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Motivation

One of the GOES-R goals. is to improve operational
satellite-based cloud and precipitation products to
enhance short-term rainfall and flood forecasts, as well
as long-term hydrological assessments concerning
agriculture and water resources management.

Deep Convective Systems (DCSs) are responsible for
most severe weather events, and a DCS can be
classified into convective core (CC) regions (heavy
rain), stratiform (SR) regions (moderate-light rain);
and anvil (AC) regions (no rain).

However, these regions share similar brightness
temperatures, which can create large errors for

many existing rain detection algorithms such as
the current GOES-R SCaMPR algorithm.



ODbjectives

We developed TWO automatic cloud and precipitation
classification techniques to identify the DCS’s convective
and stratiform rain regions (precipitating) and anvil region
(non-precipitating) to improve SCaMPR precipitation
estimates. In particular, we proposed to

1) use the classification techniques to identify DCSs and
classify them into convective core and stratiform, rain
regions, and non-precipitating Anvil regions, and then to
obtain their corresponding statistics of the cloud and
precipitation characteristics of DCSs over the continental
U.S., and

2) use the multi-scale, multi-sensor ground-based radars
and other observations, and aircraft in situ
measurements to validate satellite retrieved precipitation
properties from the Mid-latitude Convective Clouds
Experiment (MC3E) during April-June 2011 at ARM SGP.
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Accomplishments

. We have collected and generated multiple years of the
hybrid product (NEXRAD +GOES), NEXRAD Q2/Q3
precipitation, and SCaMPR retrievals over the continental
USA.

II. We have studied the life and diurnal cycles, formation-
dissipation processes, and precipitation characteristics of
DCSs over the SGP region using 4221 tracked DCS cases
(Feng et al. 2011 and 2012)

1. A satellite-microphysics-based cloud and precipitation
classification has been developed at the SGP region to
Improve SCaMPR precipitation estimates (Stenz et'al.
2014)

V. The global distributions of the DCS and their seasonal
and spatial variations (Peng et al. 2014, from Zhanqging
LiI’'s group)

V. Comparisons of Deep Convective Clouds between
models and Observations (Ongoing Investigation) 4



Accomplishment |

We have collected and generated multiple years
of the hybrid product (NEXRAD+GOES), NEXRAD

Q2/Q3 precipitation, and SCaMPR retrievals over
the continental USA.

We have also collected and processed aircraft in
situ measurements and other surface-GOES

observations at the ARM SGP site during the
MC3E I0P.



Why do we need to study Deep
Convective System (DCS)

DCS has two main components

— Jwers important to hydrologic cycle and
atmospheric circulation due to heavy rainfall

— Cirrus anvil cloud: dominate radiation budget due to large
area coverage

High impacts on both weather and climate

Cirrus anvil Cumulus Tower
(Non-precipitating)

(Precipitating)
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NEXRAD+GOES Hybrid Classification Example
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Radar Classification and 3D Structure
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Two Samples of Hybrid Product

Gauge Adjusted Q2 1h Accumulated Precip 2012.05.20 06:00 UTC
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Some Results from DOE ARM MC3E IOP
At the SGP site (May 20, 2011)

From Surface, aircraft and satellite
observations and retrievals
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Daily Precip-from NEXRAD Q2 and OK Mesonet
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Accomplishment Il

(2) The life and diurnal cycles, formation-dissipation
processes, and precipitation characteristics of DCSs over
the SGP region have been studied using 4221 tracked
DCS cases.

=2 Feng, Z., X. Dong, B. Xi, C. Schumacher, P. Minnis, and M. Khaiyer , 2011.:
Top-of-atmosphere radiation budget of convective core/stratiform rain andwanvil
clouds from deep convective systems, J. Geophys. Res., 116, D23202,
doi:10.1029/2011JD016451.

=2>Feng, Z., X. Dong, B. Xi, S. McFarlane, A. Kennedy, B. Lin, and P. Minnis, 2012:
Life cycle of deep convective systems in a Lagrangian Framework. JGR. 117,
D23201.
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Presentation Notes
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Mature stage show large areas of depressed TIR and expanding cold cloud area
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Define Life Cycle
Stages
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Composite by Life Cycle
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Accomplishment Il

(3) A satellite-microphysics-based cloud and precipitation
classification has been developed at the SGP region to
gualitatively improve SCaMPR precipitation estimates.

