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ABSTRACT 

 This study develops a fully automated lightning jump system encompassing objective storm tracking, 

Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA)—which are important 

elements in the transition of the LJA concept from a research to an operational-based algorithm. Storm 

cluster tracking is based on a product created from the combination of a radar parameter (vertically 

integrated liquid) and lightning information (flash rate density). Evaluations show that the spatial scale of 

tracked features or storm clusters has a large impact on the lightning jump system performance, where 

increasing spatial scale results in a decreased dynamic range of the system’s performance. This framework 

also serves as a means to refine the LJA itself to enhance its operational applicability. Parameters within the 

system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The 

system’s performance is evaluated using the probability of detection and false alarm ratio statistics. Of the 

algorithm parameters tested, the sigma-level (i.e., a metric of lightning jump strength) and flash rate 

threshold influence the system’s performance the most. Finally, minor changes in verification methods can 

dramatically impact the evaluation of the lightning jump system. 

 
 

1. Introduction 

 Previous research has shown that rapid increases 

in lightning activity (i.e., lightning jumps) are highly 

correlated with the occurrence of severe weather 

(Williams et al. 1999; Schultz et al. 2009, hereafter 

S09; Gatlin and Goodman 2010)—using lightning data 

from available three-dimensional lightning networks 

throughout the United States. Furthermore, recent 

studies (S09; Gatlin and Goodman 2010; Schultz et al. 

2011, hereafter S11) have quantified the lightning 

 

 

jump based on statistical performance metrics, in-

cluding probability of detection (POD) and false alarm 

ratio (FAR). S09 and S11 presented strong perform-

ance results (i.e., 79% POD, 36% FAR) using total 

lightning from lightning mapping arrays (LMAs) to 

aid in the prediction of severe and hazardous weather 

using an objective lightning jump algorithm (LJA) 

with semi-automated tracking on a large number of 

storms. S09 developed and tested four different LJA 

http://dx.doi.org/10.15191/nwajom.2016.0407
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configurations and determined that the 2σ algorithm 

(sigma-level of 2; see section 2c of S11) had the best 

skill in nowcasting severe weather potential. 

 S09, S11, and others lack full automation and 

semi-objective tracking techniques that are needed for 

operational usage of the LJA. In addition, these 

previous studies have not taken advantage of adding 

satellite-based products to that of commonly used 

radar-based products. Rudlosky and Fuelberg (2013) 

used objective tracking techniques, but also lacked full 

automation. Chronis et al. (2015) also used objective 

and automatic tracking techniques (using real-time 

datasets) to understand how performance metrics 

change for the lightning jump. However, all of these 

studies arrived at their conclusions from LMA datasets 

and did not account for, or anticipate, what the 

Geostationary Lightning Mapper (GLM) will observe 

once in orbit on the Geostationary Operational 

Environmental Satellite (GOES)-R (Goodman et al. 

2013). Proch (2010) is the only previous study to use 

the LMA-derived GLM proxy data. Proch (2010) used 

storms from the S09 database to evaluate the LJA with 

GLM proxy data. Proch’s (2010) results showed that a 

lower sigma-level and lower flash rate threshold might 

be needed to optimize the algorithm for severe weather 

detection with GLM proxy data. 

 In light of the above, the goal of this study is to 

develop a fully automated framework—encompassing 

objective tracking, GLM proxy lightning data, and the 

LJA—to build toward operational assessment of storm 

intensity in real-time. This framework also will serve 

as a means to refine the LJA itself to enhance its 

operational applicability. This paper will describe the 

methods involved with establishing this fully 

automated system and discuss how adjustments to 

parameters within various parts of the system affect 

the overall performance. In section 2, we describe the 

components of the lightning jump system and illustrate 

the automated, objective tracking method—including 

how this differs from past research that solely relied on 

radar information for tracking. The components of the 

LJA are described, including the parameters involved 

in sensitivity testing. Finally, verification methods are 

addressed as an additional way of assessing the 

system’s performance. Section 3 examines the 

sensitivity tests performed and the influence that 

individual and combined parameters had on the LJA 

system. Section 4 summarizes the key influences on 

the system’s performance and looks forward to future 

research and considerations. 

 

2. Data and methods 

 The lightning jump system consists of three 

components: radar and lightning data, thunderstorm 

tracking, and the LJA. Each component plays a vital 

role in the automation of the LJA towards operational 

use. The database for this study includes >90 event 

days consisting of up to 1000
1
 storm clusters between 

the years 2002 and 2011, and within 125 km of the 

North Alabama Lightning Mapping Array (NALMA) 

network center (Fig. 1; Table 1). This dataset is a 

significant subset of the event days included in S11. 

Storm clusters are included in the database if they have 

a minimum lifetime of >30 min while the cluster is 

within 125 km of the center of NALMA. Only the 

portion of the cluster track that is within the domain is 

included in the dataset. Unlike previous studies that 

subjectively selected storms on each event day to in-

clude in the database, this study includes all identified 

storms that meet the tracking criteria as identified by 

the tracking method discussed in section 2b. 

 

 

Figure 1. A diagram of the study’s domain and instrumentation 

locations. The large rectangle (green dashed lines) indicates the 

domain used in the WDSS-II storm tracking algorithms. The red 

circle indicates the area within 125 km of the center of the 

NALMA; this is the area used for lightning jump system sensitivity 

testing and verification. The blue triangles represent NALMA 

sensors and the black boxes represented NEXRAD radar locations. 

