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ABSTRACT

The probabilistic prediction of tropical cyclone (TC) rapid intensification (RI) in the Atlantic and eastern

Pacific Ocean basins is examined here using a series of logistic regression models trained on environmental

and infrared satellite-derived features. The environmental predictors are based on averaged values over a

24-h period following the forecast time. Thesemodels are compared against equivalentmodels enhancedwith

additional TC predictors created from passive satellite microwave imagery (MI). Leave-one-year-out cross

validation on the developmental dataset shows that the inclusion of MI-based predictors yields more skillful

RI models for a variety of RI and intensity thresholds. Compared with the baseline forecast skill of the non-

MI-based RI models, the relative skill improvements from including MI-based predictors range from 10.6%

to 44.9%. Using archived real-time data during the period 2004–13, evaluation of simulated real-time models

is also carried out. Unlike in the model development stage, the simulated real-time setting involves using

Global Forecast System forecasts for the non-satellite-based predictors instead of ‘‘perfect’’ observational-

based predictors in the developmental data. In this case, the MI-based RI models still generate superior skill

to the baselineRImodels lackingMI-based predictors. The relative improvements gained in addingMI-based

predictors are most notable in the Atlantic, where the non-MI versions of the models suffer acutely from the

use of imperfect real-time data. In the Atlantic, relative skill improvements provided from the inclusion of

MI-based predictors range from 53.5% to 103.0%. The eastern Pacific relative improvements are less im-

pressive but are still uniformly positive.

1. Introduction

Recent innovations in operational numerical weather

prediction (NWP) bear promise in the longstanding

challenge of improving tropical cyclone (TC) intensity

prediction (e.g., Tallapragada 2014; DeMaria et al.

2014). Even so, rapid intensification (RI) events in TCs

continue to present a significant hurdle for TC intensity

forecasting (Gall et al. 2013). Part of the difficulty stems

from the fact that RI, by definition (e.g., Kaplan et al.

2010, hereafter KDK10), is a rare event, which chal-

lenges statistical RI forecasting schemes designed with a

finite climatology. Contemporary studies on RI, such as

KDK10, define an RI event as a TC experiencing an

increase in the 1-min maximum sustained surface wind

speed beyond some threshold representing the 90th–

95th percentiles of 24-h intensity change, typically 25–35

knots (kt; 1 kt 5 0.51ms21) per 24-h period. Observa-

tional analysis suggests that favorable environmental

conditions such as high ocean heat content, lower
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vertical wind shear, and higher low-level humidity are

typically more favorable for RI (Kaplan and DeMaria

2003; KDK10; Hendricks et al. 2010). Yet, favorable

environmental conditions do not guarantee RI and it is

widely believed that the internal dynamics distinguish

which storms in favorable environments will undergo RI

(e.g., Hendricks et al. 2010). Therefore, insufficient grid

resolution, initialization errors, and imperfect parame-

terization of various physical processes in NWP models

likely prevent the accurate prediction of internal dynamics

associatedwithRI.Nonetheless, ongoing improvements in

NWP hint at a brighter future in RI prediction. Like NWP

models, statistical RI forecast models likely suffer, in part,

because they also lack insufficient information about the

internal storm structure and dynamics.

With the exception ofAtlantic TCs routinelymonitored

by radar-equipped NOAA research aircraft, detailed

three-dimensional depictions of kinematic and thermo-

dynamic storm structure are rarely available. However,

satellite data can offer proxies with which to estimate

these aspects of TC structure. For example, probabilistic

forecasts of RI that derive a significant amount of skill by

accounting for environmental factors have been further

improved by including TC structure information from

10.7-mm infrared (IR) satellite data (KDK10; Rozoff and

Kossin 2011, hereafter RK11; Monette et al. 2012). Sat-

ellite IR data indicate that storms undergoing RI tend to

presentmore symmetric and vigorous cold cloud tops near

the center of circulation when compared against other

storms. Lightning analyses by DeMaria et al. (2012) show

that rainband regions are more electrically active prior to

RI events, which is consistent with the recent Tropical

Rainfall Measuring Mission (TRMM)-based study of

Jiang and Ramirez (2013). DeMaria et al. demonstrate

that the inclusion of lightning-based predictors into the

linear discriminant analysis–based Statistical Hurricane

Prediction Scheme (SHIPS) rapid intensification index

(RII; KDK10) shows potential to improve probabilistic

RI forecasting. The benefits of satellite-derived in-

formation quantifying cloud and convective properties are

unsurprising given the significant body of research in-

dicating the important ties between latent heating pro-

cesses and RI, including efficient intensification when

latent heating is located within a region of high inertial

stability (Shapiro and Willoughby 1982; Schubert and

Hack 1982; Hack and Schubert 1986; Nolan et al. 2007;

Vigh and Schubert 2009; Pendergrass and Willoughby

2009; Molinari and Vollaro 2010; Nguyen and Molinari

2012; Rogers et al. 2013) and the potential relationship

between convective bursts and RI (McFarquhar et al.

2012; Rogers et al. 2013; Wang and Wang 2014).

In spite of the benefits attained by using IR-satellite

imagery in RI forecasting techniques, IR imagery is

somewhat limited in its depiction of the precipitation

structure since it primarily shows only the topmost re-

gion of clouds, which are often widespread, thick cirrus

that obscure views of the more detailed structure of la-

tent heating processes beneath. On the other hand,

passive microwave imagery (MI) observed by low-

Earth-orbiting satellites peers through the cirrus cloud

canopy but is attenuated by larger liquid and ice hy-

drometeors and can, therefore, more effectively capture

the TC precipitation structure (Hawkins and Velden

2011). While the sampling of a TC bymicrowave sensors

is more irregular and limited in time than geostationary

IR data, the information contained in MI appears to be

quite relevant to the prediction of RI. Kieper and Jiang

(2012, hereafter KJ12) found that a ring pattern ob-

served in the 37.0-GHz composite color product pro-

vided in the Naval Research Laboratory TC MI dataset

(Lee et al. 2002) is often concurrent with storms un-

dergoing RI and therefore improves SHIPS RII

(KDK10). The 37.0-GHz channel of MI depicts both

emission from liquid hydrometeors and the scattering of

radiation from cloud ice (Weng and Grody 1994). In the

37.0-GHz composite color products, the symmetry in

total precipitation (which includes both ‘‘warm rain’’

associated with shallower convection and cloud ice

aloft) is fundamental to the findings of KJ12. The MI-

aided study of Jiang andRamirez (2013) shows that RI is

accompanied by greater spatial coverage of rain in the

inner core, and they further provide empirically de-

termined necessary conditions for RI. These results are

also consistent with the TRMM Precipitation Radar

(PR) study of Zagrodnik and Jiang (2014), which shows

that precipitation frequency and the coverage of rainfall

increases in the inner core and becomes more symmetric

in rapidly intensifying TCs over time. Their results fur-

ther concur with the significant contribution of warm-rain

precipitation to the 37.0-GHz ring described in KJ12 in

that Zagrodnik and Jiang show relatively shallow, weaker

convection and stratiform precipitation are the most im-

portant parameters for RI, although deeper convection

does become more prevalent as RI continues.

The goal of the current study is to improve the prob-

abilistic prediction of RI using a variety of predictors

derived from passive MI. To this end, we exploit in-

formation fromMI to design physically based parameters

that describe the distribution, organization, and intensity

of precipitation signatures (caused by the attenuation due

to warm rain and ice hydrometeors) in the inner core

of developing and maturing TCs. It will be shown that

optimally selected MI-based predictors can enhance

the skill of a probabilistic RImodel. The remainder of the

paper is organized as follows. In section 2, we describe the

data andmethodologyof this study. Section 3 provides an
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overview of the performance of the newly developed

microwave-based RI model using leave-one-year-out

cross validation with developmental data and includes

an evaluation of simulated real-time performance.

Concluding thoughts are presented in section 4.

2. Methodology

Aspects of TC structure are quantified here in an at-

tempt to improve the probabilistic prediction of RI. In

particular, passive MI is used to create predictors de-

scribing the structure of precipitation in TCs for a prob-

abilistic RI model. The particular model chosen for this

study is the logistic regression (LR) model (Wilks 2006)

developed without MI for RI prediction in RK11. MI-

enhanced versions of this LR model are developed for

both the Atlantic and eastern Pacific Ocean basins using

data from the National Hurricane Center’s (NHC)North

Atlantic hurricane database (HURDAT; Jarvinen et al.

1984), the SHIPS developmental dataset based on grid-

ded operational global analyses data (DeMaria et al.

