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ABSTRACT

The National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environ-

mental Satellite series R (GOES-R) will greatly expand the ability to observe the earth from geostationary

orbit compared to the current-generation GOES, with more than 3 times as many spectral bands and a 75%

reduction in footprint size. These enhanced capabilities are beneficial to rainfall rate estimation since they

provide sensitivity to cloud-top properties such as phase and particle size that cannot be achieved using the

limited channel selection of current GOES. The GOES-R rainfall rate algorithm, which is an infrared-based

algorithm calibrated in real time against passive microwave rain rates, has been previously described in an

algorithm theoretical basis document (ATBD); this paper describes modifications since the release of the

ATBD, including a correction for evaporation of precipitation in dry regions and improved calibration up-

dates. These improvements have been evaluated using a simplified version applicable to current-generation

GOES to take advantage of the high-resolution ground validation data routinely available over the conter-

minous United States. Correcting for subcloud evaporation using relative humidity from a numerical model

reduced false alarm rainfall by half and reduced the overall error by 35% for hourly accumulations validated

against the National Centers for Environmental Prediction stage IV radar–gauge field; however, the number

of missed events did increase slightly. Reducing the size of the calibration regions and increasing the training

data requirements improved the consistency of the retrieved rates in time and space and reduced the overall

error by an additional 4%.

1. Introduction

Rapid assessment of and response to flood and flash

flood events is essential in order to reduce their

threats to life and property. A central element to

predicting these events is timely and high-resolution

precipitation observations, which serve as the basis of

both situational awareness and prediction. However,

many parts of the world lack the observational in-

frastructure (e.g., telemetered gauges and weather

radars) to obtain situational information in time to

adequately warn the public. Even in parts of the

United States, the lack of adequate radar coverage

[particularly the western United States and outside

the conterminous United States (CONUS)] hampers

forecaster efforts to predict flash flooding (Zhang

et al. 2013). Rainfall estimates from satellites can

complement other sources of data with their low la-

tency and complete spatial and temporal coverage.

Operational estimation of rainfall using satellite data

at the National Oceanic and Atmospheric Administra-

tion (NOAA) began in the 1970swith the largelymanual

Interactive Flash Flood Analyzer (Scofield 1987), which

was automated into the Autoestimator in the 1990s

(Vicente et al. 1998, 2002) and then improved upon with

the Hydroestimator (HE; Scofield and Kuligowski
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2003). These estimates are available to National

Weather Service (NWS) field offices via the Advanced

Weather Interactive Processing System (AWIPS) and

are processed within a fewminutes of the satellite image

being received on the ground. They have been proven

highly valuable to NWS forecasters, such as those at the

West Gulf River Forecast Center (WGRFC), who have

been using them to supplement their rainfall estimates

over northernMexico for predicting the floods along the

Rio Grande (G. Story, WGRFC, 2001, personal com-

munication). In addition, the HE is produced for the

entire globe equatorward of 658 latitude and is used in

such efforts as the Global Flash Flood Guidance

(GFFG) system developed by the Hydrologic Research

Center (Georgakakos et al. 2013).

Of course, rainfall rate estimates based on passive

microwave (PMW) data are also critically important,

particularly since PMW radiances are sensitive to bulk

cloudwater or ice that ismore strongly related to surface

precipitation rates than infrared (IR) cloud-top bright-

ness temperatures. These estimates are a core compo-

nent of satellite and multisensor products that are used

for climate analysis and other applications that can use

data with longer latencies, such as the Climate Pre-

diction Center (CPC) morphing technique (CMORPH;

Joyce et al. 2004) and the National Aeronautics and

Space Administration (NASA) Tropical Rainfall Mea-

suring Mission (TRMM) Multisatellite Precipitation

Analysis (TMPA; Huffman et al. 2007) and its re-

placement for the Global Precipitation Measurement

(GPM) mission, the Integrated Multisatellite Retrievals

for GPM (IMERG; Huffman et al. 2015). However, for

analyzing rapidly evolving high-impact precipitation

events in an operational forecasting environment, pre-

cipitation information needs to be available with very

little delay and updated frequently (e.g., Zhang et al.

2013), and this has made it challenging to directly use

PMW information in an operational environment.

Consequently, despite the challenges of using IR data

for estimating rainfall, it remains an important source of

information for real-time forecasting applications.

As a legacy algorithm based on concepts from the

1970s [before water vapor imagery was available from

the Geostationary Operational Environmental Satellite

(GOES)] and required at night and not just during the

day (precluding the use of visible data), the HE uses

information from only the IR window channel at ap-

proximately 11mm. The upcoming launch of GOES se-

ries R (GOES-R) will greatly increase the spectral

capability of imaging from geostationary orbit over the

Western Hemisphere, making 16 spectral bands in the

visible and IR available on the Advanced Baseline Im-

ager (ABI) compared to just five on the current GOES

Imager, and also reducing the footprint in the IR from 4

to 2 km (Schmit et al. 2005).