Click image for an external version; this applies to all figures 

hereafter. 

 

 

                                                 
1
 The number of storm clusters is dependent upon the tracked 

feature size. 

 

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_1.png
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Table 1. Comparison of the tunable parameters in the LJA, verifi-

cation, and database used in S11 and this study. 

Tunable Parameter S11 This study 

Sigma-level threshold 

(i.e., statistical jump 

threshold) 

2.0 

0.75, 1.0, 1.25, 

1.5, 1.75, 2.0, 

2.25, 2.5 

Minimum flash rate 

(flashes min–1) required 

to activate the algorithm 

10 1, 5, 10, 15, 20 

Minimum algorithm spin-

up time required to 

determine a jump 

14 min 14 min 

Storm report distance 

beyond the cell boundary 

0 km (i.e., only the 

area within the cell) 
5 km 

Verification time-

window following a jump 
45 min 45 min 

Domain range from 

NALMA center 

200 km (most were 

within 150 km) 
125 km 

Spatial scale based on 

WDSS-II tracking 

parameters 

60 km2 See Table 2 

 

a. Radar and lightning data 

1) RADAR 

 For each event day, Next-Generation Radar (NEX-

RAD) level II radar data for the five radars (KHTX, 

KGWX, KOHX, KFFC, KBMX; see Fig. 1) closest to 

the NALMA center are merged and gridded (0.009° × 

0.009° × 1-km grid boxes, Fig. 2b) using the Warning 

Decision Support System–Integrated Information 

(WDSS-II, Lakshmanan et al. 2006, 2007). Whereas 

previous studies used reflectivity-based thresholds for 

thunderstorm tracking (35 dBZ at –15°C, S09), this 

study uses vertically integrated liquid (VIL) in 

combination with lightning data. VIL is calculated 

from the merged and gridded radar data following the 

same method for single radar quality control and 

multi-radar blending as the national Multi-Radar 

Multi-Sensor system at the National Centers for 

Environmental Prediction, and provided to the 

National Weather Service (NWS) in real-time (Smith 

et al. 2016). 

 

2) LIGHTNING DATA: GLM PROXY DATA 

 Previous implementations of the LJA involved 

ground-based datasets that used three-dimensional 

LMA data and have not included observations from a 

satellite-based sensor. The challenge is that an optical 

lightning detection instrument does not currently exist 

at geostationary orbit. Furthermore, optical instru-

ments like the GLM observe a different component of 

lightning than the LMA [optical radiances at cloud top 

versus very high frequency (VHF) observations]. This 

study uses GLM proxy data generated from NALMA 

data (Bateman 2013). The GLM proxy data convert 

NALMA flashes into a “best guess” of what GLM will 

see when in orbit. The GLM proxy dataset accom-

plishes this by using flash statistics collected from the 

space-borne Lightning Imager Sensor (LIS) onboard 

the Tropical Rainfall Measuring Mission (TRMM; 

Kummerow et al. 1998) and the NALMA (Bateman et 

al. 2008). Like the GLM, the LIS records optical 

events that are grouped into flashes (Mach et al. 2007), 

whereas the LMA detects VHF electromagnetic 

radiation sources that are combined into flashes using 

a separate clustering algorithm (McCaul et al. 2009). 

An example of a visual comparison for a flash between 

the LIS and LMA is shown in Fig. 3. Essentially, the 

GLM proxy flashes are transformed to match the 

lower spatial resolution of the GLM (compared with 

NALMA). This causes some “smearing out” and some 

merging of NALMA flashes, but the overall flash rate 

is basically unchanged. The GLM proxy data 

algorithm creates “proxy pixels” and the flash-

clustering software converts these into “proxy 

flashes.” Using this intercomparison method, the GLM 

proxy flashes are composed of merged LMA 15% of 

the time. In other words, there are roughly 15% fewer 

GLM proxy flashes than LMA flashes. Each GLM 

proxy flash location is determined by the amplitude-

weighted centroid of the groups/events. GLM proxy 

flashes are gridded to a 0.08° × 0.08° grid that 

approximates GLM resolution; and 1- and 5-min flash 

count total grids (FLCT1 and FLCT5) are calculated 

each minute to produce flash rate density (FRD) 

products. 

 

3) VILFRD 

 This study extends beyond traditional utilization of 

radar parameters to track storm features, and combines 

lightning data with VIL to compute a new, trackable 

quantity. VIL and the 5-min average GLM proxy FRD 

(FLCT5; Fig. 2a) products are combined to track storm 

clusters within the WDSS-II framework. These 

products are combined as seen in the equation below 

to produce a new product, aptly named, VILFRD (Fig. 

2c) 

 

𝑉𝐼𝐿𝐹𝑅𝐷 = 100 × [(
𝑉𝐼𝐿

45
≤ 1) + (√

𝐹𝐿𝐶𝑇5

45
≤ 1)]
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Figure 2. a) 5-min GLM proxy gridded flash density, b) merged composite reflectivity, c) 

VILFRD, and d) tracked storm clusters at scale 5 at 1945 UTC 10 April 2009. e) Top panel: 

lightning flash rate time series for cell 32 with the timing of lightning jumps depicted by green (hit) 

and red (false alarm) vertical lines; the light gray flash rate (i.e., 1730–1815 and 2120–2230) 

depicts the time the cluster is outside of the 125-km LMA range. Bottom panel: cluster footprint 

with storm reports (green = hit, red = miss) for the LJA from 1730 to 2230. Triangles are hail 

reports, squares are wind reports, and diamonds are tornado reports. 
 