2005), and passive MI data described below.

a. Probabilistic model

In both the Atlantic and eastern Pacific, MI-enhanced

LR models are formulated around the LR-based RI

model described in RK11. The LRmodel’s probability of

an RI event occurring, specifically an event in which the

increase inmaximumwindDymax over a time period ofDt
meets an RI threshold denoted by a, is represented as

pL(Dymax/Dt$ a)

5
1

11 exp(b01b1x11b2x21 � � � 1bNxN)
, (1)

where the xn 5 (x1, x2, . . . , xN) represent N environ-

mental or storm-structure-related predictors and the bn

are fitted coefficients. These models are specifically de-

signed to predict the probability of RI occurring at the

synoptic times of 0000, 0600, 1200, and 1800UTC, where

RI is defined as an intensification event of sufficient

magnitude over the following 24-h period. Three RI

thresholds, including a 5 25, 30, and 35kt (24 h)21, are

considered. To test whether the models possess im-

proved skill when considering only more mature storms,

two sets of models are developed around certain in-

tensity thresholds. One set of LR models considers ret-

rospective developmental data from any storm with

intensities of at least 25 kt, which includes all of the

developmental data, while a second set of models are

constructed considering only data from storms with an

intensity of at least 45 kt. The latter threshold, which

represents moderate-strength tropical storms, screens

out a large number of weaker storms while retaining a

relatively larger proportion of the strongest intensification

cases. The 45-kt intensity threshold is somewhat arbitrary,

but it is worth noting that using an aircraft-reconnaissance-

based climatology of Atlantic TCs during 1989–2008, Vigh

et al. (2012) found a median TC intensity of 50kt accom-

panies the beginning stages of eye banding and a median

intensity of 58kt is found for the first aircraft detection of

an eye. Therefore, the 45-kt intensity threshold includes

TCs in crucial stages of intensification.

The models’ non-MI predictors are obtained from

HURDATand the SHIPS developmental dataset (Table 1;

see also RK11). In the Atlantic, the LR model uses the

previous 12-h intensity change PER, the Reynolds and

Smith (1994) sea surface temperature RSST, the 200-hPa

divergence averaged within 1000-km radius r from the TC’s

center D200, the 850–200-hPa vertical wind shear magni-

tude over an annulus of 0–500-km radius from storm center

after the vortex was removed relative to the 850-hPa center

SHDC, the departure from the TC’s maximum potential

TABLE 1. The SHIPS developmental dataset–based predictors used for the LR RI models in the Atlantic (ATL) and eastern

Pacific (EPAC).

Predictor Model Definition

PER ATL, EPAC Previous 12-h intensity change (i.e., persistence)

RSST ATL Reynolds SST

ENSS EPAC Vertical average of the negative differences between the equivalent potential temperature of

an air parcel lifted pseudoadiabatically from the surface and the environmental saturation

equivalent potential temperature (r 5 200–800 km)

D200 ATL 200-hPa divergence (r 5 0–1000 km)

SHDC ATL, EPAC 850–200-hPa vertical wind shear magnitude calculated with the vortex removed relative to

the 850-hPa center (r 5 0–500 km)

POT ATL, EPAC Departure from the TC’s max potential intensity

BTA1 ATL Mean IR cloud-top Tb (r 5 0–30 km)

BTA2 EPAC Mean IR cloud-top Tb (r 5 100–300 km)

BTM EPAC Max IR cloud-top Tb (r 5 0–30 km)

SDBT1 EPAC Std dev of IR cloud-top Tb (r 5 50–200 km)

SDBT2 ATL Std dev of IR cloud-top Tb (r 5 100–300 km)
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intensity POT, the mean IR cloud-top brightness temper-

ature Tb averaged within 30-km radius from storm center

BTA1, and the standard deviation of IR cloud-top Tb av-

eraged within 100–300-km radius from storm center

SDBT2. The environmental predictors RSST, D200,

SHDC, and POT are averaged from the 0-h time of the RI

forecast through the following 24h. Atlantic TCs that un-

dergo RI tend to have larger PER, higher RSST, stronger

D200, lower SHDC, and/or higher POT than storms that

do not experience RI. In addition, IR-based predictors

show RI cases produce colder inner-core cloud tops, more

widespread, cold cloud tops, and more axially symmetric

cloud structure with respect to the TC’s center.

The SHIPS developmental dataset predictors used in

the eastern Pacific LRmodel include PER, SHDC, POT, a

measure of tropospheric static stabilityENSS, themean IR

cloud-top Tb over the region of 100–300-km radius from

storm center BTA2, the maximum IR cloud-top Tbwithin

30-km radius from storm center BTM, and the standard

deviation of IR cloud-top Tb averaged over the region

with a 50–200-km radius from storm center SDBT1. Like

the environmental predictors in the Atlantic, ENSS is

based on a 24-h time average beginning at the time of the

forecast. As described in RK11, eastern Pacific TCs that

undergo RI have higher PER, lower SHDC, higher POT,

and lowerENSS.Also, likeAtlantic storms,RI cases in the

eastern Pacific have colder cloud tops, more widespread

cold cloud tops, and the cloud structure is more azimuth-

ally symmetric with respect to the TC center.

b. Microwave imagery–based predictors

1) DATASETS

TheMI-based predictors are derived from a variety of

satellite datasets, including the Special Sensor Micro-

wave Imager (SSM/I), the Special Sensor Microwave

Imager/Sounder (SSMIS), TRMM Microwave Imager

(TMI), and the Advanced Microwave Scanning Radi-

ometer for Earth Observing System (AMSR-E). This

study incorporates the vertical and horizontal polariza-

tions (V pol and H pol, respectively) of the SSM/I and

TMI sensor Tb at 19.35, 37.0, and 85.5GHz; SSMIS Tb at

19.35, 37.0, and 91.655GHz; and AMSR-E Tb at 18.7,

36.5, and 89.0GHz. Each sensor has distinct spatial res-

olutions, with AMSR-E and TMI providing the highest

resolution. The retrospective developmental MI dataset

in this study includes SSM/I and TMI Tb from 1998 to

2012, SSMIS data from 2005 to 2012, and AMSR-E data

from 2002 to 2011. Table 2 shows more details on the

datasets used in this study.

The various microwave spectral channels depict dis-

tinct aspects of hydrometeor attenuation and thereby

precipitation processes, which is why three channels are

considered in the MI-based RI models. As an example,

Fig. 1 shows a variety of TMI channels forHurricaneDean

(2007) in its tropical storm stage at 1314 UTC 15 August.

At the time of this imagery, the storm was in the early

stages of RI prior to eventually becoming a major hurri-

cane on 17 August. In the 19.35-GHz (V pol) and 37.0-

GHz (V pol) Tb channels, which are most sensitive to

emission by liquid water hydrometeors, a loosely orga-

nized ring of hydrometeors surrounds the storm center and

an extensive spiral rainband exists to the south (Figs. 1a,b).

The ring structure is azimuthally asymmetric, with the

strongest precipitation occurring to the east-southeast in

the 19.35-GHz channel and in the southwest quadrant of

the 37.0-GHz channel. Nonetheless, the symmetric 19.35-

and 37.0-GHz (V pol) precipitation structure resembles a

nascent eyewall structure, consistent with the 37.0-GHz

pattern that often precedesRI as discovered byKJ12.Now,

the 37.0- and 85.5-GHz polarization-corrected tempera-

ture PCT of Figs. 1c and 1d, which show features associ-

ated with the scattering of upwelling microwave radiation

from ice higher up in the atmosphere (Spencer et al. 1989;

McGaughey et al. 1996), similarly identify hydrometeors

likely associated with convection placed in roughly the

same regions as shown in Figs. 1a and 1b. However, the

detailed structure is a bit different. A ring pattern is not

apparent and the azimuthal wavenumber-1 asymmetry

with respect to the TC center is a bit more drastic aloft,

with the maximum ice scattering signatures to the east of

the storm center. Including all channels for consideration

as predictors can aid in determiningwhich aspects of storm

structure are most relevant to forecasting RI with the LR

model, and may even help identify which aspects of the

structure are key to RI in a dynamical sense.

TABLE 2. Footprint sizes for each passive microwave sensor at the low-, medium-, and high-frequency channels used in this study.