To prepare for these capabilities, the GOES-R Al-

gorithm Working Group (AWG) was tasked with

selecting and demonstrating algorithms that would build

upon legacy operational capabilities and expand them to

the new imaging capabilities of the GOES-R ABI. The

AWG evaluated several candidates that could poten-

tially meet the strict latency requirements of the rainfall

rate algorithm, including the CPC quick morphing

technique (QMORPH), which is a version of CMORPH

(Joyce et al. 2004) that relies only on advecting PMW

rainfall rate images; Precipitation Estimation from Re-

motely Sensed Information Using Artificial Neural

Networks (PERSIANN; Hsu et al. 1997); and the Naval

Research Laboratory (NRL) algorithm (Turk et al.

2003). Using the Spinning Enhanced Visible and In-

frared Imager (SEVIRI) on boardMeteosat-8 as a proxy

for the GOES-RABI inputs, the AWG evaluated these

algorithms and decided to use a new version of the

Self-Calibrating Multivariate Precipitation Retrieval

(SCaMPR) algorithm (Kuligowski 2002; Kuligowski

et al. 2013). As will be described in more detail in the

next section, SCaMPR calibrates in real time the GOES

rainfall rate estimates against rainfall rates retrieved

from PMW instruments, and it uses statistical tech-

niques to select the optimal predictors and coefficients

for separately identifying rain areas and estimating

rainfall rates.

It should be noted that algorithms that directly use

PMW rain rates (e.g., CMORPH, TMPA, and IMERG)

aremore accurate than SCaMPR, which only uses PMW

rain rates as a calibration standard. However, the la-

tency requirement for the GOES-R rainfall rate algo-

rithm (less than 5min) precludes the direct use of PMW

rain rates and thus sacrifices a degree of accuracy to

achievemuch lower latency (a fewminutes, compared to

roughly 18 h for CMORPH and 4h for IMERG), though

its accuracy is still sufficient for hydrologic forecasting in

regions of sparse gauge coverage (Zhang et al. 2013; Lee

et al. 2014). The performance of the GOES-R rainfall

rate algorithm is also expected to be superior to that of

the version of SCaMPR evaluated in these previously

published papers because the additional spectral bands

will improve sensitivity to cloud-top properties (e.g.,

phase and particle size) that will enable raining clouds

to be more skillfully discriminated from nonraining

clouds (e.g., Ba and Gruber 2001; Behrangi et al. 2009;

Rosenfeld and Lensky 1998), in addition to the im-

provements described in this paper.

To prepare NWS forecasters and other users for this

new capability, the algorithm developers created a

simplified version of the algorithm that uses the limited

1694 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



channel set of current GOES; since 2011 they have

teamed with the NASA Short-Term Prediction Re-

search and Transition Center (SPoRT) to make the rain

rates available in real time to selected forecast offices for

evaluation. The purpose of this paper is to describe the

improvements to the algorithm that have resulted from

the outcome of evaluations at the forecast offices. It will

not serve as an evaluation of the full algorithm (only of

the impact of the improvements) since the work de-

scribed here uses a simplified version that can be readily

validated at small scales in time and space with the

finescale ground validation data available over the

CONUS. The second section of this paper will briefly

review the full GOES-R version of the algorithm as

described in the algorithm theoretical basis document

(ATBD; Kuligowski 2010) and note the differences

from previous versions of the algorithm. The simplifi-

cations made to the algorithm to apply it to current-

generation GOES images in real time will also be

mentioned. Section 3 of this paper will describe the

modifications that were made to the algorithm in re-

sponse to forecaster feedback and will demonstrate the

impact of those modifications on the simplified algo-

rithm, which are expected to be similar to the impact

they would have on the full algorithm. The paper will

then close with a summary and a description of ongoing

work to further improve the algorithm.

2. Basic algorithm description

a. GOES-R version

The GOES-R version of SCaMPR is described in

detail in Kuligowski (2010) but will be outlined here for

reference. Essentially, the intent of the algorithm is to

use IR data from geostationary satellite platforms to

replicate as closely as possible the characteristics of

rainfall rates derived from PMW data from low-Earth-

orbiting satellites, but for the full spatial and temporal

coverage of GOES. To provide the best fit possible be-

tween the IR predictors and the target PMW rain rates,

the relationships derived between the two are allowed to

vary in time, in space, and by cloud type.