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_2.png
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Figure 3. A comparison of the spatial differences of an example 

flash between an optical observation from the TRMM-LIS (blue/ 

gray pixels) and the VHF radiation from the North Alabama LMA 

(gray source points) on 5 June 2006. Each LIS flash location is 

determined by the amplitude-weighted centroid of the groups/ 

events. The LMA flash consists of clustered radiation sources re-

corded at 80-µs intervals along the path of the flash. 

 

The VILFRD formula is subjectively determined in 

order to have a trackable product that relies more on 

radar-based information when flash rates are low, and 

then transitions to more weight applied towards 

lightning information when flash rates are high. These 

two components inside the brackets each are limited to 

a maximum value of one resulting in maximum 

VILFRD values of 200. The maximum limits are set to 

treat anything larger than moderate VIL values (~45 

kg m
–2

) the same because this indicates a strong 

thunderstorm. In addition, flash rates ≥45 min
–1

 also 

are indicative of a strong thunderstorm. Even though 

an in-depth comparison between the two tracking 

methods (i.e., radar only versus radar and lightning 

combined) has not been completed with this dataset, 

initial observations place added value to the addition 

of lightning information compared to radar tracking 

alone as it increased the consistency of tracking a 

storm’s core and updraft region. This agrees with 

results from Meyer et al. (2013) who used radar and 

lightning data to track storms. Lightning and lightning 

jumps are physically related to the storm’s updraft 

(e.g., Schultz et al. 2015), and thus the combination of 

radar and lightning information provides the tracking 

system a product that is weighted towards the most 

intense part of the storm cluster. 

 

b. Thunderstorm tracking 

 To compute lightning time histories for jump 

identification, it is necessary to utilize an automated, 

objective tracking scheme to assign lightning flashes 

to individual storms. VILFRD is tracked using k-

means clustering in w2segmotionll in WDSS-II 

(Lakshmanan et al. 2009). WDSS-II w2segmotionll is 

used to track features where VILFRD values are ≥20, 

at increments of 20. Any pixel with a value >100 is 

assigned 100. Clusters are built outward from a local 

maximum until a minimum size or spatial scale 

threshold is met (Table 2), with a maximum overlap 

approach (combining cells within 5 km of the cell 

boundary) for associating cells from one time step to 

the next. Cells are not included that are not tracked at 

each time step. The WDSS-II tracking included 8 

scales (scales 0–7). However, only scales 1–6 are 

included as scale 0 and scale 7 are unusable because 

the extremely small and large area parameters, 

respectively, failed to produce output for the vast 

majority of cases. The scales are tracked at 40, 80, 

120, 160, 200, and 300 pixels. The exact area scale 

thresholds in Table 2 account for the fact that a pixel is 

<1 km
2
. Figure 4 depicts two example clusters used to 

help describe this tracking method. VILFRD values 

are denoted by different colors. If VILFRD values 

≥100 (red in Fig. 4) meet the required minimum area 

of a spatial scale threshold, a cluster is identified and 

the algorithm moves on to other clusters during that 

time step. If not, the algorithm reduces the VILFRD 

threshold to the value of 80 and searches for clusters 

that meet the minimum area of the spatial scale 

threshold. The VILFRD threshold continues to reduce 

in increments of 20 until it reaches a floor VILFRD 

value of 20. If the VILFRD feature footprint at the 

level of 20 does not reach the minimum area of a 

spatial scale threshold, no cluster is identified at that 

time and location. For example, a feature at scale 5— 

minimum required area is 162 km
2
 (Table 2)—would 

be represented as the area included in D (VILFRD 

≥40) in Cluster 1 and as area included in B (VILFRD 

≥40) for Cluster 2. 

 The result of this iterative identification technique 

is that tracked clusters will differ in area and lifetime 

at each spatial scale. Each individual cluster is given a 

unique cluster identification number during its 

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_3.png
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Table 2. Spatial scale levels with minimum area required to track storm clusters using WDSS-II, and average storm track duration, length, 

and cluster size. 

Spatial Scale ~Area (km2) Track Duration (h) Track Length (km) Cluster Size (km2) 

1 32 1.003 42.57 122.77 

2 65 1.032 44.80 175.57 

3 97 1.028 44.89 224.91 

4 130 1.046 46.55 270.32 

5 162 1.039 47.15 318.23 

6 243 1.042 48.55 443.37 

 

 
Figure 4. Schematic of two example storm clusters used to de-

scribe the VILFRD cluster identification and tracking process at 

multiple scales. Scale 1: left – cluster A (40 km2), right – cluster 

A1 (35 km2) and cluster A2 (38 km2). Scale 3: left – cluster B (100 

km2). Scale 4: left – cluster C (150 km2). Scale 5: left – cluster D 

(200 km2), right – cluster B (200 km2). Scale 6: left – cluster E 

(300 km2), right – cluster C (300 km2). 

 

lifetime. Individual clusters at a select time are shown 

as an example in Fig. 2d. Outside of WDSS-II, 

“broken tracks” are objectively merged if a WDSS-II 

cell begins at t + 1 within 15 km of where a previous 

track ended at time t. Time histories are tied together 

for merged cells. 