Low-frequency channel Medium-frequency channel High-frequency channel

Sensor

Frequency

(GHz)

Footprint

(km3 km)

Frequency

(GHz)

Footprint

(km3 km)

Frequency

(GHz)

Footprint

(km3 km)

SSM/I 19.35 69 3 43 37.0 37 3 28 85.5 15 3 13

SSMIS 19.35 73 3 47 37.0 41 3 31 91.655 14 3 13

TMI level 1B 19.35 30 3 18 37.0 16 3 9 85.5 7 3 5

AMSR-E level 2A 18.7 27 3 16 36.5 14 3 8 89.0 6 3 4
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For comparison, Fig. 2 shows GOES-11 IR imagery

from about the same time as the MI in Fig. 1. Clearly,

there are some similarities between the different satel-

lite views of Hurricane Dean, particularly in the ice

scattering signature in the PCT imagery and the cold

cloud tops in the IR imagery. Both show a distinct azi-

muthally asymmetric structure, with the most intense

cold cloud tops and ice scattering to the north and east of

the center, along with a spiral rainband that extends

toward the southwest portion of the image. The clouds

in the IR imagery, however, are much more expansive

than either the ice scattering or warm-rain features in

the MI. Moreover, the nascent eyewall structure in the

19.35-GHz, and 37.0-GHz (V pol) MI is not as clear-cut

in the IR data, although an IR warm spot is found in the

general vicinity of the MI-indicated incipient eyewall.

2) SENSOR CALIBRATION

Before creating MI-based predictors, calibration of

AMSR-E and SSMIS Tb to be compatible with TMI and

SSM/I Tb is carried out. As noted above, the AMSR-E

sensor uses 18.7-, 36.5-, and 89.0-GHz channels as op-

posed to the 19.35-, 37.0-, and 85.5-GHz channels of the

TMI and SSM/I sensors. Also, SSMIS uses a 91.655-GHz

channel instead of the 85.5-GHz channel. While the phys-

ical interpretations of the low-, mid-, and high-frequency

channels are similar for each sensor, the Tb differences

from sensor to sensor for a given scene in space and time

can be significant (as high as 10K) (Jones andCecil 2006,

hereafter JC06; Hawkins et al. 2008). One way to cali-

brate different sensors involves applying radiative

transfer models over a range of environmental condi-

tions (e.g., Hong 2008), a rigorous but involved process.

To facilitate potential operational updates of this

model, a much simpler yet effective calibration ap-

proach is chosen. Specifically, the histogram matching

technique of JC06 is applied to all AMSR-E channels

and the 91.655-GHz SSMIS channel to make themmore

compatible with the TMI and SSM/I channels. These

adjustments are carried out for both theH pol andV pol.

FIG. 1. TMI Tb (K) of Hurricane Dean at 1314 UTC 15 Aug 2007 for (a) 19.35GHz (V pol), (b) 37.0GHz (V pol),

(c) 37.0GHz (PCT), and (d) 85.5GHz (PCT).
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The higher spatial resolution TMI is used to develop

calibrations for both AMSR-E and SSMIS.

To carry out the JC06 histogram matching adjustments

for a given sensor, there must be a number of instances

where a given TC is observed by that sensor and the TMI

instrument at nearly the same time. The frequency of

such a coincidence is relatively low. Tables 3 and 4 show a

number of cases found where AMSR-E and SSMIS sen-

sors observed Atlantic TCs within 45min or less of a TMI

overpass of the sameTCs. These coinciding overpasses are

used to calibrate all AMSR-E and the 91.655-GHz SSMIS

channels to the reference TMI channels. Only data in

which TMI and AMSR-E or SSMIS overlap and that fall

within 108 of the TC center are considered. Furthermore,

only data from over the ocean are used since land data are

not considered in the model development either.

It should be noted that the storm center is determined

using the objective TC center finding algorithm of

Wimmers and Velden (2010), known as the Automated

Rotational Center Hurricane Eye Retrieval (ARCHER).

Given the sensor parallax issues associatedwith lower- and

higher-frequency channels that measure precipitation at

different altitudes, alongwith the vertical tilt of theTC that

is often present from factors such as vertical wind shear,

the TC centers associated with 19.35- and 37.0-GHz im-

agery are based on applying ARCHER to the 37.0-GHz

channel (H pol) while the 85.5-GHz-based centers are

derived from the 85.5-GHz (H pol) channel. The data

from each truncated AMSR-E and SSMIS swath is then

interpolated onto the latitude–longitude grid of the

matching reference TMI case.

The scatter diagrams in Fig. 3 imply matching specific

coinciding satellite overpasses poses some challenges.

Specifically, there is considerable spread. There are a

number of factors that can cause such data spread,

including a sensor’s look angle and center point (e.g.,

Wiebe et al. 2008), as well as changes in precipitation

features in the relatively small amount of time between

satellite overpasses, which include both advection of

precipitation features and changes in their intensities.

These kinds of factors can exacerbate the spread in the

scatterplots in Fig. 3 since precipitation features often

have very sharp horizontal Tb gradients. Overall, as can

be seen in Fig. 3, the median and the majority of the

spread (25th and 75th percentiles) suggest most of the

data fall within a relatively small range. Histogram

matching will reduce the overall bias between sensors

but will not improve the spread caused by the various

aforementioned artifacts.

Once AMSR-E data are interpolated onto TMI grids,

the histogram matching technique can be carried out.

Cumulative distribution functions (CDFs) of Tb are

FIG. 2. GOES-11 IR (10.7mm) Tb (8C) of Hurricane Dean at 1315 UTC 15 Aug 2007.
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computed for the 18.7–19.35-, 36.5–37.0-, and 85.5–

89.0-GHz channels of the matching TMI and AMSR-E

cases and for the 85.5–91.566-GHz channels of the ad-

joined TMI and SSMIS cases. As in JC06, cumulative

probabilities for each polarization and channel from the

sensor to be adjusted (AMSR-E or SSMIS) are paired

with their corresponding reference CDF values from

the equivalent polarization and channel of TMI. Linear

regression is then used on these paired data to adjust the

AMSR-E or SSMISTb results to the corresponding TMI

channels. Here, the adjustment equation is

Tb,adj5T01aTb , (2)

where a and T0 are the linear regression coefficients to

be determined. In some cases, as will be noted below, the

overall quality of the fit can be improved by only de-

veloping and applying the calibration for a limited range

of Tb. The best-fit coefficients in Eq. (2) are shown in

Table 5 for each channel and polarization for both

AMSR-E and SSMIS. Table 5 also provides the lower

threshold for the range of data considered in the histo-

gram matching process (no upper bound was necessary).

The fit for the coefficients of Eq. (2) benefited from

applying a lower bound in the case of the 85.5-GHz

channel (both AMSR-E and SSMIS) and the 37.0-GHz

(H Pol only) AMSR-E channel. It is worth noting that in

the case of 85.5-GHz data, the 85.5-GHz TMI data can

become considerably colder than the matching 89.0-GHz

AMSR-E and 91.655-GHz SSMIS data at the cold end of

the Tb spectrum (Hawkins et al. 2008), but there are rel-

atively few data composing the cold extremes and the

overall quality of the calibration would be hindered by

including these data in the calibration.

The AMSR-E (raw and adjusted) and TMI CDFs for

all channels are plotted in Fig. 4 (top). As in JC06, for

TABLE 3. Atlantic TC cases used in the AMSR-E and TMI histogram matching.

TC Intensity (kt) AMSR-E TC overpass time and date TMI TC overpass time and date

Ivan 115 0445 UTC 6 Sep 2004 0530 UTC 6 Sep 2004

Jeanne 50 0632 UTC 20 Sep 2004 0707 UTC 20 Sep 2004

Jeanne 80 0619 UTC 22 Sep 2004 0655 UTC 22 Sep 2004

Dennis 75 0620 UTC 7 Jul 2005 0542 UTC 7 Jul 2005

Emily 30 1645 UTC 11 Jul 2005 1658 UTC 11 Jul 2005

Ophelia 70 1842 UTC 11 Sep 2005 1826 UTC 11 Sep 2005

Rita 100 0726 UTC 22 Sep 2005 0810 UTC 22 Sep 2005

Bertha 80 1701 UTC 10 Jul 2008 1728 UTC 10 Jul 2008

Bertha 50 1709 UTC 17 Jul 2008 1732 UTC 17 Jul 2008

Bertha 55 1614 UTC 18 Jul 2008 1637 UTC 18 Jul 2008

Ike 115 1820 UTC 7 Sep 2008 1833 UTC 7 Sep 2008

TABLE 4. Atlantic TC cases used in the SSMIS and TMI histogram matching.