The starting point for this approach is a rolling-value

dataset in which IR data from GOES are matched with

and aggregated to the 8-km resolution of the target

PMW rain rates, which are obtained from the CPC

combined microwave (MWCOMB) dataset (Joyce et al.

2004).MWCOMBoverlays all available PMWrain rates

during a 30-min period and intercalibrates them so the

distributions from each PMW sensor matches that of the

rain rates from the GPM Microwave Imager [GMI;

previously using the TRMM Microwave Imager (TMI)

for this purpose]. It should be stressed that calibration

against MWCOMB means that SCaMPR would be ex-

pected to exhibit some of the weaknesses of PMW rain

rates (e.g., underestimation of rainfall in warm-top

clouds); however, PMW rain rates are used as the cali-

bration standard for other satellite rainfall algorithms as

well (e.g., CMORPH and TMPA/IMERG) since they

are the only source of instantaneous rain rates that are

reliably available over most of the globe in real time.

To allow the calibration relationship to vary in space

and by cloud type, separate matched PMW–IR datasets

are kept for four 308 latitude bands (covering 608S–608N)

and also for three different cloud types. These cloud types

are not directly based on retrieved cloud properties but

on observed changes in the relationship between the IR

window brightness temperature and the PMW rain rate

as a function of different GOES IR parameters. An ex-

ample of this is shown in Fig. 1, which illustrates the

transition in the slope and intercept of the best-fit line

between 10.8mm SEVIRI brightness temperature T10.8

and MWCOMB rain rates as a function of the difference

in brightness temperature between the 10.8- and 7.3-mm

SEVIRI bands. The transition indicates a shift from

stratiform and shallow convective clouds to deep con-

vective clouds, because clouds with a higher brightness

temperature in a water vapor band like 7.3mm than in a

window band like 10.8mm appear to be deep convective

clouds that have ejected water vapor into the strato-

sphere, producing a warm signal in the water vapor band

(e.g., Fritz and Laszlo 1993; Schmetz et al. 1997; Tjemkes

et al. 1997).

A similar analysis using the brightness temperature

difference between the 8.5- and 10.8-mm SEVIRI bands

FIG. 1. Relationship between slope (solid line) and intercept

(dashed) of the best-fit line between SEVIRI 10.8-mm brightness

temperature and MWCOMB rain rates as a function of the

brightness temperature difference between 10.8 and 7.3mm.
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formed the basis for separating these non–deep

convective clouds into two types: water-top clouds and

ice-top clouds. The relative differences in emissivity of

liquid water and ice at 8.5 and 10.8mm mean that the

difference in brightness temperature between these two

bands can indicate cloud-top phase, with water-top

clouds having lower T8.5 relative to T10.8 and the oppo-

site being the case for ice-top clouds (Ackerman et al.

1990). The final result is three cloud types with the fol-

lowing thresholds (transposing the central wavelengths

of each band from SEVIRI to the ABI): water-top

clouds (T7.34 , T11.2 and T8.7 2 T11.2 , 20.3K), ice-

top clouds (T7.34 , T11.2 and T8.5 2 T11.2 $20.3K), and

deep convective clouds (T7.34 $ T11.2). When combined

with the four 308 latitude bands, this classification results

in 12 rainfall classes.

It should be noted that this represents a change from

the previously published version of SCaMPR in

Kuligowski et al. (2013) that had no cloud classification.

In addition, the Kuligowski et al. (2013) version of

SCaMPR had more calibration regions (158 3 158 re-
gions with 108 of overlap on each side) than the initial

GOES-R version (Kuligowski 2010). Fewer calibration

regions were used in the initial GOES-R version be-

cause at the time no significant benefit was demon-

strated for the additional computational expense of

smaller calibration regions; however, as will be shown in

section 3b, this initial analysis later proved to be in-

correct and so this decision was reversed based on ad-

ditional evidence.

As with the previous version of SCaMPR (Kuligowski

et al. 2013), the amount of training data required was

based on a minimum number of raining MWCOMB

pixels (defined as rates .1mmh21) instead of a fixed

time period to ensure greater consistency over time.

Sensitivity studies were used to establish a minimum of

5000 pixels with rain rates.1mmh21 for the previously

defined GOES-classified water-top and ice-top cloud

types and at least 1000 for the deep convective cloud

types. When new MWCOMB data become available,

the oldest matched data are removed from the dataset to

maintain the required number of pixels with rain

rates .1mmh21.