 

c. Lightning jump algorithm 

 The LJA as defined by S09 laid the foundation for 

this study. In their studies, S09 and S11 objectively 

identified lightning jumps using the 2σ algorithm. 

Figure 5 illustrates the flow chart for the following 

five steps describing the LJA process for the 2σ 

threshold. 

 

1) The total lightning flash rate (as calculated from the 

1-min GLM proxy FRD) from the time period, t, is 

binned into 2-min time periods and averaged. 

 
Figure 5. Flowchart for the lightning jump classification process 

using the 2σ algorithm from S09. 

 

2) The time rate of change of the total flash rate 

(DFRDT) is calculated by subtracting consecutive 

bins from each other (i.e., bin2–bin1, bin3–bin2, …,  

bint–bint–1). This results in DFRDT values with the 

units of flashes min
–2

. 

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_4.png
http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_5.png
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3) The standard deviation of the five previous DFRDT 

values is calculated. Twice this standard deviation 

determines the level for the current DFRDT to ex-

ceed to be classified a jump in the 2σ algorithm. 

4) Taking the ratio of the current DFRDT value to the 

standard deviation of the previous five time periods 

(step 3) is further referred to as the sigma-level. 

Thus, a previously defined 2σ jump would have a 

sigma-level of 2. This presentation allows the end 

user to have the ability to understand how a current 

increase in the total flash rate compares to other 

recent increases in the storm’s total flash rate. For 

instance, a sigma-level of 8 would indicate a more 

rapid increase in the flash rate than a sigma-level 

increase of 2. This extra information directly corre-

sponds to the kinematic and microphysical growth 

of the storm leading up to the time of the lightning 

jump and can aid in the forecaster’s warning 

decision making process (Schultz et al. 2015). 

5) In addition to reaching the required sigma-level to 

determine a jump, the following also must be met 

for the original approach to the algorithm: the 

minimum spin-up time of 14 min is reached (six 

time periods to achieve five DFRDT values plus the 

current time period), the current flash rate exceeds 

the flash rate threshold of 10 flashes min
–1

, and the 

classification of an individual jump ends once the 

sigma-level drops below zero. 

6) This process is repeated every 2 min as new total 

lightning flash rates are collected (until the storm 

dissipates). If a jump is currently in progress, the 

jump is continued until the sigma-level drops below 

zero. In the event multiple jumps occur within 6 

min of each other, only the first jump remains for 

verification to follow the original S09 verification 

method (Table 3). 

 
Table 3. A comparison of verification methods between the 

method used in S09/S11 and a method aligning with the NWS. 

Verification 

Methods 

Verification 

(S09/S11) 

Verification 

(NWS) 

Storm report 

grouping 
Yes (6 min) No 

One storm report 

verifies two 

overlapping forecasts 

No (only first forecast, 1 
hit) 

Yes (1 hit) 

Jump grouping Yes (6 min) Yes (6 min) 

False alarm 

No report during forecast 
OR for overlapping 

forecasts; no report in time 

period following first 
forecast expiration 

No report during 
forecast 

d. Parameter sensitivity testing 

 Seven parameters (Table 1) within the lightning 

jump system have been identified as having potential 

impact on the performance of the LJA. A range of 

values for sigma-level threshold, flash rate threshold, 

spin-up time, severe storm report distance, verification 

window, domain range, and spatial scale is used to 

determine for which parameters the algorithm is the 

most sensitive to, and what those values are. With the 

initial development of the LJA, S09 tested a 2σ and 3σ 

configuration of the LJA and determined that the 2σ 

version produced more optimal skill scores when the 

10 flashes min
–1 

threshold is implemented. Based on 

the S09 findings, the 2σ configuration was tested 

further in S11. This study expands upon the LJA 

configuration results from S09 and S11—and further 

exploration by Chronis et al. (2015)—through addi-

tional sensitivity testing of the sigma-level threshold 

by varying the sigma-level from 0.75 to 2.5 in 0.25 

increments (Table 1). Furthermore, a range of flash 

rate thresholds (1, 5, 10, 15, and 20) is tested in order 

to determine the algorithm sensitivity (Table 1). The 

minimum time required for the spin-up of the algo-

rithm is 14 min (12 min to calculate the sigma-level, 2 

additional minutes to determine if a lightning jump has 

occurred; section 2c).  

 Tunable parameters that are investigated within 

the verification framework are severe storm report 

distance and verification window. Severe storm reports 

were obtained from the National Centers for Environ-

mental Information’s (NCEI, formerly the National 

Climatic Data Center) Storm Data and used as ground 

truth for validation. Storm Data has known temporal 

and spatial errors in reporting of events and known 

underreporting in data-sparse regions (e.g., Witt et al. 

1998; Williams et al. 1999; Trapp et al. 2006; Chronis 

et al. 2015), so effort is taken to mitigate small timing 

and spatial errors that may exist in the database. This 

mitigation includes an additional buffer space around 

the footprint of a tracked storm cluster at each time 

step to assign reports to specific clusters. Storm report 

distance is defined as the maximum distance from the 

storm cluster’s footprint edge that a storm report can 

be associated with that storm. This distance is set to 5 

km (Table 1). The verification window starts at the 

occurrence of a jump and lasts for 45 min (Table 1). 

Reports that occur within this verification window are 

used to verify the jump. For the results shown within, 

these parameters remained constant as initial sensi-
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tivity testing showed less impact to the overall system 

performance than for the other parameters. 