= Stenz, R., X. Dong, B. Xi, and B. Kuligowski (2014): Assessment of
SCaMPR and NEXRAD Q2 precipitation estimates using Oklahema

Mesonet observations. Accepted by J. Hydrometeor.
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Main Findings from Stenz et al. 2014

=>Stenz et al. (2014) assessed the performance of NEXRAD Q2,
and the GOES-R SCaMPR Rainfall Rate algorithm over the state
of Oklahoma (OK) using OK MESONET observations as ground
truth.

=>While the average annual Q2 precipitation estimates were
about 35% higher than MESONET observations (690 mm), there
were very strong correlations between these two data sets for
multiple temporal and spatial scales.

=2>SCaMPR retrievals were typically three to four times higher
than the collocated MESONET observations, with relatively
weak correlations to OK MESONET observations. The severe
overestimations from SCaMPR' retrievals were primarily
attributed to false alarm retrieval of heavy precipitation in anvil
regions during DCS events.

= A modified SCaMPR retrieval algorithm, employing,both cloud
optical depth and IR temperature, has made significant
Improvements to reduce the SCaMPR false alarm rate, of
retrieved precipitation especially over non-precipitating (anvil)
regions of a DCS. 24



Comparisons of Precipitation estimates
from Mesonet, NEXRAD Q2 and SCaMPR
over the CC, SR and AC regions of DCS

Platform Percentage |Percentage |Percentage |Percentage of
of Rainfall|of Rainfall{of Rainfall|Rainfall In

Unclassified/Thi
n Anvil Regions

SCaMPR 12.77 30.84 36.80 19.59

These results have demonstrated that
SCaMPR severely underestimated
precipitation over the

but significantly overestimated
precipitation over the AC and unclassified
regions (56% vs. 4%). *




AN example from Stenz et al. 2014
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Using the newly developed satellite-microphysics-based cloud and
precipitation classification, the spatial extent of the SCaMPR
estimated precipitation were reduced to 31% in the modified version
from 48% in its original algorithm (IR temperature only). The new
coverage Is very close to the Q2 estimated precip. coverage (33%).



Accomplishment IV

The global distributions of DCSs and their
seasonal and spatial variations

We developed a new algorithm that can-identify all
DCSs using a combination of active and passive
measurements from A-Train satellite sensors.

= Peng, J., Z. LI, and H. Zhang, 2014: Temporal and
spatial variations of global deep cloud systens based
on CloudSat and CALIPSO satellite observations,
Adv. Atmos. Sci., In press.
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Global Distribution of DCS from A-Train
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Comparisons of Deep Convective Clouds
between models and obse

Ongoing Investigation



Used Dataset

CloudSat-CALIPSO merged data,
MODIS data,
GFS model

MODIS data
: ho cloud
base pressure
: daily global
coverage

By taking advantage of the merits of both active

and passive sensors, we can evaluate model
performance in simulating DCSs
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Summary and Future work

These accomplishments have been done through the
support of the ongoing GOES-R project.

Based upon the available datasets and methods, we
are going to
1) Apply our current methods to Investigate DCS life

and diurnal cycles, formation-dissipation processes
and precipitation of DCSs over the continental USA

2) Develop empirical relationships between rain rate
(NEXRAD Q2/Q3), GOES(-R) cloud.  optical depth,
particle size and IR BT for both DCSs and warm
clouds to guantitatively Improve satellite
precipitation estimates.

3) Continue to study the DCS from global satellite
and NOAA/GFS model

58



b) Using four years data of CloudSat to Identify the DCS global distribution
and prepare for the combination of Aerasol information from Modis and
CALIPSO for 2007 to 2010, the following properties of DCS were
recorded,

1) Horizontal extent of DCS

2) Number of deep convective core-DCC( cloud top higher than 10 km and
the
distance between cloud base and surface is less than 2 km)

3) Location, time, top height, base height of DCC

4) Surface status (marine, continent, coast) and elevation of DCS

34
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