TC Intensity (kt) SSMIS TC overpass time and date TMI TC overpass time and date

Bertha 90 2331 UTC 9 Jul 2008 2318 UTC 9 Jul 2008

Gustav 60 0044 UTC 29 Aug 2008 0032 UTC 29 Aug 2008

Ike 125 1200 UTC 4 Sep 2008 1136 UTC 4 Sep 2008

Paloma 85 1042 UTC 9 Nov 2008 1055 UTC 9 Nov 2008

Alex 60 1346 UTC 29 Jun 2010 1350 UTC 29 Jun 2010

Danielle 80 0950 UTC 29 Aug 2010 0948 UTC 29 Aug 2010

Igor 70 2255 UTC 19 Sep 2010 2310 UTC 19 Sep 2010

Otto 50 1004 UTC 7 Oct 2010 0946 UTC 7 Oct 2010

Otto 75 0937 UTC 9 Oct 2010 0935 UTC 9 Oct 2010

Shary 30 2306 UTC 28 Oct 2010 2310 UTC 28 Oct 2010

Bret 35 1114 UTC 21 Jul 2011 1105 UTC 21 Jul 2011

Don 30 1342 UTC 27 Jul 2011 1337 UTC 27 Jul 2011

Emily 45 0112 UTC 4 Aug 2011 0121 UTC 4 Aug 2011

Franklin 30 2329 UTC 12 Aug 2011 2336 UTC 12 Aug 2011

Gert 50 2058 UTC 15 Aug 2011 2050 UTC 15 Aug 2011

Gert 50 2221 UTC 15 Aug 2011 2221 UTC 15 Aug 2011

Katia 60 0913 UTC 2 Sep 2011 0906 UTC 2 Sep 2011

Katia 80 1326 UTC 8 Sep 2011 1316 UTC 8 Sep 2011

Katia 75 1045 UTC 9 Sep 2011 1041 UTC 9 Sep 2011
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each CDF, data are paired along lines of equal cumu-

lative probability. These pairs are then plotted in Fig. 4

(bottom). The linear regression then adjusts theAMSR-E

temperature toward the 1:1 line of the TMI Tb [also

plotted in Fig. 4 (bottom)]. Overall, the AMSR-E cali-

bration improves the agreement between the AMSR-E

and TMI CDFs. The 91.655-GHz SSMIS to 85.5-GHz

TMI calibration follows similarly to those shown in

Fig. 4, but the SSMIS–TMI CDFs are even closer in

value (Fig. 5), so the adjustments (as seen in Table 5) are

relatively minor.

One challenge to contendwith is the loss ofAMSR-E in

2011 and TMI in 2015, and the eventual losses of current

SSM/I and SSMIS instruments. However, these losses are

mitigated by SSMIS replacements (e.g., DMSP F19 and

F20) and the recent arrival of the Advanced Microwave

Scanning Radiometer 2 (AMSR2) on board the Global

Change Observation Mission–Water (GCOM-W1) satel-

lite and the Global Precipitation Measurement (GPM)

Microwave Imager (GMI). Given the 18.7-, 36.5-, and

89.0-GHz frequencies of GMI and AMSR2 and 91.655-

GHz frequency of current and future SSMIS sensors,

future revisions of this algorithm should calibrate the

channels of all satellite data to the GMI–AMSR2 or the

SSMIS frequencies instead of calibrating all data to

the TMI and SSM/I channels, as is done here.

3) PREDICTOR CREATION

After all data are collected and AMSR-E and SSMIS

data are calibrated, a variety of procedures are carried

out to create MI-based structural predictors describing

the state of a TC’s inner core. First, before creating

predictors, a best-track TC location estimate is used to

construct a smaller storm-centered initial microwave

data grid from the complete swath of data from a given

microwave sensor. If the TC center estimate does not

geographically fall within the swath at the time of the

satellite image, then the data are discarded. Second, data

points falling over land (including islands) are set to

missing values since land values of Tb under clear condi-

tions can be similar in magnitude to intense precipitation,

creating ambiguity in the structural features of the TC.

Third, since PCTs for 37.0 and 85.5GHz are often used to

detect strong convection (e.g., Cecil 2011), PCTs are de-

rived for both channels, where the 37.0-GHz PCT 5 2.18

Tb (V pol) 2 1.18 Tb (H pol) and the 85.5-GHz PCT 5
1.818 Tb (V pol)2 0.818 Tb (H pol) (Spencer et al. 1989).

At this stage, ARCHER (Wimmers andVelden 2010) is

used to improve upon the best-track centers. As in the

AMSR-E calibration process, the 37.0-GHz Tb (H pol)

are used for the lower-frequency channels (19.35 and

37.0GHz) to align with the center at lower altitudes

and the 85.5-GHz Tb (H pol) are used for the 85.5-GHz

channels to align with the center at higher levels of the

atmosphere.

Once the best center estimates are determined from

ARCHER, all data are bilinearly interpolated onto 653
65 grids with ;5.6-km grid spacing. Next, for each mi-

crowave channel, two sets of predictors are designed for

consideration in the LR model development. Inspired

FIG. 3. Scatter diagrams of TMI Tb (K) vs AMSR-E Tb (K) for the (a) 18.7–19.35-, (b) 36.5–37.0-, and (c) 85.5–89.0-GHz channels (blue

dots), along with the 25th, 50th, and 75th percentiles of the spread as a function of AMSR-E Tb.

TABLE 5. Lower-end Tb thresholds for the histogram matching

and linear regression coefficients for the Tb adjustments applied to

each sensor, channel, and polarization.

Sensor/frequency/polarization

Tb-adjusted

threshold (K) T0 a

AMSR-E/19.35GHz/H pol 0 27.3962 0.9043

AMSR-E/19.35GHz/V pol 0 17.9857 0.9415

AMSR-E/37.0GHz/H pol 205 21.4223 0.9996

AMSR-E/37.0GHz/V pol 0 210.4180 1.0331

AMSR-E/85.5GHz/H pol 240 10.1912 0.9417

AMSR-E/85.5GHz/V pol 245 39.0850 0.8434

SSMIS/85.5GHz/H pol 100 25.5971 1.0226

SSMIS/85.5GHz/V pol 100 8.8109 0.9681
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by the association of increasing precipitation symmetry

and its emergent ring structure (KJ12) to RI, the first

set of MI-based predictors is defined from an objective

maximum inner-core precipitation annulus (MIPA) de-

tection technique. The idea is, for sufficiently organized

storms, an MIPA will detect the eyewall. However, an

eye and eyewall are often not present, particularly in

weaker storms. In this situation, anMIPA is placed in the

region of most intense precipitation near the inner core

anyway, with the idea that, were the storm to intensify (or

reintensify), this precipitation activity would likely be-

come associated with an eyewall. Specific details on this

objective technique are described below. In addition to a

storm-specific MIPA, a second set of simpler MI-based

predictors uses fixed geometry to define more general

characteristics of the storm inner core.

MIPA-based predictors are obtained from each sat-

ellite image to estimate the structure and characteristics

FIG. 4. (top) CDFs for both H pol and V pol and (bottom) matched pair plots of AMSR-E (raw, red; adjusted, light blue) and TMI

(black) for (a) 18.7–19.35-, (b) 36.5–37.0-, and (c) 85.5–89.0-GHz Tb (K) from the 11 satellite passes summarized in Table 3. In (bottom),

the vertical polarization is offset by 20, 5, and 5K in (a),(b), and (c), respectively, to improve visualization of the different polarizations in

the same plot. In addition, the TMI 1:1 line is included for reference.
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of inner-core organization, particularly the degree to

which a storm has acquired eye and eyewall-like struc-

tures. To objectively define an MIPA, a large variety of

annular regions are considered, with the outer radius

varied from 80 down to 10km, while the inner radius is

allowed to vary from 0% to 75% of the radius of the

outer edge of the annulus. For each channel, the pa-

rameters used to search for the best MIPA per satellite

image have been subjectively determined after looking

at a large number of storm cases over a variety of in-

tensities. For 19.35GHz, an annulus that contains the

greatest proportion of its geometric area having Tb

(V pol). 245K and Tb (H pol). 215K is selected as an

MIPA. If no candidate MIPA contains any points satis-

fying these criteria, the annulus with the maximum radius

and skinniest width [i.e., the inner and outer MIPA radii

are 0.75 (80km)5 60 and 80km, respectively] is assigned

as an MIPA, a subjective decision motivated by the very

rough tendency for weaker storms to more likely have an

incipient eyewall (and likely its radius of maximum wind)

at a greater radius from its center. Obviously, there are

exceptions to this rule, but this choice allowed for an

MIPA to be defined for every TC case in the de-

velopmental dataset. For the 37.0-GHz channel, anMIPA

is selected based on the greatest proportion of area cov-

ered by PCT , 270K or where both Tb (V pol) $ 265K

and PCT$ 270K. These thresholds are chosen according

to the findings of Jiang et al. (2011). Finally, the 85.5-GHz

MIPAs are chosen based on the greatest proportion of a

candidateMIPA containing 85.5-GHz PCT, 250K. This

threshold is similar to the 85.5-GHz Tb 255-K threshold

identified in Spencer et al. (1989) for rainfall rates of

1–3mmh21 and is also consistentwith the 250-K 85.5-GHz

PCT threshold Cecil et al. (2002) and Cecil and Zipser

(2002) found to signify significant precipitation features. In

Cecil et al. (2002), this 250-K PCT threshold was most

commonly exceeded in TC eyewalls and comparatively

much less so in TC rainbands and other general oceanic

tropical precipitation structures. Like in the 19.35-GHz

channel, the 37.0- and 85.5-GHz MIPAs default to an

annuluswith thewidest radius and skinniest width (r5 60–

80km) when no annulus data points satisfy the subjective

criteria defined above. In the case of concentric eyewalls

(Sitkowski et al. 2011), it is worth noting that this meth-

odology typically detects an outer eyewall as an MIPA in

lieu of an inner eyewall as the eyewall replacement cycle

evolves, since the eventual decay of an inner eyewall will

no longer satisfy the objective search criteria listed above

as effectively as the outer eyewall will.