 Finally, two parameters are used to ensure quality 

and define the database. The domain range is limited 

to the areal coverage of the LMA network (Fig. 1). 

The closer the lightning activity is to the network, the 

higher the detection efficiency (Koshak et al. 2004). 

Therefore, extending the domain can decrease the 

detectable flashes and flash rates that can have an 

effect on the classification of jumps. A default distance 

is chosen as 125 km to remain proximate to the LMA 

network, which is used to statistically generate the 

GLM proxy data. Only portions of the storm life cycle 

(inclusion of entire storm’s footprint determined by the 

storm’s centroid location) occurring for ≥30 min 

within 125 km of the center of the LMA network are 

included in this study. The variance in spatial scale 

introduced in this study is a result of the options 

available in w2segmotionll in WDSS-II to track fea-

tures at different areal extents. Six different spatial 

scales (Table 2) are chosen ranging in sizes from that 

of small thunderstorms (scale 1 at 32 km
2
) to that of 

larger storm clusters (scale 6 at 243 km
2
). These values 

serve as the benchmark storm size for the sensitivity 

testing of the LJA. 

 

e. Verification 

 The verification method initially applied in this 

study closely reflects the method outlined in S09. In 

order to evaluate the lightning jump system, severe 

storm reports are used as ground truth validation. As 

mentioned in section 2d, there are caveats with using 

NCEI Storm Data. In an attempt to mitigate these 

effects, a temporal clustering of reports (same type) in 

6-min bins is implemented. This binning begins at the 

time of the first report. Any report grouped into this 

bin counts as a single event and the time of the first 

report within the group is used for any calculations. 

 The window for jump verification is the time 

window (default length of 45 min; Table 1) starting at 

the time of the jump. However, in the method outlined 

by S09, only one jump can be evaluated at a given 

time. As mentioned in section 2d, jumps are grouped 

together if they occur within 6 min of each other (three 

consecutive time periods). This leaves open the 

potential for additional jumps to occur within the 

verification window (after the 6-min grouping) of a 

previous jump. In these cases, initial or “first” jumps 

and subsequent or “second” jumps are denoted as 

shown in Fig. 6. Each jump has a verification window 

 
Figure 6. A schematic of respective verification windows for two 

lightning jumps (red and orange boxes). Following the verification 

method found in S09, only one jump can be verified at a given 

time with the given example storm reports (vertical green rectan-

gles). Therefore, jump 2 is not able to validate until after jump 1’s 

verification period has ended. The black rectangles indicate the 

valid time period for each jump. 

 

equal to that of the verification window parameter, 

which is 45 min for this study. The first jump is 

verified and a “hit” (defined as the number of storm 

report groups within the verification window) if a 

storm report occurs during the verification window as 

denoted by the green vertical bar at approximately 10 

min in Fig. 6. A second jump’s verification window, 

however, is limited to the time period remaining 

following the expiration of the first jump’s verification 

window. For example, if the second jump started 30 

min after the first, its verification window would begin 

15 min later (considering a 45-min verification 

window) leaving a 30-min verification window for the 

second jump. This can be visualized in Fig. 6. Despite 

what reports exist within the 15-min overlap of the two 

jumps (between 30 and 45 min, or for example, a 

report at approximately 40 min), the second jump is 

classified as a false alarm if no reports are present for 

the remaining 30 min (between 45 and 75 min). This 

method is applied for any additional jumps. 

 In order to evaluate the algorithm, the skill scores 

of POD and FAR (Wilks 2011, pp. 310–311) are 

calculated. In this process, a hit is defined as the 

grouped severe storm reports that occur during a 

verification window of a jump within the set bounds 

around a storm cluster (based on the radius from the 

edge of the cluster’s footprint). A miss is defined as a 

severe storm report group that occurs outside of a 

verification window. A false alarm is defined as a 

jump that is not followed by any severe storm reports 

within the associated verification window as well as 

the qualification involving subsequent jumps as 

described in the previous paragraph. 

 The verification method from S09/S11 is not 

equivalent to that of the method employed by the 

NWS storm warning verification (NWS 2011). The 

main difference that exists between these two is the 

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_6.png
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grouping of severe storm reports and the false alarm 

classification for subsequent jumps. A side by side 

comparison of these two methods can be seen in Table 

3. Unlike S09, the NWS validates each warning 

separately even if they overlap. However, reports in 

the overlapping region only count as a single hit and 

not a hit for each warning. In an effort to more closely 

compare our results to the techniques used by the 

NWS, we included what we will call an alternative (in 

reference to the S09 verification method). The discus-

sion of our results will use both of these verification 

methods to evaluate the LJA algorithm and analyze 

sensitivity within the tunable parameters listed in 

Table 1. 

 

3. Results 

 Numerous iterations of tunable parameter combi-

nations (Table 1) were (i) processed through the light-

ning jump system, (ii) analyzed, and (iii) evaluated 

using the skill score metrics of POD and FAR. The 

sensitivity analysis revealed the level of influence that 

individual parameters and parameter combinations 

have on the system performance. In addition, the 

verification methods notably affected the evaluation of 

the lightning jump system. The key results shown are 

the influence of spatial scale used in storm cluster 

tracking, the effect of sigma-level and the flash rate 

threshold on the LJA, and the impact the verification 

method has on these results. 