Whenever the rolling-value matched datasets for any

rainfall class are updated, the calibration is updated in

two steps: rain/no rain discrimination and rainfall rate

calibration. Discriminant analysis is used to perform the

former, first selecting the predictor that produces the

highest Heidke skill score (HSS) when used to identify

raining pixels, with a constraint requiring the resulting

bias to be no more than 2%. This first predictor is then

combined with all remaining predictors to identify the

best predictor pair for rain/no rain discrimination.

Stepwise forward linear regression is then used to

select the best two predictors for rainfall rate retrieval.

Since the relationship between IR brightness tempera-

tures and rainfall rates is highly nonlinear [e.g., Fig. 1a of

Vicente et al. (1998)], as a preprocessing step each

predictor is regressed against the MWCOMB rain rates

in log–log space to produce additional nonlinear

(power-law transform) predictors that are added to the

pool of predictors. Prior to transformation to log space,

predetermined constant values were added to some

predictors (e.g., to brightness temperature differences

between bands) to prevent negative values since the

logarithm of a negative value is undefined. For other

predictors (e.g., single-channel brightness temperature

values), predetermined constant values were subtracted

to reduce the values to close to (but still above) zero in

order to optimize the nonlinear transformation.

The pool of available predictors was selected from all

of the possible combinations of ABI bands relevant to

rainfall rate retrieval: the two water vapor bands at 6.19

and 7.34mm and the three IR window bands at 8.5, 11.2,

and 12.0mm. The resulting list was narrowed down to

eight possible predictors based on how frequently they

were selected (predictors selected only a few percent of

the time or less were dropped), and the final list is shown

(including the adjustments that were used to prevent

negative numbers or keep the numbers positive but

small) in Table 1. The second and third predictors in the

left-hand column aremeasures of cloud texture (intended

to discriminate cirrus from cumulus clouds) adapted from

Adler andNegri (1988) and Ba andGruber (2001):Tavg is

the average value of T11.2 computed over the 53 5 pixel

area centered on the pixel, and Tmin is the minimum

temperature over the closest six neighboring pixels (four

along the scan line and two across scans).

The mean-square-error minimization implicit in lin-

ear regression is problematic when applied to rainfall

rates because it will optimize for extremely light rainfall

rates since they represent the vast majority of the rain-

fall data; this results in very poor fits for the higher

rainfall rates that are critical for flash flood forecasting.

As a result, the distribution of the SCaMPR rain rates

tends to be shifted far to the left (toward lower rainfall

rates) relative to the calibration MWCOMB rain rates.

SCaMPR adds a histogrammatching step to address this

TABLE 1. List of ABI predictors used by the GOES-R rainfall rate

algorithm.

T6.19 2 174K T8.5 2 T7.34 1 30K

S 5 0.568 2 (Tmin,11.2) 2 217K 1 25K T11.2 2 T7.34 1 20K

Tavg,11.2 2 Tmin,11.2 2 S 1 85K T8.5 2 T11.2 1 30K

T7.34 2 T6.19 1 30K T11.2 2 T12.3 1 20K
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issue; that is, a lookup table (LUT) is generated to map

the cumulative distribution function (CDF) of the

SCaMPR rain rates to that of the MWCOMB rain rates,

producing an LUT that is applied to the SCaMPR rain

rates to produce rain rates with a statistical distribution

consistent with that of the target MWCOMB rain rates.

To handle any retrieved rain rates that are higher than

the maximum rain rate in the training data, the LUT is

linearly interpolated from the highest value in the

matched histograms to no adjustment at the highest

MWCOMB rain rate of 50mmh21; that is, the un-

adjusted and adjusted values are the same for rain

rates $50mmh21. This is done because extrapolation

would run the risk of producing physically unreasonable

results, as would be suggested by extrapolating the

curved portion of the sample adjustment in Fig. 2. This

is a significant change from the version of SCaMPR

evaluated in Zhang et al. (2013) and addresses some of

the problem of underestimated heavy rainfall and

overestimated light rainfall pointed out in that paper, as

illustrated by comparing the area bias and HSS for the

algorithm applied to current GOES (see section 2b) for

1-h accumulations as a function of 1-h, 4-kmNCEP stage

IV gauge–radar rainfall accumulation (Lin and Mitchell

2005) during July 2011 (Fig. 3).