Figure 6 provides several examples of the objectively

determined MIPA for the 19.35-, 37.0-, and 85.5-GHz

channels of TMI at various stages in the development of

Hurricane Rita (2005). Rita offers a wide spectrum of

scenarios to help describe typical behaviors of theMIPA

detection, illustrating both the weaknesses and strengths

of the current algorithm. At 0842 UTC 18 September,

TMI indicates warm-rain and ice scattering features to

the east of the center of the storm. At this point, Rita is

weak and has an intensity of 25 kt. The 19.35-GHz

MIPA latches onto this precipitation region, as the Tb

are sufficiently warm [i.e., Tb (H pol) . 215K and Tb

(V pol) . 245K] in this region to satisfy the MIPA cri-

teria, although the MIPA is extended to its largest pos-

sible radius from storm center (i.e., 80 km) anyway. The

FIG. 5. (top) CDFs for both H pol and V pol and (bottom)

matched pair plot of SSMIS (raw, red; adjusted, light blue) and

TMI (black) for 85.5–91.655-GHz Tb (K) from the 19 satellite

passes in Table 4. In (bottom), the vertical polarization is offset by

5K to improve visualization of the different polarizations. Also,

the TMI 1:1 line is included for reference.
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37.0-GHz Tb are not warm enough anywhere for an

MIPA to be defined, but the largest possible MIPA is

able to extend into a region of sufficiently cold PCT

(PCT, 270K). The 85.5-GHz PCT are not cold enough

for the MIPA criteria to be met anywhere within the

search radius, so the MIPA defaults to the thinnest,

largest-radius annulus, which turns out to be consistent

with the other channels anyway. By 1557 UTC 19 Sep-

tember, when Rita is now intensifying into a strong

tropical storm (with an intensity of 55 kt), an intense, but

FIG. 6. TMI imagery of Hurricane Rita (2005) at various stages of its development (time descending downward), including (from left to

right) 19.35-GHz Tb (H pol), 19.35-GHz Tb (V pol), 37.0-GHz Tb (V pol), 37.0-GHz PCT, and 85.5-GHz PCT. The yellow circles denote

theMIPA objectively determined for each channel. The boldface red contours denote (from left to right) 215-, 245-, 265-, 270-, and 250-K

Tb isolines related to the objectiveMIPA search algorithm. HurricaneRita’s intensity was (from top to bottom) 25 kt at 0842UTC 18 Sep,

55 kt at 1557 UTC 19 Sep, 60 kt at 0828 UTC 20 Sep, 75 kt at 1500 UTC 20 Sep, and 105 kt at 0909 UTC 21 Sep. After the final image,

Hurricane Rita intensified another 45 kt in the following 24 h.
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very asymmetric region of precipitation has moved

closer to the west of Rita’s center. The presence of

intense precipitation closer to the inner core leads to

the MIPA criteria being satisfied for all channels at var-

ious radii. In fact, the analyzed MIPAs attain much

smaller sizes at this time, particularly for the 85.5-GHz

channel. By 0828 UTC 20 September, with an intensity of

60kt, Rita’s inner-core precipitation has become much

more symmetric (although the precipitation now does not

extend as close to the TC center), with MIPA criteria

being easily met for the 19.35- and 37.0-GHz channels,

while the criteria are only marginally satisfied in the 85.5-

GHz channel at a fairly large radius from the center. The

MIPA size increases from the previous time at 19.35 and

85.5GHz. By 1500 UTC 20 September, Rita has now

become a hurricane (75-kt intensity) and all MIPAs are

therefore defined at smaller radii. This trend continues at

0909 UTC 21 September, when Rita has intensified to

105kt. In fact, the 19.35-GHz MIPA shrinks to the

smallest size possible because of intense warm-rain pre-

cipitation being detected all the way at the center. The

MIPA size trend is not perfect (one should expect a more

monotonic decrease of MIPAs in time if they truly rep-

resent the region near the radius of maximum winds and

the nascent eyewall in the case of an intensifying TC).

Figure 6 shows the overall MIPA trend of contraction is

consistent withwhat is expected in an intensifyingTC. This

algorithm behavior is typical of many TC cases examined

in the developmental dataset. However, there are still a

number of cases (figure not shown) where the current

MIPA detection can be less reliable, especially in the case

of highly sheared TCs, where convection pulses off and on,

typically downshear of the TC center, which can cause the

MIPA size to be too oscillatory in time (compared to what

is likely amore stable radius ofmaximumwinds and radius

of maximum boundary layer convergence). Future work

should seek to improve the algorithm to have the MIPA

more faithfully follow nascent and developed eyewalls and

not be as volatile in the case of strong vertical wind shear.

Some ideas for future improvements include using sup-

plemental information such as radius of maximum wind

information or having physically motivated constraints on

trends that decrease some of the sensitivity of theMIPA to

rapid changes in precipitation structure.

Once an MIPA is detected, defining predictors is

straightforward. For each channel and polarization, the

minimum, maximum, mean, and variance of theMIPA Tb

are computed. In addition, similar statistics are defined for

the region interior to the MIPA (which can represent the

degree to which a stormmay have attained an eye). Other

parameters are retained for testing as well, including the

size and width of the MIPA, and the relative difference in

mean Tb between the MIPA and interior region.

The second set of structural MI-based predictors is

based on fixed spatial geometry around a TC center.

Similar to the MIPA-based predictors, the minimum,

maximum, mean, and variance of Tb are calculated for a

variety of radial regions relative to the TC center, in-

cluding the radial regions of r5 0–30, 30–130, 0–100, and

100–300 km. These radial regions are chosen to concur

with the radial regions used to define satellite IR-based

predictors in the SHIPS developmental dataset and os-

tensibly represent the central region that may contain an

eye (r 5 0–30km), the remainder of the inner core (r 5
30–130km), the total inner core (r5 0–100km), and the

outer rainband region (r 5 100–300km). Other pre-

dictors defined for these radial regions include the radial

location of Tb extrema, motivated by the observation

that intensifying storms contain more concentrated

precipitation near the core of the storm.

Once storm-centered MI-based predictors are calcu-

lated for all satellite images in the developmental data-

set, optimal predictors are chosen such that they are

statistically independent from other model predictors in

Table 1 and from otherMI-based predictors. First, in the

case of MIPA-based and fixed-geometry predictors, if

there are any missing data inside the region defining the

predictor (e.g., data outside the MI swath or land), the

developmental data from that time are not considered in

the model development. Then, using leave-one-year-out

cross validation, predictors are selected that maximize

the Brier skill score (BSS; Wilks 2006) defined with

respect to the training data’s baseline climatological

probability of RI. Furthermore, for each MI predictor

chosen for themodels, the differences in their composite

mean values in the RI and non-RI samples must be

statistically significant at the 95% level according to a

two-sided Student’s t test. All model MI predictors and

attendant LR model coefficients are developed using

1998–2012 data and are only considered for TCs that

exist over the ocean. TheMI-enhanced models retain all

of the SHIPS-based predictors shown in Table 1, but

also include a set of optimally determined MI-based

predictors. To properly compare the forecast skill of the

MI-enhanced LR models with the basic LR models

lacking MI, each model is trained and evaluated on only

forecast times in which all of the SHIPS-based and op-

timal MI-based predictors are available. Despite the

uneven temporal coverage of low-Earth-orbiting satel-

lite passes over a storm, the models are developed to

make forecasts at the synoptic times of 0000, 0600, 1200,

and 1800 UTC.1 To deal with the irregular times of TC

1 Synoptic times were chosen for these models to conform to the

standard operational forecast times at the NHC.
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overpasses, theMI-based schemes are only developed for

forecasts when the MI is 6h old or less. Based on the

sample considered here, 6h old or less MI are available

for about 75% of the synoptic times associated with TCs

in the SHIPS developmental dataset. In an operational

setting, data latency may reduce the availability of the

most recent satellite overpasses. For the sake of argu-

ment, if a 2-h data latency is assumed, then MI data 6h

old or less are available about 60% of the synoptic times.