 

a. Spatial scale 

 One component of the tracking method is 

choosing a representative storm scale size. However, 

storm size and appropriate scale size can vary greatly 

depending on storm mode. Scales ranging in areal size 

from scale 1 at 32 km
2
 to scale 6 at 243 km

2
 (Table 2) 

were tested. Figure 7 shows cluster footprints for all 

six scales discussed in this study at a given time (same 

date/time as Fig. 2). This figure depicts the similarities 

and differences inherent to the different tracking 

scales. Most notably different is cluster A on the left-

hand side of the figures, which varies drastically in 

size from scale 1 to scale 6. Cluster B remains the 

same size throughout the different scales. This 

consistent size is most likely due to a strong, active 

lightning core within this thunderstorm as can be noted 

by the influence of the lightning contribution to 

VILFRD as seen in Figs. 2a, b, and c. 

 Figure 8 shows a color-coded comparison between 

the six different spatial scales that are used by WDSS-

II to track storm clusters. Each symbol represents one 

iteration of the algorithm for all event days for a given 

set of parameters. Larger spatial scales show increased 

POD values due mainly to the large areal extent of the 

storm clusters’ footprints. Quantitative evidence of this 

is shown in Tables 4 and 5. These larger areal extents 

allow for the inclusion of more lightning flashes and, 

thus, higher flash rates. More than 37% of time steps 

in the scale 6 database have flash rates >20 min
–1

. At 

the lower spatial scales the flash rates often do not 

reach the minimum flash rate threshold (default of 10 

flashes min
–1

). This is true for 87% of time steps for 

the entire scale 1 database. In contrast, only 22% of 

time steps at scale 6 have total flash rates below 10 

flashes min
–1

. In scale 1, 4.5% of the database reaches 

a sigma-level of 2 but are not calculated as jumps 

because the flash rate is <10 flashes min
–1

. Not 

meeting the minimum flash rate threshold prevents the 

LJA from activating and leads to any event occurring 

within the areal bounds set for that storm to be 

considered a miss. This causes both an increase in the 

number of misses and a decrease in the relative 

amount of hits as compared to larger scales and, thus, 

leads to lower POD values in the smaller scales. POD 

values increase from a range of 0.19 to 0.88 at scale 1 

to 0.44 to 0.97 at scale 6 (due to a variance of other 

parameters). The range of FAR values between scales 

shows less spread than for POD. The range of values 

decreases with increasing spatial scales, from a range 

of 0.50 to 0.91 at scale 1 to 0.63 to 0.86 at scale 6. 

 During early investigation of the interplay between 

spatial scale and storm tracking, it was found that 

smaller scales are more ideal for isolated, small-scale 

thunderstorms as they are easier for the tracking 

algorithm to separate. Larger scales are more ideal for 

more complex and larger storms such as supercells. 

The larger scales are less likely to split apart a cluster 

that would naturally be considered as one entity, 

although it may consist of multiple updrafts. In order 

to evaluate flash rate threshold and sigma-level, an 

optimal scale needs to be selected. Scale 5 (minimum 

areal size of 162 km
2
) was selected based on the 

balance of a high number of verified jumps per cluster 

(0.30, Table 5) with fewer missed events per cluster 

(0.26, Table 5). Scale 5 also balances the penalty of 

increasing FAR as it increases less than the POD 

increases with larger scales. While all scales 1 through 

6 are explored in this research, scale 5 is fixed for 

analysis and comparisons shown herein. 
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Figure 7. Cluster footprint comparisons for scale 1 (upper left) to scale 6 (lower right) at 1945 UTC 10 April 2009, the 

same time shown as in Fig. 2. Storm A is blue and the same as cluster 88 in Fig. 2d. Storm B is in orange and the same 

as cluster 32 in Fig. 2d. The storm report plotted with the red square represents a missed wind report.  

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_7.png
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Figure 8. FAR versus POD comparison of the 6 spatial scales 

(areal extent). Colors represent the spatial scale at which storms 

are tracked and symbols represent flash rate thresholds for the S09 

verification method. Each symbol represents one iteration of the 

algorithm for all event days for a set of given parameters. 

 

b. Algorithm parameters: Flash rate threshold and 

sigma-level 

 Compared to all the tunable parameters listed in 

Table 1, the combined effects of the flash rate 

threshold and sigma-level show the most promise in 

improving the LJA performance as evaluated by POD 

and FAR. The POD and FAR values for the sigma-

level and flash rate thresholds for the S09 and 

alternative verification methods are shown in Figs. 9 

and 10, respectively. The S09 verification method 

(Fig. 9) shows that decreasing the sigma-level values 

(cooler colors) and lowering the flash rate threshold 

(symbols) results in the POD increasing slightly more 

than the increasing FAR. The POD and FAR are 

strongly coupled with a coefficient of determination of 

0.95. In order to help break down the individual effects 

of sigma-level and flash rate towards POD and FAR, a 

linear regression model is applied at each constant 

sigma-level or flash rate. The trends of the slope of the 

linear regression models show that as the sigma-level 

decreases, the effect of flash rate become more 

pronounced (slope or rate of change of 0.88 at 2.5 

sigma-level and 0.57 at 0.75 sigma-level). These 

slopes help reveal a smaller increase in FAR values 

with increasing POD values. 

