GOES-17 Saturation Prediction
Reference Tools for 2020

Matthew Seybold and Seth Iacangelo

Data are based on NESDIS/OSPO File "*_2020_ABI_Thermal_Model_2020-07-28.xls"
Outline of Saturation Prediction
Reference Tools

• Caveats & Assumptions

• Daily Maximum Temperatures

• Daily Maximum Temperatures with Band Thresholds

• Hour-by-Hour Band Saturation

• Interpretation of Marginal and Unusable Hours

• Example Images of “Marginal” and “Unusable” Hours

• Details on Cooling Timeline
Important Caveat

• **NOTE:** All of the information in this slide deck is **predictive**.
• The actual extent of saturation will differ from the predictions by both temperature magnitude and time of day
• Differences between actual and prediction may also have seasonal variations
• The data in this slide deck indicate “marginal” saturation when imagery is still useful, but some saturation artifacts are present (see example imager at end of slide deck)
• In coming months the predicted data will be revisited and in cases where the predictions may be improved, this slide deck will be updated and redistributed
• Predictions for 2021 will be made available in late 2020
Assumptions

• Inclusions reflect current (July 29, 2020) operational status
 – Thermal model uses Mode 6 with GOES-West mesoscale domain sector (MDS) default locations over Alaska and California
 – Semi-annual yaw flip to reduce solar load (~3 weeks after and before each equinox – April 6, 2020 and September 8, 2020)
 – Predictive Calibration is included in setting the “marginal” and “unusable” per-band imagery thresholds
 – Mode 3 Cooling Timeline: 15 minute Full Disk, 2 MDS Domains each at 2 minute refresh
 • See slides 17-20 for explanation of cooling timeline
This plot shows daily maximum temperature of the ABI focal plane module. These maximums occur at night. The higher the temperature, the more saturated imagery becomes.
This plot shows daily maximum temperature of the ABI focal plane module. These maximums occur at night. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable.
This plot shows hourly maximum temperature of the ABI focal plane module. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable. The hour of peak temperature varies from day to day.
This plot shows hourly maximum temperature of the ABI focal plane module. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable. The hour of peak temperature varies from day to day.
Predicted Marginally Saturated Hours by Band

This plot shows hourly maximum temperature of the ABI focal plane module. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable. The hour of peak temperature varies from day to day.
This plot shows hourly maximum temperature of the ABI focal plane module. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable. The hour of peak temperature varies from day to day.
This plot shows hourly maximum temperature of the ABI focal plane module. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable. The hour of peak temperature varies from day to day.
Predicted Marginally Saturated Hours by Band

This plot shows hourly maximum temperature of the ABI focal plane module. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable. The hour of peak temperature varies from day to day.
This plot shows hourly maximum temperature of the ABI focal plane module. The higher the temperature, the more saturated imagery becomes. Where the temperature rises to approach a black line for each band, marginal saturation may be observed in imagery. Where the temperature curve exceeds a black line for each band, the imagery may begin to saturate so much that it becomes unusable. The hour of peak temperature varies from day to day.
Characterization of Marginal and Unusable Hours

<table>
<thead>
<tr>
<th>2020 Predictions</th>
<th>Characterization of Daily Maximum Values</th>
<th>Characterization of Diurnal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 July – 12 August</td>
<td>Channel saturation begins starting with bands in this order: 12, 16, 10, 8, 9, 11 from marginal to unusable by the end of the time period.</td>
<td>Saturation may occur between approximately 1100-1530 UTC. Peak saturation occurs at the end of the time period at approximately 1300 UTC.</td>
</tr>
<tr>
<td>13 August – 30 August</td>
<td>The cooling timeline is implemented. Channel saturation begins starting with bands in this order: 12, 16, 10, 8, 9, 11, 15, 14 from marginal to unusable by the end of the time period.</td>
<td>Saturation can occur between approximately 1030-1600 UTC. Peak saturation occurs at the end of the time period at approximately 1300 UTC.</td>
</tr>
<tr>
<td>31 August – 7 September</td>
<td>After a 1-day spike when the cooling timeline is turned off, Channel saturation improves from September 1st starting with bands in this order: 11, 9, 8, 10, 16, 12 from unusable to mostly marginal by the end of the time period.</td>
<td>Saturation can occur between approximately 1100-1530 UTC. Peak saturation occurs at the beginning of the time period at approximately 1300 UTC.</td>
</tr>
<tr>
<td>8 September – 6 October</td>
<td>All bands nominal without marginal or unusable periods.</td>
<td>Diurnal values remain within usable imagery thresholds throughout this period.</td>
</tr>
<tr>
<td>8 October – 15 October</td>
<td>Channel saturation begins starting with bands in this order: 12, 16, 10, 8, 9, 11, 15 from marginal to unusable to mostly marginal by the end of the time period.</td>
<td>Saturation can occur between approximately 1015-1600 UTC. Peak saturation occurs at the end of the time period at approximately 1300 UTC.</td>
</tr>
<tr>
<td>16 October – 30 October</td>
<td>The cooling timeline is implemented. Channel saturation improves starting with bands in this order: 11, 9, 8, 10, 16, 12 from unusable to mostly marginal by the end of the time period.</td>
<td>Saturation can occur between approximately 1015-1600 UTC. Peak saturation occurs at the end of the time period at approximately 1300 UTC.</td>
</tr>
<tr>
<td>31 October – 19 December</td>
<td>After a 1-day spike when the cooling timeline is turned off, Channel saturation continues to improve starting with bands in this order: 11, 9, 8, 10, 16, 12 from unusable to mostly marginal by the end of the time period.</td>
<td>Saturation can occur between approximately 1015-1600 UTC. Peak saturation occurs at the end of the time period at approximately 1300 UTC.</td>
</tr>
</tbody>
</table>
Example of Marginally Saturated Image
Example of Unusable Saturated Image
Introduction to Cooling Timeline

- **Objective:** Lower focal plane temperatures and decrease hours of degraded and saturated imagery
- **Approach:** Alter ABI timeline to spend additional time looking at cool space-looks (vs. comparably hot Earth-looks)
- **Timeline:** Runs from 0600 UTC to 1200 UTC on days when cooling timeline is active

- **Past Activations**
 - Feb 26, 2020 – Mar 1, 2020
 - Apr 9, 2020 – May 1, 2020

- **Upcoming Activations**
 - Aug 11, 2020 – Sep 1, 2020
 - ~Oct 14, 2020 – ~Oct 31, 2020
• Classified as Mode 3:
 – 15 min Full Disk
 – No CONUS
 – Alternating MESO 1/minute

• Compare to Nominal Mode 6:
 – 10 min Full Disk
 – 5 min CONUS
 – MESO 2x1 min / 1x30 sec

Modified from https://www.ospo.noaa.gov/Operations/GOES/west/Mode3G_Cooling_Timeline_G17.html
Over the same time period, replaces three nominal Mode 6 Timelines with two Cooling Timelines:

- Full Disk: 3 to 2
- CONUS: 6 to 0
- MESO: 60 to 30
Cooling Timeline Results Summary

• Cooling timeline effectively reduced the peak FPM temperature by ~3-5 K from April 9 – May 1
 – Stronger impact on the hottest days

• The cooling timeline in April 2020 gained ~30-130 minutes of valid images at most cooling days
 – 50-150 Meso images
 – 2-10 CONUS images
 – 2-6 FD images

• More extra images at the falling FPM temperature side than at the rising side

• No saturated images at B07/B13/B14 on cooling timeline days

Source: Fred Wu