The resulting predictor lists and calibration co-

efficients for both rain and no rain discrimination and

rainfall rate retrieval plus the adjustment LUTs are kept

in a file that is used by SCaMPR to retrieve rain rates

from the current GOES imagery. Data matching/

calibration and retrieval are run in parallel so that the

latency of theMWCOMBdata (approximately 15 h) has

no effect on the latency of the GOES retrievals, which is

just minutes after the GOES data become available.

b. Simplification for current GOES

Although the algorithm was developed using SEVIRI

data, the need for forecasters to evaluate the algorithm

over the United States prior to the operational de-

ployment of GOES-R made it necessary to develop a

simplified version that could run using current GOES

capabilities. Two primary changes were necessary: the

water-top and ice-top cloud categories had to be

combined (since there is no 8.5-mm band to differentiate

them), thus reducing the number of classes from 12 to 8,

and half the predictors were lost, since there is no 8.5-mm

band or 12.3-mm band and since there is only one water

vapor band on current GOES. The four remaining

FIG. 2. Example of the LUT for adjusting the distribution of the

SCaMPR rain rates to match the MWCOMB data. Annotations

indicate those portions of the LUT derived using the matched

CDFs of SCaMPR and MWCOMB and derived by interpolating

between the highest value of the CDFs and matching values of

50mmh21.

FIG. 3. Area (top) bias and (bottom) HSS of 1-h accumulations

from the original current GOES version of the GOES-R rainfall

rate algorithm with (green line) and without (red line) the distri-

bution adjustment vs 1-h stage IV accumulations for July 2011.
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predictors (with the central wavelengths reflecting the

current GOES Imager rather than ABI) are indicated in

Table 2.

This version began running in real time onGOES-West

and -East inAugust 2011, covering 608S–608N and 1658E–
158W, with files in Man–Computer Interactive Data Ac-

cess System (McIDAS) area file format [available at ftp://

ftp.star.nesdis.noaa.gov/pub/smcd/emb/bobk/SPoRT/ and

in flat (real*4) binary format at ftp://ftp.star.nesdis.noaa.

gov/pub/smcd/emb/bobk/SPoRT/Binary/]. At the re-

quest of SPoRT, the coverage area was extended to

708N in November 2011 to provide coverage for much of

Alaska. Since that time, SPoRThas provided training and

real-time data access to forecast offices in Medford, Or-

egon; the Alaska region; and San Juan, Puerto Rico, and

is extending the evaluation to the Pacific region. In re-

sponse to forecaster feedback, several improvements

were made to the algorithm that will be detailed next.

3. Algorithm modifications and impacts

a. Humidity correction

An issue that was identified both from forecaster

feedback and developer evaluation was significant false

alarm rainfall in dry regions, for example, in in-

termountain areas. This was shown in Kuligowski et al.

(2013) for the previous version of SCaMPR as well and

is caused largely by the evaporation of hydrometeors

below cloud base, which cannot be directly detected

using satellite imagery. To resolve this, a correction

based on mean relative humidity (RH) values from the

lowest (vertical) third of the National Centers for En-

vironmental Prediction (NCEP) Global Forecast Sys-

tem (GFS)model domain was developed; this sameRH

value is used to adjust rain rates in the current opera-

tional HE algorithm (Scofield and Kuligowski 2003),

but a new correction has been empirically derived here.

This adjustment (which is static rather than time vari-

ant like the rainfall rate retrieval calibration) was based

on a 5-yr (2009–13) dataset of hourly stage IV radar–

gauge rainfall totals matched with instantaneous

MWCOMB rain rates (the SCaMPR calibration target)

and aggregated onto the 1/88 latitude–longitude grid

used by MWCOMB. Although MWCOMB represents

instantaneous rates and cannot be readily aggregated

into 1-h totals because the individual PMW scans are

typically several hours apart, it was used in place of 1-h

totals from SCaMPR in order to produce a more robust

RH correction that would not have to be redone every

time a change to SCaMPR was made. This matched

dataset included only data east of 1058Wgiven the well-

known limitations of radar in the western United States

(e.g., Young et al. 2000). These matched data were then

sorted in order of RH value and then divided into bins

of equal sample size, and for each bin the average stage

IV rainfall minus the average MWCOMB rain rate was

computed. A linear regression fit to the resulting data

points was used to derive the following rainfall rate

(RR) additive humidity adjustment (RRadd):

RR
add

5RR1 0:115825[max(RH, 61)]2 10:7354, (1)

where RH is in percent and any negative values are

rounded up to zero.

The ratios of stage IV toMWCOMB for each binwere

likewise used to derive a multiplicative humidity ad-

justment; however, the additive adjustment was shown

to have higher skill than the multiplicative adjustment

when applied to a test set of SCaMPR rain rates. After

applying the additive adjustment, the resulting rain rates

were then used to derive a multiplicative adjustment to

be applied after the additive adjustment of Eq. (1),

which increased the skill of SCaMPR further. The

multiplicative adjustment RRmult is as follows:

RR
mult

5RR
add

f0:000 112 891[max(RH, 22:32)]2

2 0:005 040 12[max(RH, 22:32)]

1 0:476 117g. (2)

Figure 4 shows the resulting correction as a function of

RH for different rainfall intensities; the correction is

TABLE 2. List of GOES Imager predictors used by the current

GOES version of the GOES-R rainfall rate algorithm.