 The overall effect of sigma-level and flash rate 

threshold on the algorithm with the alternative 

verification (Fig. 10) shows a decoupled POD–FAR 

relationship (R
2
 = 0.20). This is noted by little change 

 

Figure 9. FAR versus POD comparisons using the S09 verification 

method showing the relationship of sigma-level (color) and flash 

rate threshold (symbols) on the algorithm’s performance at spatial 

scale 5. Flash rate thresholds of 1 (diamond) and 5 (asterisk) flash-

es min–1 are very similar at each sigma-level and may be difficult 

to discern. A linear regression analysis (y = 0.52x + 0.40) for these 

data resulted in a strong correlation between POD and FAR (R2 = 

0.95). A linear regression analysis while holding each sigma-level 

constant resulted in R2 = 0.99 with slopes ranging from 0.57 (at the 

0.75 sigma-level) to 0.88 (at the 2.5 sigma-level). 

 
 

 

Figure 10. Same as Fig. 9 except for the alternative verification 

method. A linear regression analysis (y = 0.16x + 0.48) for these 

data resulted in almost no correlation between POD and FAR (R2 = 

0.20). A linear regression analysis while holding each sigma-level 

constant resulted in R2 values >0.9 (R2 = 0.93 to 0.99) and slopes 

ranging from 0.99 (at the 0.75 sigma-level) to 0.59 (at the 2.5 

sigma-level).

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_8.png
http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_9.png
http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_10.png
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Table 4. Total scale attributes using the S09/S11 and alternative verification methods. 

Scale Clusters Jumps False Alarms Hits Misses 
Alt. False 

Alarm 
Alt. Hits 

1 1377 505 378 200 330 344 276 

2 1121 724 567 233 311 519 323 

3 978 949 760 274 259 705 279 

4 842 1044 858 285 219 801 387 

5 737 992 769 295 194 725 430 

6 583 851 665 291 169 608 410 

 
Table 5. Normalized scale attributes by number of clusters using the S09/S11 and alternative verification methods. 

Scale Jumps Hits False Alarms Misses Verified Jumps 
Alt. False 

Alarms 
Alt. Hits 

1 0.37 0.15 0.27 0.24 0.09 0.25 0.20 

2 0.65 0.21 0.51 0.28 0.14 0.46 0.29 

3 0.97 0.28 0.78 0.26 0.19 0.72 0.29 

4 1.24 0.34 1.02 0.26 0.22 0.95 0.46 

5 1.35 0.40 1.04 0.26 0.30 0.98 0.58 

6 1.46 0.50 1.14 0.29 0.32 1.04 0.70 

 

in the FAR and an increase in the POD with decreas-

ing sigma-level values. In addition, decreasing the 

flash rate threshold leads to an increase in FAR and 

POD, with FAR increasing at a slightly lower rate of 

change than the POD. The addition of more storms 

meeting the low flash rate requirements allows for 

jumps to be calculated (whereas the algorithm would 

not be initialized at higher flash rates) and more storm 

reports to be counted as potential hits. A linear regres-

sion analysis, while holding the sigma-level constant, 

reveals linear regression fits (or slopes) of 0.99 (at 

0.75 sigma-level) to 0.59 (at 2.5 sigma-level). This 

quantifies the coupled effect that flash rate threshold 

has on the POD–FAR relationship at low sigma-level 

values and the decoupling of this relationship with 

increasing values of the sigma-level. Thus, the sigma-

level contributes to the overall decoupled POD–FAR 

relationship with the alternative verification. 

 

c. Verification methods 

 Two similar yet different verification methods are 

explored for this study. Figure 11 shows the spread of 

the verification method established in S09 (black) and 

the alternative verification method (red) for all spatial 

scales. As mentioned, the S09 verification shows how 

closely coupled the relationship is between POD and 

FAR. The alternative method of verification shows 

improved performance of the LJA system on the order 

 

Figure 11. A complete dataset distribution, from all ranges of 

sensitivity testing, showing FAR versus POD comparisons of the 

differences between the S09 verification (black) and alternative 

verification (red) methods. 

 

of reducing the FAR by 20% while maintaining a high 

POD. This is most likely due to the reduced amount of 

subsequent jumps classified as false alarms in S09’s 

method (Table 4). 

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_11.png
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 Figure 12 shows a comparison of the two methods 

for an individual cluster track. The difference comes in 

the classification of a jump that occurs during the 

verification window of a previous jump. The 

difference between the two methods is evident in the 

fourth jump, or jump D. Under the method in S09, 

jump D is a false alarm because the severe events that 

follow jump D also are in the verification window of 

jump C. If an event is reported after the verification 

window of the previous jump, then jump D would be a 

hit or verified jump in the S09 method. Jump D is a 

hit, or verified jump, in the alternative verification 

because that method removes the restriction of only 

allowing one jump to be verified at a given time. 

While false alarms and hits will be different between 

the two methods owing to the reasons discussed above, 

the number of misses remains constant as no jumps are 

created or removed that could increase or reduce the 

number of misses. 

 

4. Discussion and summary 

 Storm tracking is a challenging aspect of research 

at the storm scale. Previous tracking methods have 

involved radar reflectivity thresholds, radar reflectivity 

at specific temperature thresholds, satellite features, 

etc. This study has taken a new, unique approach and 

combined VIL and gridded lightning flash rate density 

to develop a trackable product. This product, VILFRD, 

helps track the portions of the storm where relevant ice 

production and lightning activity are occurring in order 

to focus on the intense portions of the storm. Most 

importantly, this method of utilizing lightning infor-

mation—in addition to radar-derived parameters—l 

lays groundwork for future methods of tracking storms 

by lightning in the absence of radar information (e.g., 

over oceans, in terrain where radars encounter 

blockage). This type of tracking is potentially game 

changing from the perspective of GOES-R. With 

GOES-R, the community will have the ability for 

hemispheric tracking of storm systems with the added 

lightning capabilities of the GLM, providing additional 

information on the intensity of storms not only over 

land, but also in data-sparse regions. 