However, data latency is not assumed in the current

model development. It is also important to reiterate that

missing or incomplete data coverage for a geometric area

defining various MI predictors leads to further reduction

of theMI used in this study, so that ultimately 55% of the

synoptic times during the 1998–2012 period of the de-

velopmental dataset are used to develop the LR models.

Table 6 shows the optimal MI-based predictors that

are added to the Atlantic and eastern Pacific MI-based

versions of the LR models. In addition to the predictors

listed in Table 1, the Atlantic MI-based LR models in-

corporate four MI-based predictors. These predictors

include the mean 37.0-GHz Tb (H pol) in the MIPA, the

maximum 85.5-GHz PCT in the region interior to the

MIPA, and the radii of the maximum 37.0-GHz Tb

(V pol) andminimum85.5-GHzTb (H pol) for the r5 30–

130-km region. Unlike the study of Jones et al. (2006),

which showed 19.35-GHz-based MI predictors were

most useful in a statistical predictive model of general

TC intensity change, 19.35-GHz predictors are rejected

in the predictor search procedure for the probabilistic

RI models developed here. When comparing the mean

values of the optimal Atlantic predictors for RI versus

non-RI cases in our developmental dataset, the pre-

dictors show a consistent picture of RI storms containing

more vigorous precipitation in the inner core, with a

tendency for the strongest latent heating activity to be

more concentrated near the center of the storm. The

eastern Pacific MI-based models differ somewhat from

the Atlantic versions. In addition to the predictors in

Table 1, the eastern Pacific LRmodels benefitmost from

including six optimally chosen MI-based predictors, in-

cluding the mean 37.0-GHz Tb (V pol), the minimum

37.0-GHz PCT and maximum 85.5-GHz Tb (H pol) in

the region interior to the MIPA, a predictor describing

the percentage of the MIPA containing 85.5-GHz PCT

below 250K, the radius of the minimum 85.5-GHz PCT

found within r 5 30–130km, and the mean 37.0-GHz

Tb (H pol) within r5 100–300km. Although the eastern

Pacific models use slightly different predictors than the

Atlantic models,2 the mean values of the predictors

for the RI and non-RI cases are physically consistent

between basins, in that the inner cores of storms un-

dergoing RI contain greater precipitation coverage and

intensity. Also like the Atlantic, the most intense pre-

cipitation also occurs closer to storm center in eastern

Pacific RI cases.

3. Model evaluation

a. Model skill based on developmental data

When compared against the climatological probabil-

ity of RI, each model considered in this study possesses

positive forecast skill in the prediction of RI. Here, skill

is evaluated through the BSS with a baseline of clima-

tology, computed from leave-one-year-out cross vali-

dation on the developmental data. The BSS values for

each model are provided in Fig. 7. Overall, and consis-

tent with other studies (KDK10; RK11), all LR models

in the eastern Pacific (Fig. 7b) achieve greater forecast

skill compared to the Atlantic models (Fig. 7a). For the

TABLE 6. The MI-based predictors used for the LR RI models in

the Atlantic (ATL) and eastern Pacific (EPAC).

Model Definition

Mean value of RI

cases vs non-RI

cases

ATL Mean 37.0-GHz Tb (H pol) within

the MIPA

Higher

ATL Max 85.5-GHz PCT in region

interior to the MIPA

Lower

ATL Radius ofmax 37.0-GHzTb (V pol)

found within r 5 30–130 km

Smaller

ATL Radius of min 85.5-GHz Tb (H

pol) found within r5 30–130 km

Smaller

EPAC Mean 37.0-GHz Tb (V pol) within

the MIPA

Higher

EPAC Min 37.0-GHz PCT in region interior

to the MIPA

Lower

EPAC Max 85.5-GHz Tb (H pol) in region

interior to the MIPA

Lower

EPAC Percent of MIPA containing

85.5-GHz PCT , 250K

Higher

EPAC Radius of min 85.5-GHz PCT

found within r 5 30–130 km

Smaller

EPAC Mean 37.0-GHz Tb (H pol) within

r 5 100–300 km

Higher

2 Note, the objective search for optimal predictors chooses the

meanMIPA 37.0-GHz Tb for both the Atlantic and eastern Pacific,

but the H pol Tb for the Atlantic and V pol Tb for the eastern

Pacific. It turns out one could interchange either polarization in

either ocean basin with only a 0.2% cost to the BSS, which is rather

insignificant. Similar minor differences in skill are evident when

exchanging the polarizations of two other predictors that are sim-

ilar between basins, including the max 85.5-GHz Tb in the region

interior to the MIPA and the radius of min 85.5-GHz Tb found

within r 5 30–130 km.
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most part, the skill of the LR models decreases in both

the Atlantic and eastern Pacific as the RI threshold is set

to higher values. This is expected for an empirically

derived probabilistic model since a higher RI threshold

makes RI an even rarer event. The exception to this rule

is the 35kt (24 h)21 RI threshold in the eastern Pacific

(Fig. 7b), in which the BSS is higher than in the 30 kt

(24 h)21 RI threshold.

Most importantly, Fig. 7 shows the impact MI-based

predictors have on the performance of the LR models.

Inclusion of MI-based predictors yields more skillful LR-

based RI models in their respective RI threshold bins. On

average, the MI-based predictors improve the BSS of the

RI models by 3.5% in the Atlantic, with a range of 2.6%–

4.5%, depending on RI threshold and initial TC intensity

ranges considered. The relative improvements from in-

cluding MI-based predictors in the Atlantic range from

13.3% to 44.9%. In the eastern Pacific, the average BSS

improvement is 6.5% over their non-MI counterparts,

with a range of 3.2%–7.9%. This yields relative improve-

ments in the range from 10.6% to 33.2%.

b. Simulated real-time performance

The model skill provided in Fig. 7 is based on rean-

alysis data from the developmental data and the best-

track data. The environmental predictors listed inTable 1

(i.e., RSST, ENSS, D200, SHDC, and POT) are averaged

over the 24-h period following the forecast time. In the

real-time environment, however, these environmental

predictors must be created from NWP model forecast

fields after the initial time, which will produce additional

forecast error associated with the NWP model. More-

over, storm data such as the storm center location and

estimated intensity may not agree with the more accurate

best-track data that are produced after the hurricane

season. Therefore, to obtain a more robust evaluation of

the MI-based models in a simulated real-time environ-

ment, all models are rerun for the period 2004–13 using

archived forecast fields from the Global Operational

System (GFS) NWPmodel and also storm data that were

available in real time during Atlantic and eastern Pacific

TC events. To accomplish this, each LR-based RI model

was rederived for each of the years during the period of

2004–12 by excluding data from a given year when eval-

uating the model’s ‘‘real time’’ performance over that

year. This ensures that the reforecast results are in-

dependent from the training data in the developmental

dataset. As before, to ensure a fair comparison of model

performance, evaluation of eachmodel is only carried out

at forecast times in which both non-MI and MI-based

predictors are available.

1) CASE STUDIES

Before examining the overall performance of the

simulated real-time models developed for the Atlantic

and eastern Pacific, a couple of case studies are now

FIG. 7. BSS values for the LRmodel at 25, 30, and 35 kt (24 h)21 RI thresholds withoutMI-based predictors (light blue and gray for TCs

of at least 25- and 45-kt intensity, respectively) and withMI-based predictors (dark blue and red for TCs of at least 25- and 45-kt intensity,

respectively) for the (a)Atlantic and (b) eastern Pacific. These results are for the technique of leave-one-year-out cross validation over the

years 1998–2012. In the Atlantic, the sample sizes for the 25- and 45-kt storm intensity thresholds are 1993 and 1484, respectively. In the

eastern Pacific, the sample sizes for these two storm intensity thresholds are 1554 and 1074. The number of RI cases for each RI and

intensity threshold is shown along the x axis below each bar.
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presented to show how MI-based predictors impact LR

models. The first example shows how MI can increase

the probabilities of detecting RI prior to actual RI

events, while the second example shows how MI may

reduce the false alarm rate of RI forecasts.

Using the 25kt (24h)21 RI threshold, the performance

of the LR model for Atlantic Hurricane Dennis (2005) is

now presented. Dennis had two RI events. A lengthy

period of RI transpired between 0600 UTC 6 July and

1200UTC 8 July as the TC intensified to a Saffir–Simpson

category 4 hurricane and traveled northwestward over the

Caribbean toward its landfall in Cuba. After returning to

sea en route to the United States’ Gulf of Mexico coast

between 0600 UTC 9 July and 1200 UTC 10 July, Dennis

once again rapidly intensified into a category 4 hurricane.

Prior to the first RI period, MI showed signs of a well-

organized TC. For example, Fig. 8a shows the AMSR-E

37.0-GHzTb (Hpol) ofDennis at 1724UTC5 July.Warm

Tb associated with more intense precipitation and ice

scattering is organized into an asymmetric ring structure

around the TC-estimated center. The objective MIPA is

consistent with the visual presentation of the Tb.