T6.7 2 174K Tavg,10.7 2 Tmin,10.7 2 S 1 85K

S 5 0.568 2 (Tmin,10.7) 2 217K

1 25K

T10.7 2 T6.7 1 20K

FIG. 4. SCaMPR RH correction as a function of GFS RH for

different rain rates (mm h21; scale on right).
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quite strong in dry air, such that for an RH below 60%

only the most intense cloud-level rainfall is assumed to

reach the surface.

For a reanalyzed dataset covering all of 2011–13, the

impact of the RH correction on SCaMPR skill (com-

pared to 1-h stage IV amounts on a 4-km grid) is shown

in Table 3, including a comparison to the current oper-

ational HE algorithm and to the PERSIANN–Cloud

Classification System (PERSIANN-CCS; Mahrooghy

et al. 2012) and QMORPH algorithms. The significant

wet multiplicative volume bias (bias in Table 3) of

SCaMPR is reduced by over half (from 2.448 to 1.183)

and is brought below that of the HE. This reduction in

bias also reduces the RMSE by nearly 29% compared to

the original version and by over 10% compared to HE,

PERSIANN-CCS, and QMORPH. The correlation be-

tween satellite estimates and hourly observations (CC in

Table 3) improves slightly as well and is superior to the

HE and significantly better than PERSIANN-CCS

and QMORPH.

Following Tian et al. (2009), the total bias Toerr (Table

3) can be computed as the total volume of satellite

rainfall minus the total volume of stage IV rainfall and

can be broken down into three components: the volume

difference for pixels where SCaMPR and stage IV both

had rainfall Tohit (with the rain/no rain threshold de-

fined here as 0.25mmh21); the volume of rainfall for

pixels where stage IV had rainfall and SCaMPR did not

Tomiss; and the volume difference when the opposite

occurred, that is, false alarms Tofalse. These error com-

ponents are related to the total error as follows:

To
err

5To
hit

2To
miss

1To
false

. (3)

All of the rain volumes are normalized by dividing by

the total volume of observed rainfall. As expected, the

volume of false alarm rainfall is cut by nearly two-thirds

by the humidity correction, though there is some in-

crease in missed rainfall that is less than 10% of the

magnitude of the reduction in false alarms. This re-

duction in false alarms reduces the volume of false alarm

rainfall below that of every other algorithm except

QMORPH (which is less than 2%better) and themissed

rainfall, while 26% greater than that of the HE, is still

significantly less than that of PERSIANN-CCS

and QMORPH.

Interestingly, the additive volume bias in the ‘‘hit’’

pixels becomes less negative, which at first appears

counterintuitive since the humidity correction generally

reduces rainfall (with the exception of RH values near

100%). The apparent reason for this is that the RH

correction completely removed the rainfall from some

of the hit pixels that had previously been too dry already,

causing them to be reclassified as ‘‘miss’’ and raising the

average of the remaining hit pixels. However, this in-

crease was still much smaller than the reduction in false

alarms, and so the overall error was reduced by ap-

proximately 35% and is significantly lower than that of

the other algorithms (though only about 3% lower than

for QMORPH).

The effectiveness of the RH correction at reducing

false alarms is illustrated in Fig. 5, which shows the

spatial distribution of the normalized false alarm rainfall

versus 4-km hourly stage IV for each 18 3 18 latitude–
longitude box for the 6 years spanning 2008–13. False

alarms are reduced everywhere, most notably in the high

plains and the southwestern desert. Note that this figure

does not include stage IV data from Northwest River

Forecast Center (NWRFC) or California–Nevada River

Forecast Center (CNRFC) since neither one produces

routine hourly radar–gauge rainfall estimates. To ex-

amine these areas, the analysis was repeated for the

same time period but comparing 24-h SCaMPR totals

with daily Cooperative Observer Program (COOP)

gauge amounts (Fig. 6). The magnitudes differ some-

what from Fig. 5 but the overall pattern is the same, with

the greatest reductions in false alarms over the south-

western quarter of the CONUS but with reductions

everywhere.

It should be noted that this RH correction has been

derived and validated using only the eastern half of the

CONUS, so it is not definitively known whether this

correction is equally appropriate for the remainder of

the GOES coverage area. Evaluation using reliable

rainfall rate estimates outside the CONUS [e.g., from

GPM Dual-Frequency Precipitation Radar (DPR)] will

TABLE 3. Performance statistics for 1-h SCaMPR accumulations without and with the RH correction compared to the operational HE

algorithm, PERSIANN-CCS, and QMORPH for 2011–13.