 One of the key points of this study is the testing of 

various spatial scales in storm tracking. Table 2 

documents these various scales. As is noted, results 

differed based on spatial scale. A large part of this 

result is the inability for the lightning flash count 

within the smaller spatial scales to reach a minimum 

threshold. For some of the clusters in the smaller 

scales, the tracked feature is a more intense core 

within what is tracked as a larger multicell cluster at 

larger spatial scales. This is an advantage when trying 

to separate features to trackable sizes, but a disadvan-

tage when verification techniques are applied and 

smaller clusters perform poorly because of only 

covering a limited spatial area. There has been initial 

research and testing into combining different scales 

(Herzog et al. 2014). 

 Both sigma-level and flash rate play an important 

role in the lightning jump system’s ability to predict 

severe storms, especially based on the results shown 

for the S09/S11 method. Recent work by Chronis et al. 

(2015) and Schultz et al. (2015) demonstrate both 

empirically and physically how these two parameters 

work in concert with each other and provide valuable 

information into the intensification of storms. The 

lightning jump provides lead time on the higher flash 

rates that are to come, and higher flash rates are 

physically and dynamically tied to the development 

and manifestation of severe weather at the surface. 

There are notable differences in skill scores between 

this study (~60% POD and ~73% FAR) and S11 (79% 

POD and 35% FAR), despite using the same event 

days from the Tennessee Valley. The most obvious 

difference between the two studies is in the number of 

clusters/storms. The automated tracking employed in 

this study identified more storm clusters in the same 

event database at each spatial scale (Table 1) than the 

555 storms identified in S11. Another key difference is 

the lightning data input. In general, the GLM proxy 

data have fewer flashes identified than the full LMA 

dataset used in S11. When the alternative method is 

applied, the sigma-level influences the performance of 

the algorithm to a larger extent than the flash rate 

threshold. Decreasing the sigma-level will increase the 

number of jumps and will increase the likelihood of 

event detection (increase in POD). In the alternative 

method, the algorithm is not penalized the same as the 

S11 method for repetitive or subsequent jumps that 

overlap with previous jump forecasts. Therefore, this 

increase in jumps does not increase FAR. In actuality, 

the FAR decreases with decreasing sigma-level be-

cause the added number of jumps associated with a 

lower sigma-level threshold are not penalized for 

overlapping. 

 For both verification methods, the increase of the 

flash rate threshold reduces the number of jumps. In 

turn, this decreases the FAR (jumps are not identified 

until they reach a higher flash rate) and POD because 

many severe events are counted as missed events 
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Figure 12. Similar to Fig. 2e except for a comparison of verification methods for a single example case. The top half of the figure shows 

the S09 verification method and the bottom half shows the alternative verification method applied. The key difference is the classification 

of the fourth jump (jump D) as a false alarm in the top image and a hit in the bottom image. 

 

http://www.nwas.org/jom/articles/2016/2016-JOM7-figs/Fig_12.png
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owing to no jump or forecast being issued. The change 

in FAR and POD is most notable at smaller spatial 

scales. Flash rate threshold changes, independent of 

sigma-level, weakly influence the skill score metrics 

more using the S11 verification method. 

 Finally, it is important to determine how this LJA 

system can be applied to real-time operations utilizing 

hemispheric lightning coverage with GOES-R GLM as 

the launch of GOES-R approaches. The LJA is shown 

to add value in the operational forecasting paradigm 

from a satellite, hemispheric perspective (e.g., Darden 

et al. 2010). Allowing forecasters the ability to 

evaluate the LJA through tracked clusters, color-coded 

by sigma-level, as seen in the Hazardous Weather 

Testbed (HWT; Calhoun et al. 2014), also allows for 

individual assessment of the variations of sigma-level 

presented in this and other studies. Tracking methods 

also greatly can impact the usability of any algorithm 

(including the LJA), as is shown by this study. The 

best results are achieved when there is a balance 

between small and large feature tracking methods. 

Scale 5 (162 km
2
 or about 13 km × 13 km cluster size) 

exhibited this balance and is just smaller than that used 

by the HWT tracking used for real-time lightning jump 

evaluation. 

 This work summarizes a technique that combines 

radar and lightning information to track thunderstorms 

to assess storm intensity for operational weather 

applications. Validation using Storm Data shows that 

key components of the algorithm (flash rate and 

sigma-level thresholds) have the greatest influence on 

the performance of the algorithm. The analysis of the 

lightning jump system using GLM proxy data has 

shown POD values around 60% with FAR around 

73% using a similar method to S11 that had a POD of 

79% and a FAR of 36%. However, when applying 

verification methods similar to those employed by the 

NWS, POD values increase slightly (69%, range of 

35–95%) and FAR values decrease (63%, range of 48–

66%). These results show that the POD and FAR are 

highly correlated (R
2
 = 0.95) in the S11 verification 

but not in the alternative verification (R
2
 = 0.20). This 

evaluation also highlights the sensitivity of the 

algorithm’s evaluation based on verification methods 

involving storm reports. 
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