Forecasts are made for only some of the synoptic

times during Dennis’s lifetime when there are suffi-

ciently recent satellite overpasses that produce quality-

controlled MI. Both versions of the LR model produce

elevated probabilities of RI during the first period of RI.

No forecasts are made for the second period of RI be-

cause of the lack of MI. Each model version incorrectly

produces heightened probabilities just prior to and im-

mediately following the times associated with RI in the

subsequent 24 h. The MI version of the LR model pro-

duces even higher probabilities of RI during this time

period, reflecting the impressive storm organization in

the AMSR-E imagery. This situation points out a rela-

tive weakness of the MI-based model that has been

observed in a number of other cases (not shown). Namely,

it is not uncommon for the MI-based model to incorrectly

enhance RI probabilities (i.e., add to the false alarm rate)

too early before RI begins, exactly as seen in Fig. 8b. Also,

when a storm intensifies at a robust rate, but not quite at a

rate qualifying as RI, the MI-based model can suffer from

the same overly aggressive RI forecasts. Figure 8b also

shows that at later times, while the model did not make

forecasts during the second RI period, the two versions of

the LR model produce relatively similar results, with the

MI LRmodel producing slightly lower RI probabilities on

9 and 10 July. In these cases, forecast probabilities are

correctly low since RI does not occur.

The eastern Pacific’s Hurricane Raymond (2013) is

another storm with two periods of RI. This example

provides a case where the MI can actually reduce RI

probabilities when a TC’s environment seems quite fa-

vorable to RI. On 25 October 2013, Raymond was in a

compromised state after previously experiencing en-

hanced vertical wind shear and likely suffering from cool

ocean upwelling resulting from the slow movement of

the storm immediately following its peak intensity on

22 October. The SSMIS 85.5-GHz PCT at 1307 UTC

25 October (Fig. 9a) showed a highly asymmetric ice

scattering signature with respect to the estimated storm

center. The storm center can be inferred in Fig. 9a by the

FIG. 8. (a) AMSR-E Tb (K) for 37.0GHz (H pol) of Atlantic TCDennis at 1724 UTC 5 Jul 2005, along with the objectively determined

MIPA. (b) The time evolution of TC Dennis’s (2005) observed best-track intensity (kt; solid black line) and the probability (%) of 25 kt

(24 h)21 or greater intensification rates as predicted by the LR model without (purple) and with (green) MI-based predictors. The gray-

shaded regions demarcate forecast times when RI was observed over the subsequent 24 h. Forecast probabilities are only plotted at the

synoptic times of 0000, 0600, 1200, and 1800 UTC when microwave data are available within the previous 6 h (i.e., if a green/purple dot is

missing at a synoptic time, then no forecast is made).
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objective MIPA fit to the 85.5-GHz imagery for Ray-

mond at this time. Most of the deep convection appears

in the southeast quadrant of the storm. In Fig. 9b, RI

probabilities are erroneously high on 25 October in the

baseline LR model. The environment was quite favor-

able for RI on 25 October, featuring an enhanced

maximum potential intensity and low vertical wind

shear. This is why the baseline LR model suggests RI

during the period. However, theMI-based version of the

LR model correctly reduces the probabilities of RI sig-

nificantly on 25 October. Taking into consideration the

poor presentation of the MI helps improve the forecast

in this instance. Otherwise, at forecast times in which

MI was available, both models performed in a similar

manner for the remainder of Raymond’s lifetime. MI

data were unfortunately not available for the first period

of RI. However, both versions of the eastern Pacific LR

model correctly forecast low probabilities of RI between

1800 UTC 21 October and 0600 UTC 24 October. The

second period of RI coincides with a time of plentiful

MI coverage for Raymond. Both models produce low to

moderate probabilities of RI, with the MI-based version

performing only slightly better.

2) GENERAL MODEL PERFORMANCE

Figure 10 shows the overall performance of the simu-

lated real-time models (2004–13) according to the BSS

defined relative to climatology. In both the Atlantic

(Fig. 10a) and eastern Pacific (Fig. 10b), all models suffer a

degradation in forecast skill at all RI thresholds when

compared to the BSS associated with leave-one-year-out

cross validation on the developmental data (Fig. 7). This is

not unexpected, and is likely due, in part, to the added er-

rors introduced from using operational GFS forecast data

and archived real-time initial storm estimates rather than

the reanalysis data. Nonetheless, all models are still skillful

relative to a baseline of climatology and, once again, the

eastern Pacific produces more skillful models in most cases.

The simulated real-time skill evaluation shows that

MI-based predictors continue to benefit the LR models.

In fact, given the errors intrinsic to using real-time data, it

is illuminating that the MI-based predictors provide even

greater relative benefits to the models at all RI thresholds

in the Atlantic when compared against the relative BSS

improvements in Fig. 7. The mean improvement offered

by MI-based predictors in BSS for the Atlantic models is

now 5.7% instead of the 3.5% seen in the leave-one-year-

out cross validation using ‘‘perfect forecast’’ data. In terms

of relative improvement to a baseline skill defined by the

simulated real-time, non-MI version of theLRmodels, skill

improves by 53.5%–103.0% in the Atlantic, depending on

RI thresholds and intensity ranges considered. On the

other hand, the relative improvements in the eastern Pa-

cific are quite a bit more modest, with a mean increase in

BSSby only 1.6%,with relative skill increases ranging from

4.9% to 25.5% relative to the non-MI-based LR models.

Another way to assess the RI models’ performance is

through deterministic verification. Following KDK10

(and their Fig. 17), probability thresholds are derived to

determine whether a forecast indicates RI or not. First, a

climatological probability of false detection (POFD) is

computed for each RI threshold and intensity threshold

FIG. 9. (a) SSMIS PCT (K) for 85.5GHz (H pol) of eastern Pacific Hurricane Raymond at 1307 UTC 25 Oct 2013, along with the

objectively determinedMIPA. (b) The time evolution of Hurricane Raymond’s (2013) observed best-track intensity (kt; solid black line)

and the probability (%) of 25 kt (24 h)21 or greater intensification rates as predicted by the LR model without (purple) and with (green)

MI-based predictors. The gray-shaded regions demarcate forecast times when RI was observed over the subsequent 24 h. Forecast

probabilities are only plotted at the synoptic times of 0000, 0600, 1200, and 1800 UTC when microwave data are available within the

previous 6 h (i.e., if a green/purple dot is missing at a synoptic time, then no forecast is made).
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in the Atlantic and eastern Pacific. These climatological

POFDs are obtained from 2004 to 2012. From there, a

model POFD for each RI threshold is computed for

each RI and intensity threshold over the entire 2004–13

period. Themodel POFD is specifically computed as the

number of false alarms when the RI-model-predicted

probabilities exceeds the climatological POFDs divided

by the total number of forecasts made. These model

POFDs then serve as the probability thresholds of

whether RI occurs or not according to the forecasted

probability. Figure 11 shows the probability of detection

(POD), false alarm ratio (FAR), and Pierce skill score

(PSS; Wilks 2006). The POD provides the percentage

of RI cases that are correctly predicted by the LR and

the FAR is the percentage of times that RI does not

occur when the LR model predicts RI. The PSS is a

bulk skill score that measures how the POD compares

to the model’s POFD, where a score of 1 is a perfect

forecast, a positive score between 0 and 1 is skillful, and a

negative score suggests a model with worse than random

forecasts. Similar to the BSS plots, the MW-based models

improve the POD, FAR, and PSS in almost all cases, with

the exception of FAR for some of the RI models in the

eastern Pacific, where the FAR is fairly comparable

for MI- and non-MI-based models. Nonetheless, eastern

Pacific PSS values show uniform improvements for

all MI-based models thanks to higher POD rates at all

thresholds/intensities. Similar to KDK10, the LR-based

models (with and without MI-based predictors) suffer

from high FARs.