Algorithm Bias RMSE CC Tohit Tomiss Tofalse Toerr

HE 1.377 1.023 0.344 20.030 0.318 0.694 0.982

SCaMPR 2.448 1.257 0.359 20.384 0.319 1.400 1.335

SCaMPR-RH 1.183 0.894 0.375 20.073 0.401 0.527 0.855

PERSIANN 1.249 1.016 0.260 20.020 0.534 0.784 1.299

QMORPH 1.131 1.064 0.287 20.126 0.493 0.518 0.884

JUNE 2016 KUL IGOWSK I ET AL . 1699



be needed to make this determination. In the meantime,

this humidity adjustment was incorporated into the real-

time processing in April 2014.

b. Smaller calibration regions

The NWS forecasters evaluating SCaMPR observed

that the rainfall rates would occasionally show signifi-

cant changes when the calibration was updated. This

indicated that while the amount of calibration data was

sufficient to ensure gradual calibration changes in most

cases, there were occasions where a larger calibration

dataset would be needed to assure a smoother transition

when the calibration was updated.

In addition, forecasters noted that there were occa-

sionally significant spatial discontinuities between the

rainfall rates from the deep convective regions and those

from the other raining pixels—areas of very high rain

rates directly adjacent to pixels with zero rainfall, with

no transition in between. Investigation revealed that

the problem was also caused in part by the calibration

datasets being too small, but another contributing factor

was the application of histogram matching over such

large calibration regions. Histogram matching neglects

spatial information (i.e., the nth-highest unadjusted

SCaMPR rain rate is matched with the nth-highest

MWCOMB rain rate regardless of location), meaning

that the LUT could be based on matches of SCaMPR

and MWCOMB pixels belonging to completely differ-

ent precipitation systems thousands of miles apart with

no physical connection. Even given the commonality of

precipitation physics for similar cloud types, this could

result in significant nonphysical changes in the LUT

from one hour to the next, for example, if the highest

SCaMPR rain rate is associated with a growing thun-

derstorm and the highest MWCOMB rain rate is asso-

ciated with a decaying one. It could also cause significant

nonphysical differences in the LUTs of different rainfall

types at different times for the same reasons. Since other

applications of this approach (e.g., Turk et al. 2003;

Huffman et al. 2007) use much smaller calibration regions

than the 308 3 1208 used in SCaMPR, nonoverlapping

FIG. 5. Volume of false alarm rainfall divided by the volume of

observed rainfall (compared to stage IV) during 2008–13 for (top)

the original simplifiedGOES-R version of SCaMPR, with (middle)

the RH correction applied and (bottom) the percentage change in

false alarms from applying the RH correction. Gray shading in-

dicates no data in the (top) and (middle); white indicates no data in

the (bottom).

FIG. 6. As in Fig. 4, but for 24-h rainfall totals compared to gauges.
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calibration regions with sizes of 58 3 58, 108 3 108, and
158 3 158 were tested, with varying amounts of training

data required. The 158 3 158 regions were found to ad-

dress most of these issues when accompanied by a sig-

nificant increase in the amount of training data to 10000

pixels with rain rates $2.5mmh21 for both classes;

smaller regions and/or larger amounts of training data

did not have a significant positive impact, especially

compared to the additional computational cost required.

Of course, 158 3 158 calibration regions will create the

possibility of long periods without significant rainfall in a

particular region. In such a case, the calibration dataset

and the calibration coefficients will remain static until

new precipitation occurs and begins to refresh the cali-

bration dataset. Differences in the rain/no rain and

rainfall rate predictors and coefficients and/or in the

histogram adjustments between adjacent 158 3 158 cal-
ibration regions can produce discontinuities along the

boundary between the regions. Consequently, nine

separate rainfall rates are retrieved for each pixel using

the calibration from the region containing that pixel and

also for the eight neighboring 158 3 158 regions; these
nine values are then averaged using an inverse distance

weighting scheme to produce smooth transitions at the

interregion boundaries.

The impact of the change is illustrated in Fig. 7, which

shows successive images from Tropical Storm Ana on

17 October 2014 (a reprocessed test case) as it ap-

proached the Hawaiian Islands. The enhancement of

rainfall in the deep convective area can be clearly seen

[note the large area of no rainfall near the storm center

in Fig. 7 (top), which appears to be too temporally and

spatially incoherent to be a real eye feature], along with

the improved continuity from one hour to the next.

