIGHT 10mm 25mm 50mm

Radius (km) 0 4 16 32 1 4 16 32 1 4 16 32

0–12 h 0.25 0.33 0.52 0.69 0.17 0.25 0.44 0.61 0.10 0.16 0.33 0.48

12–24 h 0.15 0.26 0.50 0.67 0.07 0.12 0.27 0.43 0.01 0.03 0.07 0.12

0–24 h 0.25 0.36 0.60 0.76 0.16 0.24 0.44 0.62 0.08 0.12 0.23 0.36
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reaching amaximumof 0.3 (Figs. 12f,i,l) or even 0.4 for 1-h

APCP and 2.5-mm threshold (Fig. 12c). Similar to the BC-

ETS, this positive difference progressively decreases to-

ward small statistically insignificant values (,j0.1j, not
shown) past 9h of simulation. Results not shown for FSS

for 6-, 12-, and 24-h APCP also remain consistent with

those of the BC-ETS.

5. Summary

Using the WRF-ARW Model, a recently developed

simplistic and computationally efficient lightning nudg-

ing scheme has been evaluated over 67 days spanning

the 2013 North American warm season from May to

July. The simulations were conducted in real time during

FIG. 10. BC-ETS difference (solid line) for the neighborhood radii of 0 km (gridpoint based), 16-, and 32-km

overlaid with the 95% confidence interval (dotted line) of the BC-ETS difference computed using a 1000-sample

bootstrap resampling of the contingency elements of all 67 cases for: (a) 1-h APCP with 2.5-mm threshold; (b) as in

(a), but for a 10-mm threshold; (c) as in (a), but for 3-h APCP; (d) as in (b), but for 3-h APCP; and, finally, (e) as in

(d), but for 6-h APCP. Legends for the curves are shown in the bottom-left corner of the figure.
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the Hazardous Weather Testbed (HWT; Coniglio et al.

2010; Clark et al. 2012) Spring Forecasting Experiment

with the model setup being identical to those from the

real-time 4-km NSSL-WRF over CONUS (Clark et al.

2010a,b; Kain et al. 2010a,b; Clark et al. 2012). The

variable utilized for the evaluation is the conventional

accumulated precipitation (APCP). The chiefmetric used

for evaluating the skill of the lightning assimilation

scheme is the neighborhood-based equitable threat score

(ETS), which reduces the occurrences of double penal-

ties. Since high biases tend to artificially inflate ETS

values, a correction algorithm toward a bias of 1 (perfect

forecast) was applied on all the individual cases for each

of the six APCP thresholds, nine neighborhood radii, and

five APCP periods considered herein (Baldwin and Kain

2006) to yield a bias-corrected ETS (BC-ETS). Last, to

determine whether the computed BC-ETS differences

between LIGHT and CTRL were statistically significant,

a bootstrap resampling technique followingHamill (1999)

was applied on the contingency elements for each of the

67 cases examined in this study.

Overall, the results highlight the promising benefit of

the routine assimilation of total lightning data toward

improving short-term (;6 h) forecasts of high-impact

weather events, particularly given its low computational

cost and straightforward implementation. Although of

lesser magnitude, the BC-ETS differences between

LIGHT and CTRL showed that, overall, the improve-

ment from assimilating total lightning could carry up to

12h of simulation for higher APCP threshold (i.e.,

$10mm) and accumulation intervals ($6 h). Similar

results were obtained through the fraction skill score

(FSS) neighborhood approach.

It is relevant to note, however, that despite these

noteworthy improvements, the lightning assimilation

scheme produces a noticeable wet bias in the simulated

APCP (the rainfall is overpredicted) relative to CTRL.