To better interpret forecast model probabilities, re-

liability diagrams (Wilks 2006) are now presented. Re-

liability diagrams show how well the forecast probabilities

of an RI event correspond to the observed frequency of

those same events. Figure 12 shows reliability diagrams

and accompanying sharpness diagrams for all of the

Atlantic-based real-timemodels developed for each of the

RI thresholds. In the reliability diagrams (Figs. 12a,c,e),

the 458 diagonal line represents perfect reliability for all

forecast probabilities and the horizontal and vertical

dashed lines show the climatological probability of RI

computed from the 2008–12 developmental dataset. The

shaded regions show where forecasted probabilities con-

tribute to positive Brier skill scores [see Wilks (2006) for

the relationship between reliability diagrams and Brier

skill score]. By and large, MI-enhanced models improve

reliability for most predicted probabilities, but there are

some probabilities in which MI degrades the model [e.g.,

the forecasted probabilities in the 0.4–0.5 probability range

at the RI threshold of 35kt (24h)21]. Consistent with

Fig. 11, there is a tendency for each model to overpredict

RI, as many of the curves dip below the 458 diagonal line.
The sharpness diagrams (Figs. 12b,d,f) show thatMI-based

predictors allow the models to achieve higher-end

FIG. 10. BSS values for the simulated real-time LRmodel at 25, 30, and 35 kt (24 h)21 RI thresholds without MI-based predictors (light

blue and gray for TCs of at least 25- and 45-kt intensity, respectively) and with MI-based predictors (dark blue and red for TCs of at least

25- and 45-kt intensity, respectively) for the (a) Atlantic and (b) eastern Pacific. These results are for the 2004–13 reforecasts. In the

Atlantic, the sample sizes for the 25- and 45-kt storm intensity thresholds are 1417 and 1024, respectively. In the eastern Pacific, the sample

sizes for these two storm intensity thresholds are 1231 and 818. The numbers of RI cases for each RI and intensity threshold are shown

along the x axis below each bar.
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FIG. 11. (top) POD, (middle) FAR, and (bottom) PSS for the (a) Atlantic and (b) eastern Pacific simulated real-

time deterministic RI forecasts. Results are provided at the RI thresholds of 25, 30, and 35 kt (24 h)21. The numbers

of samples are the same as in Fig. 10.
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probability RI forecasts, which contributes to an overall

improvement in model skill.

When comparing the reliability and sharpness attri-

butes of the Atlantic-based real-time models (Fig. 12)

with the eastern Pacific models (Fig. 13), the story is

consistent with the BSS comparison shown in Fig. 10b.

Overall, the eastern Pacific models show greater re-

liability than do the Atlantic models, particularly

because eastern Pacific models possess greater sharp-

ness, meaning the models are able to forecast higher

FIG. 12. Reliability diagrams for the simulated real-time LR models without (light blue and gray for TCs of at

least 25- and 45-kt intensity, respectively) and with (dark blue and red for TCs of at least 25- and 45-kt intensity,

respectively) MI-based predictors for RI thresholds of (a) 25, (c) 30, and (e) 35 kt (24 h)21, and corresponding

figures showing the numbers of forecasted probabilities falling between 0 and 0.1, 0.1 and 0.2, . . . , and 0.9 and 1.0 for
the RI thresholds of (b) 25, (d) 30, and (f) 35 kt (24 h)21. The horizontal and vertical dashed lines in (a),(c), and

(e) represent the climatological rates of RI for the respective RI thresholds.
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probabilities of RI (Figs. 13b,d,f). Congruent with the

BSS values, the relative improvement achieved in re-

liability from adding MI to the models is not as notable

in the eastern Pacific as in the Atlantic basin.

4. Conclusions

This study shows the inclusion of tropical cyclone

(TC) structure information as depicted by passive

microwave imagery (MI) in probabilistic models of

rapid intensification (RI) is advantageous. In particular,

MI from a variety of spectral channels can provide de-

tailed information about the organization of precipitation

and convection in a TC that is often not available in other

conventional observational datasets. Considering the

likely relevance of a TC’s precipitation and related latent

heating structure to RI, this paper revisits a probabilistic

logistic regression (LR)model forRI developed inRK11,

FIG. 13. As in Fig. 12, but for the eastern Pacific.
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which is based on predictors derived from both obser-

vational/model analysis and geostationary satellite IR

imagery. This baseline LR model is adapted to include

predictors derived from passive MI.

In this study, LRmodels incorporatingMI are developed

in the Atlantic and eastern Pacific Ocean basins. These

updated models also include the original environmental

and IR-satellite predictors from the RK11 LR models.

Leave-one-year-out cross validation on the developmental

retrospective dataset shows the MI-based models produce

improved skill over the models not including MI. In the

Atlantic, the Brier skill score (BSS) improves, on average,

by 3.5% after addingMI-based predictors, yielding relative

improvements in forecast skill from 13.3% to 44.9%, de-

pending on the RI threshold and initial TC intensity ranges

considered. In the eastern Pacific, the improvement in BSS

is, on average, 6.5%, with relative improvements over the

non-MI-based models ranging from 10.6% to 33.2%.

Within the context of the baseline skill of the models pre-

sented inKDK10 andRK11, these improvements are quite

notable and are therefore likely to impart a measureable

impact on operational forecasting.

To gain a more reliable estimate of model perfor-

mance in an operational environment, simulated real-

time testing is conducted for both the Atlantic and

eastern Pacific models using archived real-time forecast

data from 2004 to 2013. In this case, environmental

predictors are no longer based on ‘‘perfect’’ model

analyses for the 24-h forecast periods, but on forecasted

values of the environmental predictors. Therefore, one

can expect the skill of the LRmodels to decrease. This is

indeed the case. However, in the simulated real-time

environment, the MI can be even more valuable since

the model degradation is due solely to imperfect fore-

cast values of environmental predictors. This is partic-

ularly true in the Atlantic Ocean, where the inclusion of

MI causes skill to improve relative to a baseline skill by

anywhere from 53.5% to 103.0% depending on the RI

thresholds and intensity ranges considered. The relative

improvements in the eastern Pacific are quite a bit more

modest, with relative skill increases from 4.9% to 25.5%.

Part of the reason for this is that the baseline LR pos-

sesses higher skill in the eastern Pacific than the Atlan-

tic, even in the simulated real-time setting. As such, the

MI-based predictors offer relatively fewer improve-

ments. It is possible that the eastern Pacific ceiling of

predictability is closer to being reached by the baseline,

non-MI-based models than in the Atlantic. This may

explain why the Atlantic benefits more from the in-

clusion of additional storm structure information. These

skill-ceiling differences between basins, which have

been indicated in previous studies as well (e.g., KDK10;

RK11), have yet to be thoroughly explained.

The results of this study suggest that the operational

implementation of the objective, automated MI-based

empirical RI models would be a worthwhile venture.

While low-Earth-orbiting satellites do not always capture a

TC in a timely manner, MI-based predictors less than 6h

old were available for roughly half of the synoptic time

forecasts considered in this study. To maintain the opera-

tional use of thesemodels, periodic updates will be needed

to incorporate new satellite data as old satellites expire and

new ones replace them. However, the temporal coverage

could become a severe issue if these limited-term satellites

are not fully replaced in the future. Assuming the con-

tinuing availability of passive microwave satellites, up-

dates of these potentially operational models should be

straightforward. These updates will simply require up-

dating data feeds and, if necessary, sensor calibration. The

histogram matching technique is simple enough that the

calibration update should be relatively automatic.

Given the very simple nature of the structural predictors

used in this study, further improvements to the MI-based

probabilistic schemes are likely. The predictors used here

are based on simple geometry and basic statistical prop-

erties of the Tb in these geometrically defined regions.

More sophisticated predictors describing key asymmetries

in hydrometeor features or physically relevant thresholds

of structures relevant toRI could be developed to improve

the ability of predictors to signal whether RI processes are

taking place. Another approach that may prove profitable

is to better discern predictor behavior in various stages of

TC development. For example, using the TRMM PR,

Zagrodnik and Jiang (2014) showed that storms just be-

ginningRI have less latent heating coverage and symmetry

than rapidly intensifying storms that have beenundergoing

RI in the previous 12h or more. The temporal trends in

precipitation structures relevant to RI in TCs are some-

what overlooked by the simple binary classifier approach

used here and therefore the current design of the model is

likely washing out some temporal signals that could be

beneficial to the probabilistic prediction of RI.

While improving predictors and accounting for tem-

poral trends are certainly avenues of future research that

will likely benefit probabilistic RI prediction, future work

should also include other types of satellite data as well.

For example, future innovations may consider looking

at additional passive MI channels, such as the ASMR2

23.8-GHz channel that is well suited for depicting in-

tegrated water vapor, or using derived products such

as precipitation rates. Additional types of microwave

satellite sensors may also provide unique information

that can be incorporated into future adaptations of

probabilistic RI models, such as the Advanced Micro-

wave Sounding Unit (AMSU) or Advanced Technology

Microwave Sounder (ATMS) instruments.
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As another direction of future research, other statis-

tical models such as the Bayesian model described in

RK11 and the SHIPS RII model of KDK10 could be

enhanced with MI-based predictors. Enhancing addi-

tional models will help produce an even more skillful

consensus probabilistic RI forecast, which has proven to

be more reliable than any individual probabilistic model

in the RK11 study. Finally, forecasting RI in other ocean

basins will likely benefit from probabilistic MI-based

models as well.
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