Statistically, the use of these regions also further im-

proved performance, as shown in Table 4. The multi-

plicative volume bias actually falls below 0.9 (i.e., the

rain volume is now 10% too low), and the RMSE de-

clines another 9% and is now roughly 20% lower than

that of HE, PERSIANN-CCS, and QMORPH. The

FIG. 7. SCaMPR rain rates for Tropical StormAna at (left) 1832, (center) 1932, and (right) 2032UTC 17Oct 2014

for (top) the original simplified GOES-R version of SCaMPR and (bottom) the modified version with smaller

calibration regions.
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correlation coefficient also has improved further. Re-

garding the error components, false alarms decrease by

another 30% and the hit bias is nearly zero. Missed

rainfall volume does increase by 12%, which puts it

significantly above HE but still below PERSIANN-CCS

and QMORPH, but the overall error is still slightly

lower than in the original GOES-R version with only

eight calibration classes (using current GOES) and sig-

nificantly lower than that of the HE, PERSIANN-CCS,

and QMORPH. These changes were integrated into the

real-time current GOES version of the algorithm in

August 2015.

4. Conclusions and future work

In this paper, the GOES-R rainfall rate algorithm has

been described, along with improvements that have

been made in response to forecaster feedback. The

impact of these improvements has been demonstrated

on a simplified version of the algorithm applied to cur-

rent GOES that allows validation using the high-

resolution stage IV radar–gauge dataset. Adding a

correction for subcloud evaporation based on GFS

model RH significantly reduced false alarm rainfall

(though at the cost of some additional missed events).

Reducing the size of the calibration regions and in-

creasing the training data requirements improved the

temporal continuity of the rain rates and also improved

the consistency of the rain rates between the deep

convective and non–deep convective clouds.

However, significant work remains to be done. One

important item will be to refine the RH correction fur-

ther: while it does significantly reduce false alarm rain-

fall and enhance skill for light rain rates, it has been

found to degrade the performance of the algorithm for

heavier rain rates by inducing a strong systematic dry bias

(Fig. 8) that erases its advantage over HE, PERSIANN,

and QMORPH at higher rain rates. This version of the

RHcorrection is currently used in the real-time version of

the algorithm, but work is underway to improve the

correction by making it a function of both rainfall rate

and RH; presumably, it would be relaxed for heavier rain

rates relative to what is indicated by Fig. 4.

Another area for improvement is the detection of rain-

fall from warm clouds, which is challenging—significant

rainfall is frequently observed in places like Hawaii and

Puerto Rico from clouds with brightness temperatures

above 273K. The PMW rain rates from MWCOMB also

frequently miss these events, so in such instances a fixed

calibration may be necessary in lieu of the dynamic cali-

bration against MWCOMB. However, cloud-top temper-

atures alone are not sufficient to discriminate rainingwarm

TABLE 4. Performance statistics for RH-corrected SCaMPRwith the original calibration regions and with the smaller 153 15 calibration

regions (15 3 15RH) compared to the operational HE algorithm, PERSIANN-CCS, and QMORPH for 2011–13.

Algorithm Bias RMSE CC Tohit Tomiss Tofalse Toerr

HE 1.377 1.023 0.344 20.030 0.318 0.694 0.982

SCaMPR-RH 1.183 0.894 0.375 20.073 0.401 0.527 0.855

15 3 15RH 0.894 0.839 0.380 0.002 0.451 0.365 0.817

PERSIANN 1.249 1.016 0.260 20.020 0.534 0.784 1.299

QMORPH 1.131 1.064 0.287 20.126 0.493 0.518 0.884

FIG. 8. Area (top) bias and (bottom) HSS of 1-h accumulations

from the original current GOES version of the GOES-R rainfall

rate algorithm, the algorithm with the RH correction added, and

with the 158 3 158 calibration regions and the RH correction vs 1-h

stage IV accumulations for 2008–13.
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clouds from nonraining warm clouds, so work is underway

to leverage efforts by Chen et al. (2011) to utilize cloud

property information that is produced in real time at

the University of Wisconsin using the daytime cloud

optical and microphysical properties (DCOMP) algo-

rithm (Walther and Heidinger 2012) and to identify a

priori those conditions under which this cloud property

information should be used in lieu of the dynamic cal-

ibration so that the choice of calibration can be fully au-

tomated. This information has also been demonstrated to

behelpful in screening out cirrus anvils (Stenz et al. 2014)—

another area for improvement identified by forecasters.

Orographic rainfall is another challenge raised by

forecasters. Although the HE uses a basic orographic

correction (Vicente et al. 2002), validation of the cor-

rection has produced less than satisfying results (Yucel

et al. 2011) and efforts have been ongoing to develop a

more robust orographic correction. However, the sheer

complexity of orographic precipitation processes makes

this an extremely challenging task.
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