While the amount of water substance mass added by the

lightning assimilation is an order of magnitude smaller

than the water mass added by the cloud analysis within

the 3DVAR code used in F14 for the 29 June 2012 case,

potential causes for the high bias in this study could arise

FIG. 11. Probability of detection (POD) of the bias-corrected aggregate contingency data for hourly APCP

threshold of (a) 2.5 and (c) 10mm for the four neighborhood radii indicated in the legend in (d). (b),(d)As in (a),(c),

but for the false alarm rate (FAR).
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FIG. 12. As in Fig. 8, but for the aggregate (over all 67 cases) fraction skill score (FSS) as defined by Roberts and Lean (2008) for the

neighborhood radii indicated in the legend in (c). Note that the ETS employs disks as neighborhood area while the FSS utilizes squares.

Thus, the neighborhood radius for FSS should be interpreted with this difference in mind. (a) FSS for 1-h APCP and a threshold of 2.5mm

for CTRL. (b),(c) As in (a), but for LIGHT and the difference between LIGHT and CTRL, respectively. (d)–(f) As in (a)–(c), but for 3-h

APCP; (g)–(i) as in (a)–(c), but for 10-mm threshold; and (j)–(l) as in (d)–(f), but for the 10-mm threshold.
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from the lightning assimilation scheme still introducing

a large amount of moisture in the model (increase of

0.5% of total water substance mass) coupled with errors

in the microphysics and the relatively coarse grid spac-

ing employed herein. Because a similarly high positive

bias also was produced in the 3DVAR experiments in

F14 (not shown), it is likely that the addition of water

mass substance in a model already suffering from

a positive bias in APCP without any assimilation (as evi-

denced for instance in Fig. 7a and Figs. 5e–h for CTRL)

can only amplify this phenomenon since, eventually, some

fraction of this added water mass will be converted to

surface precipitation through microphysical processes. As

stated earlier, the difference in bias between LIGHT and

CTRL could likely be improved by reducing the impact of

the assimilation through (i) a shorter assimilation period

and/or (ii) by reducing the absolute amount of water vapor

mass added per time step, and/or (iii) by adding moisture

over a shallower layer.

Also, the improvements incurred by the assimilation

of lightning data, as measured by the positive BC-ETS

and FSS differences between LIGHT and CTRL, pro-

gressively decreased to statistically insignificant (near 0)

values past 12 h. This indicated that regardless of the

method employed herein to initially place the convec-

tive features at the correct locations during the assimi-

lation period, errors in the large-scale fields in the initial

conditions will progressively force the solutions of

LIGHT to converge to that of CTRL. Moreover, as in-

dicated in F12 and F14 and akin to all lightning nudging

methods or cloud analysis schemes published until pres-

ent, the development of spurious convection is not ad-

dressed. This would result in further degrading the

forecast through modification of the local environment

(e.g., cold pools). Although more computationally ex-

pensive, ensemble Kalman filter methods can address the

problem of spurious convection [by assimilating zero

lightning; Mansell (2014)] and, thus, provide a future al-

ternative pathway to routinely assimilate lightning data.

To reduce the potential moisture bias introduced by

the lightning assimilation scheme, the algorithm could

be modified to combine heating (e.g., as in Marchand

and Fuelberg 2014) with moistening to provide similar

buoyancy with less added vapor. F12 proposed amethod

to partially address the problem of spurious convection,

whereby simulated hydrometeor mixing ratios are

nudged toward zero at locations where no lightning is

observed and where spurious convection develops in the

model. This succinct concept was recently tested in

a study from Lynn et al. (2015) and revealed improve-

ment of their forecasts. Additional improvements of the

lightning assimilation scheme could consider shifting the

nudging region downward within the lower troposphere

(i.e., toward the cloud base) instead of the mixed-phase

region to allow the forced convection to become rooted

more quickly in the boundary layer and, incidentally, to

also better represent weakly forced, deep convection.

Although there still exists room for improvement, this

lightning assimilation scheme has the chief advantage of

being computationally inexpensive and easy to port to

any numerical weather prediction codes. The capability

of readily assimilating lightning data is desirable given

that, in contrast to conventionally assimilated weather

surveillance radar data, lightning does not suffer from

paucity in mountainous areas and oceans. Akin to

coarser-resolution satellite data, lightning thus remains

a valuable complement to radar data in these regions.
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